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Density functional theory (DFT) is the de facto method for the electronic structure of weakly correlated
systems. But for strongly correlated materials, common density functional approximations break down. Here,
we derive a many-electron expansion (MEE) in DFT that accounts for successive one-, two-, three-, ... particle
interactions within the system. To compute the correction terms, the density is first decomposed into a sum of
localized, nodeless one-electron densities (ρi). These one-electron densities are used to construct relevant two-
(ρi + ρj ), three- (ρi + ρj + ρk), ... electron densities. Numerically exact results for these few-particle densities
can then be used to correct an approximate density functional via any of several many-body expansions. We
show that the resulting hierarchy gives accurate results for several important model systems: the Hubbard and
Peierls-Hubbard models in 1D and the pure Hubbard model in 2D. We further show that the method is numerically
convergent for strongly correlated systems: applying successively higher order corrections leads to systematic
improvement of the results. MEE thus provides a hierarchy of density functional approximations that applies to
both weakly and strongly correlated systems.

DOI: 10.1103/PhysRevB.93.201108

The promise of density functional theory (DFT) is tantaliz-
ing: there exists a single universal functional, F [ρ], that pre-
dicts the electronic ground state of all molecules and materials
exactly [1–3]. Unfortunately, while this functional is universal
in principle, in practice one encounters an ever-growing list
of specific functionals that have been tailored to particular
physical conditions [4–6]. The proliferation of functionals
is in part due to the difficulty of accounting for strong
correlation (sometimes called static correlation) within DFT.
Commonly used approximate functionals deal well with weak
correlation, but to varying degrees fail for strong correlation,
where a different set of approximations must be employed
[7–11]. In this Rapid Communication, we bridge this gap by
deriving a hierarchy of density functional approximations that
systematically correct for strong correlation in a numerically
accessible form.

We begin by recognizing that strong correlation is typically
short-ranged. This physics is, for example, at the heart of
dynamical mean field theory [12]. To account for this in DFT,
assume that we can decompose the total spin density [ρ(r,σ )]
into a sum of localized one-electron spin densities [ρi(r,σ )]:

ρ(r,σ ) ≡
N∑

i=1

ρi(r,σ ),
∫

ρi(r,σ )dr = 1. (1)

We will further stipulate that each ρi(r,σ ) should be ground-
state v-representable [13]. Next, suppose we can compute
the energy of the entire system with some approximate
density functional Ea[ρ] while we can obtain the exact
energy Ev[ρ] only for a few electrons at once. For any ρ,
define �E[ρ] ≡ Ev[ρ] − Ea[ρ] and consider the following
hierarchy of approximations:

E0[ρ] ≡ Ea[ρ],

E1[{ρi}] ≡ E0[ρ] +
N∑
i

�E[ρi],

*tvan@mit.edu

E2[{ρi}] ≡ E1[{ρi}] +
N∑

i<j

(�E[ρi + ρj ] − �E[ρi]

−�E[ρj ]),

E3[{ρi}] ≡ E2[{ρi}] +
N∑

i<j<k

(�E[ρi + ρj + ρk]

−�E[ρi + ρj ] − �E[ρj + ρk]

−�E[ρi + ρk] + �E[ρi] + �E[ρj ]

+�E[ρk]),

· · · . (2)

Equation (2) is the central result of this Rapid Communication.
Note that E[ρ] means the total energy, but one could replace
E[ρ] with the universal functional F [ρ] or with the sum
of Hartree and exchange-correlation energies EHxc[ρ], which
would fit Eq. (2) into the Kohn-Sham framework. This many-
electron expansion (MEE) is closely related to the many-body
expansion for intermolecular interactions [14,15] and the
method of increments [16]. MEE has the important property
that Ei[ρ] gives the exact energy for i electrons no matter
what approximate functional Ea is chosen. It thus provides
a hierarchy of approximations within the context of DFT
analogous to many-body theory [17] for the Green’s function
and the coupled-cluster expansion of the wave function [18].

For spin-compensated systems, it makes sense to decom-
pose the total density rather than the spin density. In this case,
one naturally obtains pair densities

ρ(r) ≡
N/2∑
i=1

ρi(r),
∫

ρi(r)dr = 2. (3)

We will call the analogous expansion to Eq. (2) using ρi(r)
the many-pair expansion (MPE). For MPE, Ei is exact for 2i

electrons and only requires calculations on spin-compensated
densities, which simplifies the intermediate calculations.
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In order to compute the MEE or MPE energies, we need
the approximate and exact ground-state energies for various
fragment densities ρq , noting that these fragment densities will
typically only involve a few electrons. Assuming the approxi-
mate energy derives from Kohn-Sham DFT (KS-DFT), Ea[ρq]
is easily obtained via potential inversion techniques [19–
21]. One invents a noninteracting reference determinant, �,
constructed out of orbitals φk(r). One then searches for the
stationary point of the Lagrangian

LKS[φk,vs] ≡ 〈�| − 1

2
∇2|�〉

+
∫

vs(r)

[∑
k

|φk(r)|2 − ρq(r)

]
dr. (4)

Functionally, this optimization is done sequentially. For a
given vs each KS orbital satisfies a one-electron Schrödinger
equation:

− 1
2∇2φk(r) + vq

s (r)φk(r) = εkφk(r). (5)

One then solves for v
q
s which gives the desired density ρq and

Ea[ρq] ≡ Ea[{φk}] where any implicit orbital dependence in
the functional is now explicit in terms of the optimized KS
orbitals.

To obtain Ev[ρq], one can perform a similar potential
inversion construction for the interacting system [22]. One
invents an interacting state |�〉 and searches for the stationary
point of

LExact[�,vex] ≡ 〈�|
[

1

2

∑
k

p̂2
k +

∑
k<l

1

r̂kl

]
|�〉

+
∫

vex(r)[〈�|δ(r̂ − r)|�〉 − ρq(r)]dr.

(6)

The result is the ground state of the fully interacting system
with a potential v

q
ex(r):[

1

2

∑
k

p̂2
k +

∑
k<l

1

r̂kl

+ vq
ex(r̂)

]
|�〉 = E|�〉, (7)

where v
q
ex is chosen such that 〈�|δ(r̂ − r)|�〉 = ρq(r) and

the final energy is given by Ev[ρq] ≡ 〈�|Ĥ |�〉. At this
point it becomes clear why the fragment densities must be
v-representable: in order for there to be some interacting
system that gives the right fragment density, the density itself
must be the ground state of some potential.

Because the MEEn (MPEn) energy En[ρ] is an approx-
imation to the variational functional Ev[ρ], we can also use
En[ρ] to approximate the interacting ground-state density. The
variationally optimal density ρ0 is the one that satisfies

δEn[ρ]

δρ

∣∣∣∣
ρ0

= μ, (8)

where μ is the global chemical potential. This results in a one-
electron Schrödinger equation for the MEEn- or MPEn-KS
orbitals

− 1
2∇2φk(r) + vn(r)φk(r) = εkφk(r), (9)

where the effective potential for each level in the hierarchy
includes contributions from the nth-order energy corrections:

v1(r) = vs(r) +
∑

i

∫ (
δEv[ρ]

δρi(r′)
− δEa[ρ]

δρi(r′)

)
δρi(r′)
δρ(r)

dr′

= vs(r) +
∑

i

∫
[vi

ex(r′) − vi
s(r

′)]
δρi(r′)
δρ(r)

dr′ (10)

≡ vs(r) + δv1(r), (11)

v2(r) = v1(r)

+
∑
i<j

∫
[vij

ex(r′) − vij
s (r′)]

(
δρi(r′)
δρ(r)

+ δρj (r′)
δρ(r)

)
dr′

− (N − 1)δv1(r),

· · · . (12)

It is thus clear that MEEn (or MPEn) also provides a conver-
gent hierarchy of approximations to the true KS potential:
beginning with an approximate vs , each vn provides an
improved potential that eventually converges (not necessarily
monotonically) to the exact result when n is equal to the total
number of electrons (or electron pairs). Note that in order to
apply MEE (or MPE), one needs a prescription for obtaining
(pair) densities from the total density. One anticipates that
different choices for ρi could be useful in different scenarios.
Thus, we consider the above to be a complete derivation of the
MEEn (and MPEn) formalism with the understanding that a
particular ansatz for ρi must be made in practice.

The MEEn hierarchy can also be thought of as a general-
ization of the Perdew-Zunger self-interaction correction (PZ-
SIC) [23]. For EHxc, MEE1 calculated with orbital densities is
equivalent to PZ-SIC; however, such densities are not admissi-
ble in MEE as they are not v-representable. In both cases, one-
electron densities are not defined uniquely. However, whereas
PZ-SIC corrects one-electron self-interaction errors [24],
MEEn is capable of removing many-electron self-interaction
to arbitrary order. In many situations self-interaction mimics
correlation in DFT, so that removing self-interaction without
adding correlation can make the results worse [25]. In this light,
it is important to note that at each order, MPEn compensates
for the excluded many-electron self-interaction by including
a corresponding degree of many-electron correlation. Thus,
MPEn is in some sense balanced, even at low orders.

To illustrate the performance of MEE, we first consider
the one-dimensional Hubbard model [26] described by the
Hamiltonian

Ĥ =
∑
iσ

ti(â
†
i,σ âi+1,σ + â

†
i+1,σ âi,σ ) + U

∑
i

â
†
i,αâi,αâ

†
i,β âi,β ,

(13)
where ti ≡ t . The first term describes hopping of electrons
between neighboring sites and the second describes on-site
repulsion of opposite-spin electrons. The model describes
potentially strongly correlated electrons on a lattice and often
serves as a benchmark for electronic structure methods [27,28]
as the exact solution, based on the Bethe ansatz, is known [29].
Different formulations of DFT exist for the Hubbard model,
which differ by the choice of the basic variable in lieu of
real-space density [30–32]. In this work, the density of the
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system is understood as the diagonal of the density matrix in the
site basis. Since the model has translational symmetry under
periodic boundary conditions (PBCs), the ground-state density
is equal at each site and amounts to ρα = 2Nocc

N
,∀α = 1, . . . ,N,

where Nocc is the number of electron pairs distributed over N

sites of the lattice.
As the total ground-state density is known, we can decom-

pose it into a sum of pair densities [Eq. (3)], in principle,
by any prescription that assures v-representability. One of the
necessary conditions for a density to be v-representable on
a lattice with PBCs is that it be positive at each site [33].
Here, we relax this restriction, requiring only that ρi be
non-negative, which is feasible if we also allow infinite vi .
In practice, we want to partition total density in such a
way that pair densities are compact. Physically, this would
allow us to interpret them as localized electron pairs and to
capture most of the correlation. A viable procedure to achieve
such decomposition is to recall the Boys orbital localization
criterion [34], which minimizes the spatial spread of orbitals.
Applying this procedure to the Hubbard model results in
pair densities composed of contiguous blocks (Fig. 1). All
numerical results presented in this Rapid Communication are
based on this prescription.

For a typical filling, the localization results in pair densities
that are inhomogeneous: they equal Nocc/N for the central
site(s) but only contain part of the density on the edge sites
[see Fig. 1(a)]. In this case, the MPE1 correction is a sum of
many slightly different energies:

E1[ρ] = E0[ρ] + �E[ρ1] + �E[ρ2] + �E[ρ3] + · · · .

(14)

However, for certain fillings (such as 1/2 or 1/3), the
partitioning procedure leads to pair densities that repeat
periodically along the chain [see Fig. 1(b)], resulting in an en-
ergy E1[ρ] = E0[ρ] + Nocc�E[ρ1]. Note that this transition
happens abruptly; starting from a periodic filling and adding
even one electron pair results in a completely aperiodic filling.
As a result, the MPEn energy is not a smooth function of filling.
A way to resolve this is to average energies over different
possible pair density partitions. In practice, we perform the
averaging by adding an additional constraint on ρ1,1 = γ and
integrating over γ ∈ (0,〈n〉]:

EAMPE[ρ] =
∫ 〈n〉

0
EMPE(γ )dγ. (15)

FIG. 1. Localized pair densities for 1D Hubbard model at
(a) nonperiodic filling (〈n〉 = 0.9), (b) periodic filling (〈n〉 = 1.0).
Lattice sites are represented by black circles, while each pair density
is marked by one color. The black dashed line is the total density
for each site. Note that the pair density picture is incomplete in (a)
because the remainder of the lattice is truncated.

We evaluate this integral by quadrature, which then directly
mimics the average that is done for the aperiodic filling case
[Eq. (14)].

As the approximate functional in Eq. (2), we use the exact
exchange (EXX) and local density approximation (LDA). The
latter is constructed by fitting the exchange-correlation energy
per site to the Bethe ansatz energies. Exact diagonalization
is used to compute Ev[ρ]. To compute EXX (LDA) and
exact energies for the fragment density ρq , we need to search
for the potentials v

q
s and v

q
ex in Eq. (5) and Eq. (7). Our

numerical algorithm for this is described in the Supplemental
Material [39].

In Fig. 2, we plot the averaged MPE (AMPE) energy
curve of a 500-site 1D Hubbard model as a function of the
site occupancy 〈n〉. We perform MPE calculations up to the
4th order [Eq. (2)], which means we only need to do exact
calculations on up to 4 electron pairs at a time. Thanks
to the locality of interactions (A)MPE at any level scales
linearly with the system size as opposed to factorial scaling of
exact diagonalization. The exact Bethe ansatz (BA) results are
presented for comparison. Overall, the AMPE energy curves
are in excellent agreement with the BA curve. Even at 1st
order, EXX-AMPE is in good agreement with the reference,
whereas LDA-AMPE deviates more significantly. Considering
that, by design, LDA is exact for the homogeneous Hubbard
model, the poor performance of LDA-AMPE1 teaches us
something about LDA: while it is exact for the uniform
system, treatment of two- and many-electron interactions is
unbalanced. Adding in the correct interactions for each pair
then makes the results worse because the many-electron errors
are exposed and only summation up to the N-pair contribution
makes the resulting errors cancel. Starting from the 2nd order,
curves representing EXX-AMPE and LDA-AMPE energies
become visually indistinguishable and the latter are suppressed
in Fig. 2 for clarity. As can be seen, when we apply successive
higher order corrections, the AMPE energies converge quickly
towards the exact result, which confirms that our method can be
systematically improved. For reference, the MPEn energies are
visually indistinguishable from the AMPEn energies, except

FIG. 2. Energy per site and its errors for 1D Hubbard model as a
function of site occupancy 〈n〉.
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FIG. 3. Energy for 30-site Peierls-Hubbard model as a function
of bond shift parameter φ (U = 8, 〈n〉 = 1, ω = 2.8t).

at the periodic fillings, where the MPEn results would be
discontinuous.

As the second example, consider the Hubbard model with
a Peierls distortion (t2j−1 	= t2j ,j = 1, . . . ,N/2) [35]. This
model reflects the spontaneous symmetry breaking of the
1D periodic lattice resulting, for example, from alternating
single and double bonds in a conjugated polymer such
as polyacetylene. Such displacement with respect to the
symmetric Hubbard model can be described with a bond shift
parameter φ = 1

2 (R2j−1 − R2j ), where Ri denotes the bond
length between sites i and i + 1. The Hamiltonian takes the
form of Eq. (13) with t2j−1 = te−φ and t2j = teφ . Keeping
the analogy with polyacetylene, we recognize that the Peierls-
Hubbard model only treats the π electrons. To incorporate
the additional energy cost of stretching and squeezing the
underlying σ bonds, for a given displacement φ we add a
harmonic term N ω

2 φ2 to the total energy, where ω = 2.8t gives
approximately the correct physics for U = 8. We restrict our
model to 30 sites, in which case numerically exact results
are easily obtained from DMRG [36,37]. As can be seen in
Fig. 3, the exact curve has a symmetric double-well shape
characteristic of the expected symmetry breaking. EXX results
reproduce this qualitative feature, but are far too high in
energy and the predicted bond shifts are too large. LDA
results in a uniform downward shift with respect to EXX
such that the LDA energy is correct for φ = 0. For φ 	= 0,
LDA predicts energies which are far too low, which is again
a manifestation of many-electron self-interaction errors in
LDA.

At half filling, the Peierls-Hubbard model presents an
interesting challenge for MPE. Assuming partitioning into
nonoverlapping pair densities [Fig. 1(b)], EXX-MPE and
LDA-MPE are equivalent as the LDA correction is exactly
canceled out at the 1st order . Averaging leads only to
a uniform shift; therefore, only EXX-(A)MPE is explicitly
considered in Fig. 3 and in the following discussion. The

pair densities [Fig. 1(b)] naturally break the symmetry of the
lattice when φ 	= 0: the pairs either localize on a 2j − 1,2j

bond or on a 2j,2j + 1 bond. In the former case, for φ < 0
(t2j−1 > t2j ), the short double bonds are located between two
sites occupied by the same density pair; MPE therefore will
give a better description than for φ > 0, where the short
double bonds are located between different density pairs.
This is clearly demonstrated in Fig. 3, where the 2j − 1,2j

is chosen, leading to a very accurate treatment for negative
φ, but strong overcorrelation for positive φ. Particularly at
high orders, MPEn does an impressive job of reproducing the
energy dispersion about the minimum, but the global behavior
is unsatisfactory.

To recover the symmetric shape, we again apply the
averaging procedure for MPE. By averaging over different
pair density partitions, AMPE results do not rely on par-
ticular pair density positions. Thus, AMPE avoids MPE’s
asymmetry problem and finds two local minima correctly.
The AMPEn minima clearly approach the DMRG ones as
n increases. Nevertheless the convergence to the exact result is
rather slow. On the other hand, when φ < 0, MPE is more
accurate than AMPE, which suggests that some a priori
knowledge of the electronic structure could perhaps be used
to improve the results: an ansatz capable of picking out
the “best” density pattern might be able to capture MPE’s
accuracy near the minimum together with AMPE’s global
symmetry.

Finally, we note that MPE is not in any way restricted to
1D systems. For instance, we apply MPE for the 2D Hubbard
model, whose sites form a two-dimensional square lattice.
Due to the macroscopic degeneracy of the model, there are
many equivalent density partitionings making it difficult to
arrive at definitive MPEn numbers for the model. Still, for
example at U = 4 with an 8 × 8 lattice the EXX-MPEn error
relative to the best estimates [38] goes from 23% to 7.8%
to 1.5% as n goes from 1 to 3. More details can be found
in the Supplemental Material [39], but this result clearly
demonstrates the applicability of MPE to higher dimensional
systems.

In this Rapid Communication we have shown that MPE
is a systematically improvable hierarchy of density functional
approximations to the total energy of a quantum many-body
system. The strength of the method is that even at low
levels of expansion it can address the problem of strongly
correlated electrons in DFT. This has been shown on model
lattice Hamiltonians, which capture the essential physics of the
problem. As the next step, we are working on implementation
of the method for ab initio Hamiltonians in order to extend
calculations to realistic molecules and solids. Given the
elegance of the basic idea, we hope that the discoveries
made here will translate easily to these more sophisticated
problems.

We thank M. Welborn for Bethe ansatz reference values
and Prof. S. Zhang for 2D Hubbard model data. This work
was funded by a grant from the NSF (CHE-1464804). T.V.
acknowledges support from a David and Lucile Packard
Foundation Fellowship.
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[32] R. López-Sandoval and G. M. Pastor, Phys. Rev. B 61, 1764

(2000).
[33] W. Kohn, Phys. Rev. Lett. 51, 1596 (1983).
[34] S. F. Boys, Rev. Mod. Phys. 32, 296 (1960).
[35] R. E. Peierls, Quantum Theory of Solids (Oxford University

Press, Oxford, 1955).
[36] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[37] G. K.-L. Chan and M. Head-Gordon, J. Chem. Phys. 116, 4462

(2002).
[38] C.-C. Chang and S. Zhang, Phys. Rev. B 78, 165101 (2008).
[39] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.93.201108 for numerical details of the
potential inversion, fitted LDA exchange-correlation energies
and 2D Hubbard model results.

201108-5

http://dx.doi.org/10.1103/RevModPhys.71.1253
http://dx.doi.org/10.1103/RevModPhys.71.1253
http://dx.doi.org/10.1103/RevModPhys.71.1253
http://dx.doi.org/10.1103/RevModPhys.71.1253
http://dx.doi.org/10.1063/1.4704546
http://dx.doi.org/10.1063/1.4704546
http://dx.doi.org/10.1063/1.4704546
http://dx.doi.org/10.1063/1.4704546
http://dx.doi.org/10.1063/1.4869598
http://dx.doi.org/10.1063/1.4869598
http://dx.doi.org/10.1063/1.4869598
http://dx.doi.org/10.1063/1.4869598
http://dx.doi.org/10.1021/jp000497z
http://dx.doi.org/10.1021/jp000497z
http://dx.doi.org/10.1021/jp000497z
http://dx.doi.org/10.1021/jp000497z
http://dx.doi.org/10.1007/s00214-007-0310-x
http://dx.doi.org/10.1007/s00214-007-0310-x
http://dx.doi.org/10.1007/s00214-007-0310-x
http://dx.doi.org/10.1007/s00214-007-0310-x
http://dx.doi.org/10.1103/PhysRevLett.100.136406
http://dx.doi.org/10.1103/PhysRevLett.100.136406
http://dx.doi.org/10.1103/PhysRevLett.100.136406
http://dx.doi.org/10.1103/PhysRevLett.100.136406
http://dx.doi.org/10.1103/PhysRevB.44.943
http://dx.doi.org/10.1103/PhysRevB.44.943
http://dx.doi.org/10.1103/PhysRevB.44.943
http://dx.doi.org/10.1103/PhysRevB.44.943
http://dx.doi.org/10.1063/1.3380834
http://dx.doi.org/10.1063/1.3380834
http://dx.doi.org/10.1063/1.3380834
http://dx.doi.org/10.1063/1.3380834
http://dx.doi.org/10.1103/PhysRevLett.109.246402
http://dx.doi.org/10.1103/PhysRevLett.109.246402
http://dx.doi.org/10.1103/PhysRevLett.109.246402
http://dx.doi.org/10.1103/PhysRevLett.109.246402
http://dx.doi.org/10.1103/PhysRevLett.108.066801
http://dx.doi.org/10.1103/PhysRevLett.108.066801
http://dx.doi.org/10.1103/PhysRevLett.108.066801
http://dx.doi.org/10.1103/PhysRevLett.108.066801
http://dx.doi.org/10.1103/PhysRevLett.109.056402
http://dx.doi.org/10.1103/PhysRevLett.109.056402
http://dx.doi.org/10.1103/PhysRevLett.109.056402
http://dx.doi.org/10.1103/PhysRevLett.109.056402
http://dx.doi.org/10.1103/PhysRevLett.62.324
http://dx.doi.org/10.1103/PhysRevLett.62.324
http://dx.doi.org/10.1103/PhysRevLett.62.324
http://dx.doi.org/10.1103/PhysRevLett.62.324
http://dx.doi.org/10.1021/jp056416m
http://dx.doi.org/10.1021/jp056416m
http://dx.doi.org/10.1021/jp056416m
http://dx.doi.org/10.1021/jp056416m
http://dx.doi.org/10.1063/1.4742816
http://dx.doi.org/10.1063/1.4742816
http://dx.doi.org/10.1063/1.4742816
http://dx.doi.org/10.1063/1.4742816
http://dx.doi.org/10.1063/1.463415
http://dx.doi.org/10.1063/1.463415
http://dx.doi.org/10.1063/1.463415
http://dx.doi.org/10.1063/1.463415
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1063/1.1727484
http://dx.doi.org/10.1063/1.1727484
http://dx.doi.org/10.1063/1.1727484
http://dx.doi.org/10.1063/1.1727484
http://dx.doi.org/10.1103/PhysRevA.50.2138
http://dx.doi.org/10.1103/PhysRevA.50.2138
http://dx.doi.org/10.1103/PhysRevA.50.2138
http://dx.doi.org/10.1103/PhysRevA.50.2138
http://dx.doi.org/10.1063/1.1535422
http://dx.doi.org/10.1063/1.1535422
http://dx.doi.org/10.1063/1.1535422
http://dx.doi.org/10.1063/1.1535422
http://dx.doi.org/10.1103/PhysRevA.49.2421
http://dx.doi.org/10.1103/PhysRevA.49.2421
http://dx.doi.org/10.1103/PhysRevA.49.2421
http://dx.doi.org/10.1103/PhysRevA.49.2421
http://dx.doi.org/10.1103/PhysRevB.90.045109
http://dx.doi.org/10.1103/PhysRevB.90.045109
http://dx.doi.org/10.1103/PhysRevB.90.045109
http://dx.doi.org/10.1103/PhysRevB.90.045109
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1063/1.2176608
http://dx.doi.org/10.1063/1.2176608
http://dx.doi.org/10.1063/1.2176608
http://dx.doi.org/10.1063/1.2176608
http://dx.doi.org/10.1063/1.1794633
http://dx.doi.org/10.1063/1.1794633
http://dx.doi.org/10.1063/1.1794633
http://dx.doi.org/10.1063/1.1794633
http://dx.doi.org/10.1098/rspa.1963.0204
http://dx.doi.org/10.1098/rspa.1963.0204
http://dx.doi.org/10.1098/rspa.1963.0204
http://dx.doi.org/10.1098/rspa.1963.0204
http://dx.doi.org/10.1103/PhysRevLett.109.186404
http://dx.doi.org/10.1103/PhysRevLett.109.186404
http://dx.doi.org/10.1103/PhysRevLett.109.186404
http://dx.doi.org/10.1103/PhysRevLett.109.186404
http://dx.doi.org/10.1103/PhysRevB.89.201106
http://dx.doi.org/10.1103/PhysRevB.89.201106
http://dx.doi.org/10.1103/PhysRevB.89.201106
http://dx.doi.org/10.1103/PhysRevB.89.201106
http://dx.doi.org/10.1016/S0378-4371(02)01785-5
http://dx.doi.org/10.1016/S0378-4371(02)01785-5
http://dx.doi.org/10.1016/S0378-4371(02)01785-5
http://dx.doi.org/10.1016/S0378-4371(02)01785-5
http://dx.doi.org/10.1103/PhysRevLett.56.1968
http://dx.doi.org/10.1103/PhysRevLett.56.1968
http://dx.doi.org/10.1103/PhysRevLett.56.1968
http://dx.doi.org/10.1103/PhysRevLett.56.1968
http://dx.doi.org/10.1103/PhysRevB.51.10427
http://dx.doi.org/10.1103/PhysRevB.51.10427
http://dx.doi.org/10.1103/PhysRevB.51.10427
http://dx.doi.org/10.1103/PhysRevB.51.10427
http://dx.doi.org/10.1103/PhysRevB.61.1764
http://dx.doi.org/10.1103/PhysRevB.61.1764
http://dx.doi.org/10.1103/PhysRevB.61.1764
http://dx.doi.org/10.1103/PhysRevB.61.1764
http://dx.doi.org/10.1103/PhysRevLett.51.1596
http://dx.doi.org/10.1103/PhysRevLett.51.1596
http://dx.doi.org/10.1103/PhysRevLett.51.1596
http://dx.doi.org/10.1103/PhysRevLett.51.1596
http://dx.doi.org/10.1103/RevModPhys.32.296
http://dx.doi.org/10.1103/RevModPhys.32.296
http://dx.doi.org/10.1103/RevModPhys.32.296
http://dx.doi.org/10.1103/RevModPhys.32.296
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1063/1.1449459
http://dx.doi.org/10.1063/1.1449459
http://dx.doi.org/10.1063/1.1449459
http://dx.doi.org/10.1063/1.1449459
http://dx.doi.org/10.1103/PhysRevB.78.165101
http://dx.doi.org/10.1103/PhysRevB.78.165101
http://dx.doi.org/10.1103/PhysRevB.78.165101
http://dx.doi.org/10.1103/PhysRevB.78.165101
http://link.aps.org/supplemental/10.1103/PhysRevB.93.201108



