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Abstract
Interactions between cortex and hippocampus are believed to play a role in the acquisition and
maintenance of memories. Distinct types of coordinated oscillatory activity, namely at theta
frequency, are hypothesized to regulate information processing in these structures. We
investigated how information processing in cingulate cortex and hippocampus relates to cingulate-
hippocampus coordination in a behavioral task where rats choose from four possible trajectories
according to a sequence. We found that the accuracy with which cingulate and hippocampal
populations encode individual trajectories changes with the pattern of cingulate-hippocampal theta
coherence, over the course of a trial. Initial theta coherence at ∼8Hz during trial onsets lowers by
∼1Hz as animals enter decision stages. At these stages, hippocampus precedes cingulate in
processing increased amounts of task-relevant information. We hypothesize that lower theta
frequency coordinates the integration of hippocampal contextual information by cingulate
neuronal populations, to inform choices in a task-phase dependent manner.

Introduction
All organisms need to constantly gather and update information about their inner states and
surrounding contexts, in order to make informed decisions regarding their daily actions. This
process involves the encoding and storage of information by neurons, as memory. The
hippocampus (HIPP) has been implicated in the encoding and retrieval of memories
(Scoville & Milner 1957) whose content often joins complex multi-modal sensory
representations, such as spatial locations (O’Keefe & Dostrovsky 1971; Ekstrom et al. 2003;
Kreiman et al. 2000), feelings (LeDoux 1993), and abstract concepts (Kreiman et al. 2000),
suggesting that hippocampus-dependent memories integrate information from distinct extra-
hippocampal sources. Coordinated activity between hippocampal formation (HIPP),
mammillary bodies, thalamus, and cortex, forming the Papez circuit, is believed to support
mnemonic functions by regulating the transfer of information between distant brain
structures (Battaglia et al. 2011; Belluscio et al. 2012; Buzsaki 1989; Jones & Wilson 2005;
Siapas et al. 2005; Remondes & Schuman 2002). Within this circuit, cingulate cortex (CG)
is modeled as an executive memory hub, maintaining a map of relations between actions,
outcomes an contexts (Teixeira et al. 2006; Vetere et al. 2011; Wang et al. 2012; Durkin et
al. 2000; Foster et al. 1980), with the capacity of signaling errors and suppressing
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inappropriate responses (Endepols et al. 2010; Kennerley & Wallis 2009; Sul et al. 2010;
Totah et al. 2009; Cowen et al. 2012; Carter et al. 1998).

We hypothesize that fine coordination with HIPP would provide CG with a permanent
source of spatial contextual information (O’Keefe & Burgess 1996; Gupta et al. 2012),
allowing it to update its relational map and fulfill its functions. Fine cingulate-hippocampal
coordination is predictable by their anatomical connectivity (Jones et al. 2005; Jones &
Witter 2007), and illustrated by the fact that both structures exhibit dynamic synchronization
as animals transition between distinct behavioral states (Young & McNaughton 2009).
However, it is still unknown whether CG-HIPP coordination varies with task demands or
exhibits any relation with the processing of behavioral-relevant information.

We tested this hypothesis by investigating, in parallel, dynamic patterns of cingulate-
hippocampal coordination, and the amount of behavioral information carried by neuronal
populations’ spikes, while we challenge cingulate executive functions under complex
contingencies. We developed a novel task, the Wagon-wheel Maze (WWM), in which rats
choose sequentially from four trajectories for a reward. We then decoded activity from CG
and HIPP and found that both populations carry increased trajectory information as animals
move towards choice points. We then asked whether these changes in information content
are reflected in distinct patterns of CG-HIPP coordination. We found that, as animals
progress to choice points, CG-HIPP coherence of the local field potential (LFP) is initially
dominated by theta at a high-frequency (8–10 Hz, HIGH-theta), and lowers by ∼ 1Hz as
animals run the maze’s outer circle where cues defining each choice become available. This
change is accompanied by increases in the amount of trajectory information encoded by CG
and HIPP neurons, with HIPP increasing earlier than CG, coincident with periods of wide-
band theta coherence (5–10 Hz, WIDE-theta). Lastly, we investigated the relative timing and
G-causality between HIPP and CG spikes and LFP, and found distinct patterns of CG-HIPP
coordination across WWM stages, as well as a bias for HIPP to G-cause CG neural activity.
We hypothesize that lower theta frequencies at choice stages regulate increased information
flow from HIPP to CG, to enhance trajectory coding and inform behavioral choices.

Results
Rats learn and memorize sequences of trajectories on the WWM

The WWM is a win-shift task that joins aspects of traditional T-maze and of radial maze
tasks. As depicted in Figure 1A each trial starts as the rat exits the CR area (“center reward”
area - the wheel hub), progresses through EA, and turns left towards the outer circle (OC)
facing the different choices (“entries” 1 through 4 in Figure 1A), each marked by local, as
well as distal room cues, defining each trajectory. Faced with 4 different choices, the rat
must choose the correct one according to a sequence rule (entries 1–2–3–4), in order to
receive a liquid chocolate reward. It follows from this arrangement that a correct sequence is
composed of 4 trajectories with extensive commonalities (segments EA, CS2 and CS3,
Figure S2C).

Training rats in a simple win-shift version of the task for ∼2 weeks does not generate
sequential behavior, in spite of a high (60–100) number of trials per 20–30 min daily session
(“no-repeat” on Figure 1A). Once we introduce the sequence-rule, subjects gain significant
proficiency over a period of 15–21 days, eventually reaching asymptotic levels (Figure 1A–
B). Over this period, single unit, LFP and position data were recorded throughout the task
(Figure 1D), using a multi-tetrode drive (Figure S1).

A one-week break in training causes a drop in proficiency, not present on a subsequent
testing session, indicating that subjects kept memory of the task (Figure 1B). In order to test
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WWM dependency on allocentric cues, we trained a different group of subjects to
asymptotic levels, and performed probe sessions with the maze rotated by 180° (red-colored
“r” on Figure 1A and C). Lower proficiency under this manipulation contrasts with the lack
of effect obtained when we swap the local cues placed at each choice point (data not shown),
indicating that WWM performance relies on distal cues.

HIPP and CG neural populations increase trajectory information across consecutive WWM
stages

CG neurons have been shown to report aspects of error and reward signaling and effort-
based decision making (Bryden et al. 2011; Endepols et al. 2010; Liu et al. 2009; Sul et al.
2010; Totah et al. 2009; Cowen et al. 2012). In order to study the dynamics of CG and HIPP
population coding of WWM choices, we used a Bayesian decoding framework in which we
estimate the animals’ position and trajectory at each consecutive time bin, given the multiple
single-unit population firing rate distribution. As explained in Methods, we used each
session’s spike and position data (Figure 2A–B top and mid-panel) to compute single-
neuron behavioral tuning curves (rate maps) for each linear bin on each trajectory, and
estimated the animal’s behavior given the behavioral tuning curves, at consecutive 250ms
bins of a session. Examples of these Bayesian estimates are depicted on Figure 2 for CG (A)
and HIPP (B) neuronal populations. At each consecutive 250ms bin (on the XX axis), the
probability of the rat being either in bins 1:9 of trj1 (1.8 m long), bins 1:13 from trj2 (2.6 m),
bins 1:17 from trj3 (3.4 m) or bins 1:21 from trj4 (4.2m), is linearly arranged down the YY
axis. In order to visually compare the estimated with the real behavior, Figure 2 estimates
were overlaid with a “behavior map” (in red) containing the real recorded occupancy (linear
bin/trajectory) on each consecutive 250ms bin.

In order to validate the decoding process and quantify the decoding accuracy from each of
the two regions, we built the decoder’s ratemap using half the session’s trials, and decoded
the other half of the session’s trials (see Methods). We subsequently compared the
Bayesian-estimated with the actual behavior of the rat, by building a confusion plot (Figure
3A). This plot depicts the average decoded behavior corresponding to each of all possible
behavior occupancy states. Estimation errors correspond to increased density off the
diagonal areas. For each dataset’s confusion plot, the probability corresponding to correctly
estimated behavior (diagonal), divided by the marginal total probability corresponding to
each consecutive behavioral state (on the YY axis), represents how accurately each neural
population identifies trajectory on each consecutive linear bin (decoding accuracy - Figure
3B). Analogous reasoning was applied in the time-bin decoding from subsequent analyzes.

We computed this value for each dataset, and summarized values across all datasets on both
brain regions, plotting the data against position (linear bin), in Figure 3B. On both areas
there is a significant increase in estimation accuracy as animals exit the start region (EA)
and travel on the maze perimeter (beyond EA), where allocentric spatial cues define distinct
entry points. HIPP accuracy in estimating the trial’s trajectory increases earlier, and reaches
significantly higher levels, than CG’s (Figures 3, 5A and Figure S3). This suggests that
choice-relevant spatial information is first concentrated in HIPP, and then conveyed to CG,
leading us to investigate the nature of CG-HIPP coordination over trial stages.

The frequency of CG-HIPP LFP theta coherence changes during WWM trials
Coordinated oscillations are widely considered crucial for behavior, insofar as they govern
communication between remotely located neuronal networks processing distinct
information. The frequency of HIPP theta changes under increased cognitive demands and
sensorial information load, as well as novel contexts (Sainsbury et al. 1987; Bland et al.
1995; Kay 2005; Jeewajee et al. 2008). In order to investigate CG-HIPP oscillatory activity
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at distinct behavioral phases, and study their relationship with the dynamics of trajectory
coding, we computed the coherence between CG and HIPP LFP, over the course of trials.
We saw significant changes in the patterns of CG-HIPP coherence patterns as rats progress
on the WWM (Figure 4A–B, for Trajectory 3, see Figures S3–S4 for all four trajectories).
Coherence within the theta band shows a temporal distribution, in which the start arm (up to
EA in the plots) is characterized by theta frequencies that span from 8 to 11Hz, with a
centroid around 8.2Hz (Figure 4A top panel, and B). Later, as animals travel the perimeter
towards CP (labeled “Choice” in the axis), theta coherence changes to include low theta
frequencies, and lowering the mean frequency by ∼1.0 Hz (Figures 4B, and S3 fourth row).
These variations led us to investigate which coherence frequencies change while the animal
transitions from trial onset to the maze perimeter, and how. We thus plotted the normalized
coherence difference (delta-coherence = (POC − PEA)./(POC + PEA)) between the last 30cm
of the start arm (EA, 0.6 to 0.9 m of linearized position), and the first 30cm of the outer
circle (OC, 0.9 to 1.2m of linearized position) against individual frequency bins (Figure 4C).
We found that coherence decreases at frequencies above and including 8Hz, and increases
below this number, strictly within the theta range. We thus used 8Hz as our high-low theta
cutoff for subsequent analyses. In order to study in detail the dynamics of high and low theta
coherence, over the course of trials, we averaged coherence within each of the theta bands,
and compared the two coherencies over consecutive linear positions (Figure 4D, TRJ3,
please see Figure S3 for all other trajectories). We found a significant difference between
low (5–7Hz) and high (8–10Hz) theta coherence at trial onsets (EA), followed by equal
coherencies at the outer circle, and a decrease in the mean coherence frequency (Figure 4D,
TRJ3, please see Figure S3 for all other trajectories). CG theta is less well documented than
HIPP theta, and seems to be less intense (Figure 4A, TRJ3, please see Figure S3 for all other
trajectories) (Young & McNaughton 2009). In a manner analogous to the previous
coherence analysis, in Figure 4A (and S3) we plotted the dataset-averaged normalized
spectral density of both HIPP and CG LFP, and on Figure 4D (and S4) we did it separately
for HIGH and LOW theta frequency bands. This analysis shows an interesting feature of CG
theta. While HIPP theta is dominated mostly by high frequency (8–10Hz), up to choice
points were HIGH and LOW frequencies become equally powerful, CG exhibits equal
power at both frequency ranges throughout the task (Figures 4D, S3).

Thus, while animals run a WWM trial, CG-HIPP theta coherence exhibits two distinct
regimes. At trial initiations theta coherence is dominated by high frequencies (8–10Hz), with
a centroid at 8.2+/−0.2 Hz. Upon entering the outer circle, where environmental cues
characterize each choice and information processing levels increase both at CG and HIPP
(Figure 3), theta coherence changes to a wide-frequency mode (WIDE-THETA), with a net
decrease in the mean frequency of theta coherence (Figure 4B–D, S3 third and fourth rows).
We should point out that equivalent analyses made for lower frequencies (1–4 Hz), also
shown to be present in HIPP, mPFC and VTA (Fujisawa & Buzsaki 2009), do not show
comparable differences in coherence nor spectra (Figure S6), in agreement with the previous
analysis (Figure 4C, and comments above).

Consecutive WWM behavioral stages are characterized by distinct theta coherence,
matching distinct trajectory information processing

Since both neural coding and neural coordination globally change as subjects move towards
the WWM perimeter, we hypothesized that distinct theta coherence regimes would serve
distinct cognitive functions in the WWM task. Namely, under increased behavior-relevant
contextual information, coherence would shift towards lower theta frequencies (Sainsbury et
al. 1987; Bland et al. 1995; Kay 2005; Jeewajee et al. 2008), typical of CG (Figure 4A–D,
mid panels). This change would open a communication channel between CG and HIPP,
through which relevant contextual information would flow from HIPP to CG. If this
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hypothesis is correct, two predictions can be made: a) CG and HIPP trajectory information
should increase in the WWM regions characterized by WIDE-THETA and, b) HIPP activity
should precede CG’s. To test the first prediction, we decoded CG and HIPP single-unit data
corresponding to the same time intervals used in the previous coherence analysis. For this
we computed decoding accuracy on 50ms-shifted 1sec time windows, for each individual
trajectory (see Methods). Figure 5A (lower panel) depicts the mean trajectory information
computed as before, but now with behavioral tuning curves computed in time instead of
linear position, and behavior estimated on 50-ms sliding, 1 sec windows (see Methods).
Consistent with the previous analyses (Figure 3), trajectory information increases from EA
to outer circle stages, earlier in HIPP relative to CG (Figure 5A lower panel). This dynamic
resembles that from LFP theta coherence (Figure 5A, top panel), such that WIDE-THETA
periods, characterized by coherence at lower theta-frequency, correspond to increased
trajectory information (Figure 5A, trajectory3, please see Figure S3 for all trajectories).

In order to compare CG-HIPP coherence and trajectory information levels at distinct WWM
stages, we took the average CG and HIPP LFP coherence, spectra, and trajectory
information content, in the last 0.5 sec of EA (trial onset, labeled EA in the plots) and in the
last 0.5sec of OC segments for each trajectory (decision stage, labeled “Choice”, and OC in
the bar plots). In line with our initial observations, distinct WWM stages correspond to
significantly different levels of information processed (Figure 5B, top), and lower average
theta coherence frequency (Figure 5B, bottom). This is in agreement with different levels of
coherence at HIGH and LOW-theta, on EA but not OC (Figure 5C, left). CG and HIPP LFP
theta spectra, measured at equivalent WWM stages, confirms the marked differences we’ve
seen before, with HIPP theta dominated by high frequencies, regardless of WWM stage
(Figure 5D, bottom panel). To further test a connection between CG-HIPP coherence
regimes and the levels of information processed by CG and HIPP, we compared the absolute
values, as well as increments, of each dataset’s average trajectory information during
periods of WIDE-THETA versus periods of HIGH-THETA. We found that the average
trajectory information content increases, in both CG and HIPP, as animals change from
maze locations characterized by HIGH-THETA to those characterized by WIDE-THETA
(Figure S5C, top panel), with increments of 16 and 19%, respectively for CG and HIPP
(Figure S5C, bottom panel). Equivalent increments were found when we compared
trajectory information at WIDE-THETA with the one at HIGH-THETA, defined on the
basis of mean frequency centroid. Periods of decreased theta-coherence frequency
correspond to increased CG and HIPP trajectory information (Figure S5B). Lastly, we tested
the connection between CG-HIPP coherence at the two theta frequency bands, and levels of
decoding accuracy on a trial-by-trial basis. For this we computed the correlation between the
single-trial accuracy and coherence values within EA and OC regions of the WWM. This
analysis revealed a significant positive correlation between CG coding accuracy and
coherence, restricted to LOW-THETA frequencies, and to the maze perimeter (Spearman
Rho=0.11, p<0.001, Figure S8C).

We have, therefore, an overall increase in trajectory information in both CG cortex and
HIPP, on WIDE vs HIGH theta coherence regimes, corresponding to stages of the WWM
marked by distinct cognitive demands. In addition, we have a significant, positive
correlation between the amount of CG information processed at the WWM perimeter, and
LOW-THETA coherence. These analyses confirm our first prediction: HIPP and CG
trajectory information increases from trial onset to decision stages, with a corresponding
drop in the frequency of theta coherence, whose value at LOW-theta determines the level of
trajectory information processed by CG. We have still to test the second prediction, namely
whether HIPP neural activity precedes CG’s, and whether we can measure any form of
causal flow between the two structures, as our analysis of decoding dynamics suggests
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(Figures 3B and 5A: precedence of HIPP over CG in processing increased trajectory
information).

HIPP functionally precedes CG over distinct regions of the WWM
In order to investigate temporal patterns of functional connectivity between CG and HIPP,
we started by asking whether CG and HIPP multi-unit activity (suMUA) are modulated by
HIPP theta. For this we extracted the phase of band-pass (theta) filtered HIPP LFP, and then
the HIPP theta phase of each suMUA spike (see Methods). Then, for each region of the
maze, we asked whether suMUA was biased by the HIPP theta rhythm, using a Rayleigh’s
test for non-uniformity of phases’ distribution. Figure 6A depicts a color-coded bar plot
showing, for each WWM region, the percentage of datasets in which suMUA was
significantly biased by the HIPP theta rhythm. In the majority of datasets both HIPP and CG
spikes are indeed significantly biased by HIPP theta (HIPP 80–90% and CG 60–80%).
Across datasets we found a mean preferred phase of 102.6+/−63° for CG and 153+/−36° for
HIPP (not different) spikes, indicating that CG and HIPP spikes occur, on average, in the
descending phase of HIPP LFP theta. Importantly, the % of significantly modulated CG, but
not HIPP, datasets, exhibits significant variations with WWM regions. The first of these
periods is the EA, in which 86% of all datasets show significant modulation of CG spikes by
HIPP theta, followed by a significant drop at outer circle segments (CS2 and CS3), in which
57 and 50% of datasets show significant modulation, and a final recovery at choice segments
(CP), to levels equivalent to EA. We do not see such variation in HIPP spikes, as most
datasets exhibit modulation by theta throughout the maze. The fact that both CG and HIPP
neurons fire during the descending phase of the HIPP theta wave, and that, depending on the
WWM region considered, CG spikes are variably likely to be significantly modulated by
theta, suggests the existence of distinct modes of CG and HIPP joint coordination by HIPP
theta, in agreement with our coherence results.

In order to examine the relative timing of CG and HIPP activity, we computed, for each of
the distinct WWM partitions, the MUA and LFP cross-correlation profile between CG
cortex and HIPP (Figure 6B, see Methods). Most of the cross-correlograms have clear peaks
that occur at a theta frequency, something also seen in suMUA-LFP correlograms on all
WWM regions (Figure S7C), supporting prominent CG-HIPP theta coordination, and
suggesting that HIPP spikes precede CG depolarization and local dendritic computations.
Importantly, at trial onsets (EA), HIPP and CG spikes tend to be largely simultaneous, the
two region’s spikes aggregating at zero time-lag of each other (Figure 6B–C). As animals
move towards the outer circle, a HIPP-CG lag of about 80ms develops, changing the
average zero-lag cross-correlation from 0.052+/−0.012 at EA, to 0.01+/−0.005 at CS2
(Figure 6C).

The previous analysis demonstrates theta-regulated coordination between CG and HIPP
activity, with HIPP preceding CG. In order to test our initial hypothesis we are still to test
the presence of causality between HIPP and CG neural activity. According to Clive
Granger’s personal account, if knowing the values of a given variable X1 helps predict the
future values of another X2, then X1 is said to cause X2 (Clive W. J. Granger Norman R.
Swanson and Mark W. Watson 2001). How well can we predict CG from HIPP neural
activity? In order to answer this question, we computed Granger causality between HIPP
and CG, and respective statistical significances, using the implementation of (Seth 2010).
We found that HIPP activity tends to G-cause CG’s throughout the WWM regions (Figure
6D). Datasets in which HIPP neural activity G-causes CG’s significantly outnumber the
ones in the opposite sense, both for LFP and for suMUA. This further supports our initial
hypothesis, by showing a default causal flow from HIPP to CG, which might underlie the
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transfer of contextual information is this direction, in agreement with the precedence of
increased HIPP trajectory information over CG’s (see above and Figures 3-S3).

Discussion
Oscillations at theta frequency are hypothesized to be involved in the storage of complex
representations of space and time (Belluscio et al., 2012; Buzsaki and Draguhn, 2004), as
they have been shown to regulate the behaviorally-structured firing of place-selective
neurons in rodents during wakefulness (Skaggs et al. 1996; Harris et al. 2003), and REM-
sleep (Louie & Wilson 2001). Theta rhythms are modeled as the functional substrate on
which items are encoded and retrieved together as a neural construct, with distinct
frequencies postulated to carry distinct types of information (Lisman & Buzsaki 2008;
Belluscio et al. 2012; Buzsaki & Draguhn 2004; Jeewajee et al. 2008).

CG cortex is strategically located at an interface between the HIPP formation and
supplementary motor areas (Jones et al. 2005; Jones & Witter 2007). It is known to encode
value-cost associations (Endepols et al. 2010; Kennerley & Wallis 2009; Sul et al. 2010;
Totah et al. 2009; Cowen et al. 2012), and to store contextual memories (Frankland et al.
2004; Maviel et al. 2004). We hypothesize that CG cortex fulfills fundamental roles in
integrating spatial contextual information, in order to encode distinct choices, and possibly
routing this information to other brain areas where a behavioral response is produced.

We analyzed neural activity simultaneously in HIPP and CG cortex, in a task where rats
choose freely from distinct trajectories, and are rewarded for performing them in a particular
sequence, choosing the correct one, but also avoiding errors. We reasoned this task would
tax CG control of behavior, known to be present in situations of cognitive conflict
(Botvinick et al. 2004). Even though choice points are marked by local cues on the track,
and by configurations of distal cues in the room, only the later seem critical for performance
(Figure 1A, C), indicating that the rat references trajectories to spatial context. We found
that CG cortical neurons signal the trajectory being performed, without exhibiting place
selectivity in an open arena, in contrast with HIPP units. This indicates that CG trajectory
selectivity is task-related, and not explained by hypothetical CG place selectivity.

The fact that entries are referenced to distal cues at the WWM perimeter implies that spatial
information relevant to CG encoding of trajectories is processed preferentially at this stage,
possibly by HIPP. We therefore predicted that CG-HIPP coordination patterns would
change, as contextual information relevant to encode the distinct trajectories increases, and
that a relationship between CG trajectory information and CG-HIPP coordination would
develop over the course of a trial, all of which we have confirmed (Figure 5 and Figure S8).
The presence of a significant change in the pattern of CG-HIPP theta coordination, linked
with increased trajectory information processing, led us to hypothesize that these changes
might be temporal windows of contextual information transfer between HIPP and CG.
Accordingly we found that, as the frequency of theta coherence lowers, there is a significant
increment in the amount of trajectory information processed, in both HIPP and CG
populations. This is consistent with studies showing decreased HIPP theta frequency in
response to enhanced, novel sensory input (Sainsbury et al. 1987; Jeewajee et al. 2008), or
underlying sensory-motor integration under increased cognitive demands (Bland & Oddie
1998; Kay 2005; Williams & Givens 2003). Our data suggest that spatial information
encoded by HIPP at the maze perimeter is channeled to CG by lower theta frequencies. In
support of this, we found that increases in trajectory information happen first in HIPP, then
in CG, and that there is a positive correlation between CG accuracy and LOW-theta
coherence, restricted to the maze perimeter.
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Why would distinct levels of CG trajectory information be associated with two modes of
CG-HIPP coherence? HIGH-theta rhythms dominate behaviors such as random foraging, in
which active locomotion accompanies exploration, not necessarily cued to defined spatial
objects (Kirk & Mackay 2003; Young & McNaughton 2009). We hypothesize that WWM
trial onsets (EA) are similarly not cued to context. In fact, spatial cues necessary for
mapping the upcoming trajectory are not yet present at this stage and, as a result, both brain
structures process relatively little trajectory information (Figure 3B). Thus, this initial
HIGH-THETA coherence mode serves the type of reward-seeking contextual exploration
present during random foraging. As rats transition to the WWM perimeter, they come into
contact with spatial cues relevant for choosing trajectories. At this point, contextual input
from HIPP would be carried to CG by a distinct coherence mode, characterized by lower
mean frequency (Sainsbury et al. 1987; Jeewajee et al. 2008). CG would now use this
contextual information to encode trajectories, and might also route this information to other
executive areas, namely medial prefrontal cortex, with which it is known to be coherent at
lower frequencies (Young & McNaughton 2009).

Coherence, however, does not clarify the direction of trajectory information flow between
HIPP and CG cortex. The results of phase modulation analysis show that CG spikes are
increasingly modulated by HIPP theta at two distinct periods corresponding to distinct theta
coherence modes: trial onset HIGH-theta (EA), and choice points WIDE-theta (CP). The
relative timing of CG and HIPP LFP and suMUA activity shows that CG and HIPP spikes
that were essentially simultaneous at EA are later offset by ∼80ms. Simultaneously, an
initial EA delay of ∼70ms between HIPP spikes and CG LFP (spike-LFP cross-
correlograms, Figure S7C) becomes much shorter subsequently (∼20ms), taking up only a
fraction of the HIPP-CG 80ms spikes delay. A similar difference was shown before between
entorhinal inputs and HIPP targets, possibly representing local dendritic computations
(Mizuseki et al. 2009), which might be present in CG as well. If this is true, HIPP spikes
(rich in spatial information) would indeed provide fast depolarization of CG targets, which
would locally process this information in order to encode trajectories. Finally, we
investigated the direction of a possible flow of information between HIPP and CG cortex,
using Granger Causality, and found significant causal flow from HIPP to CG twice more
frequently than in the opposite sense. In the context of the previous analyses, this indicates
the presence of a uniform HIPP-CG causality stream, supporting the transfer of contextual
information to CG.

In summary, our results show that, in a cognitively-demanding task, cingulate-hippocampus
coordination determines the amount of task-relevant information processed by both regions.
At trial onset rat’s behavior is not yet cued by spatial context, CG neurons process low
trajectory information and the frequency of theta coherence is high. At decision stages
spatial cues characterize individual trajectories; HIPP processes increased amounts of
information which is conveyed to CG by a lower-frequency theta oscillation. Theta
coherence mode would thus regulate a directional stream of contextual information, from
hippocampus to cingulate cortex, instructing appropriate trajectory choices.

Experimental Procedures
Behavior

All procedures were performed within MIT Committee on Animal Care and NIH guidelines.
Nine male Long-Evans rats (3–6 months) were used, from which 30 datasets were selected
in which subjects: performed the task at above-chance levels, had stable isolated units
recorded from CG cortex, and did not have tetrodes adjusted within the previous 12 hours.
Subjects ran repeatedly on a wagon-wheel shaped maze from the center reward hub (CR),
through the exit arm (EA), onto to the wheel perimeter (outer circle – OC, composed of
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segments CS2–3, and CP segments), and back to the center through one of the 4 arms
(ENT), in unidirectional trajectories corresponding to equal number of entries (Figures 1 and
S2C). Animals were rewarded for correctly selecting one the four available reward arms,
according to a set sequence (1–2–3–4). The goal of the task was to maximize the number of
temporally contiguous correct choices, quantified as the % of all session’s entries pertaining
to sequences of 4 correct trajectories. If an animal performs a percentage of correct
sequences significantly higher than pre-training levels, we consider it to have learned. When
proficiency no longer increases, we consider it asymptotic (40–60% trials correct). Reward
was administered through a long tube by an experimenter located away from the maze,
behind a heavy black curtain. The maze was cleaned after each session.

Electrophysiological recordings
Data analyzed included CG and HIPP single units’ action potentials (“spikes”), local field
potential recordings (LFP), and xyt position (Figure 1 D), obtained using an implanted
microdrive array (Figure S1, top-left panel) of 18 independently movable tetrodes (Figure
S1, top-right panel) targeting exclusively anterior CG cortex (CG, 11–9 tetrodes, 0.3 – 0.8
ML, 2.0–0.5 AP, 0–3.0 DV, mm from Bregma) and HIPP CA1 (7–9 tetrodes, 0.5 −2.5 ML,
−2.0 - −4.0 AP, 3.0 DV), was surgically implanted in the rat’s skull using aseptic
techniques. Over 2–3 weeks of training we performed daily adjustment of the tetrodes.
Differential recordings of extracellular action potentials (sampled at 31.25 kHz per channel,
filtered between 600 Hz and 6 kHz) and continuous LFP (sampled at 2 kHz per channel,
filtered between 0.1 and 475 Hz) were made against a local reference electrode in overlying
white matter (HIPP), or a CG region with low amplitude LFP (CG cortex), using patch-
boxes (Cheetah system) and amplifiers by Neuralynx (Tucson, AZ) as previously done in
our lab (Jones & Wilson 2005). Position was acquired at 30Hz by an array of diodes located
above the electrode drive. The present work included data from 9 rats, for a total of 227 CG
units and 292 HIPP units, distributed over 30 datasets. Selection criteria were defined prior
to any analysis other than clustering: stable recordings with single unit activity in both HIPP
and CG cortex, at least 12 hours adjustment-recording lapse. At the end of the experimental
period subjects were euthanized, current was passed on each tetrode, subjects were perfused
intracardially, and brains were processed for histological verification of electrode location
(Figure S1, bottom). CG tetrode locations were ascertained after histological analyses and,
during surgery, direct visual control of the tetrode cortical entry sites, and a maximum full
adjustment depth of 3 mm, until silence typical of corpus callosum was evident. Action
potentials were assigned to individual neurons by offline, manual clustering based on each
tetrodes’ spike amplitudes, using Xclust software (M.A. Wilson). Subsequent analyses
employed a combination of in-house software (M.A. Wilson), functions from the Chronux
(Bokil et al. 2010), CircStat (Berens, 2009) and GCCA (Seth 2010) toolboxes, and code
written by M. Remondes, F. Kloosterman, S. Layton and D. Nguyen in C++ and Matlab
(Mathworks, Natick, MA), all ultimately adapted by M. Remondes.

Bayesian decoding and CG trajectory information—We linearized individual
trajectories by fitting a spline to each trajectory’s xy points, and estimating a linearized
position for each xy pair. Duplets (linear_position,t) were subsequently used to extrapolate
the linear positions corresponding to spike timestamps. We then divided each of the four
WWM trajectories in 20 cm linear bins, to which individual spikes and individual positions
were assigned for further analysis. The WWM was further divided into regions
corresponding to distinct behavioral phases, namely: the main starting segment (“EA” on
Figure 1), common to all 4 trajectories, which included four linear bins from 0 to 0.8 meters
of linearized trajectory, followed by the outer circle segments common to trajectories 2–4
(common segment 2 or CS2) and 3–4 (commons segment 3 or CS3) (please refer to Figure
S2C). In addition, for each trajectory we defined two further segments relative to the 4
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choice points (outer circle position in front of each entrance): CP (“choice point”, located in
the outer circle) from 0.6 m before, to the actual choice point, and ENT (“entry arms”) from
each choice point to 0.4 m into its facing arm (Figure S2C). The previous sectioning was
used for what is referred to in the text as “linear-bin” and “region” analysis (Figure 3). In
order to measure the amount of behavioral information encoded by CG neuronal populations
throughout each WWM session, we estimated the conditional probability of the animal
being at any given linear bin of any given trajectory, given the spiking activity from
populations of multiple single-neurons (Bayesian decoding). Single-neuron behavioral
tuning curves for each trajectory were computed using the above linearized position data, as
follows: the number of single neuron spikes contained in each of consecutive 20cm bins was
divided by the total number of position timestamps within the same linear bin, to compute
that unit’s occupancy-corrected linear-bin firing rate. The process was repeated for the four
trajectories, such that each linear bin on each trajectory (e.g., each behavioral state), is
characterized by a unique multi-neural firing rate signature, and each neuron has its
behavioral rate map (e.g., the tuning curve). Behavioral sessions were then divided in 250ms
time bins to which the spikes generated by each CG, or HIPP, neuron were assigned. This
formed a matrix in which each consecutive time bin held a vector of multiple single units’
firing rates. The population rate vector at each of the RUN session’s consecutive time bins
was then used to compute a distribution of conditional probabilities associated with each
possible behavioral state, given each behavioral state’s expected population rate vector (e.g.,
the neurons’ tuning curves), as illustrated in Figure 2. On subsequent analyses (Figure 4 and
beyond) we decoded CG and HIPP’ spikes in time, rather than linear position, so we could
match the time windows used to compute CG-HIPP coherence (below). For this we
modified the decoding algorithm to compute tuning curves by dividing each trajectory in
1sec duration, 50ms-sliding windows, and binned the spikes within each window in 250ms
intervals, such that the rate maps reflected the activity of a population of neurons over four
consecutive 250ms bins, contained within each 50ms-sliding 1sec window of data, filtered
for a minimum speed of 20 cm.sec−1. We then decoded neural activity at each 50ms-sliding
1 sec window of the full behavioral session.

To quantify the behavior-estimating accuracy of CG and HIPP neuronal populations, we
compared the Bayesian estimate with the actual behavior of the rat. To avoid circularity, we
used a cross-validation procedure in which we computed the rate maps with the data
pertaining to half the session’s trials, and used it to decode the other half. We then built a
confusion matrix (Davidson et al. 2009), in which we plotted the average estimated behavior
(linear bin/trajectory occupancy probability density) against the average real behavior (linear
bin/trajectory actual occupancy). Trajectory information was computed by taking, from the
confusion plots, the summed probability that the animal is in its actual (correct) behavior
state, divided by the total probability that the animal is at all possible behavioral states. An
accuracy value of 1 means that the neuronal population makes no errors in estimating the
rats’ behavior. Lower values indicate less decoding accuracy, and less trajectory
information. To compare the average trajectory information at distinct trajectories, across
consecutive linear and time bins, for all datasets, we used Kruskal-Wallis non-parametric
analysis of variance, followed by post-hoc comparisons. We confirmed these analyses with
permutations tests against the null hypothesis of no change in accuracy over the course of
trials, and critical alpha values corrected for family-wise error rate (FWER), according to
(Fujisawa et al. 2008). We also extracted the accuracy values corresponding to all individual
trials to perform correlations between accuracy and theta coherence (below).

CG-HIPP LFP coherence vs. position
After filtering all data for a minimum speed of 20 cm.sec−1, single-trial, and trial-averaged
coherograms and spectrograms, representing CG and HIPP coherence and spectrum vs.
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linear position and frequency, were computed for each dataset, on 1sec duration, 50ms-
sliding windows. We extracted the coherence values above a 95% confidence limit from
each dataset, and plotted the dataset-averaged (all datasets) coherence and spectrum at each
time bin, against the corresponding averaged linear positions.

Dynamic changes in frequency composition within the theta band (5–10 Hz) were computed
using two methods. First, for each linear position we computed the CG-HIPP coherence
frequency centroid C = ∑fi Pi/∑Pi , were fi and Pi are, respectively, individual frequencies
and their respective power (Schubert et al. 2004), and studied its variation across
trajectories. Then, having found a significant decrease in the weighted theta frequency
(Kruskal-Wallis, followed by post-hoc comparisons, confirmed with permutations tests as
above), we compared the summed CG-HIPP coherence between EA and OC (delta OC-EA),
namely for the last 30cm of EA and the first 30cm of OC, on all trajectories, to determine
which frequencies change from trial onset to the WWM perimeter. Having found a decrease
in the theta frequencies above 8Hz, and an increase below this value, we choose it as our
LOW/HIGH theta cutoff (Figure 4C). We then extracted from each dataset the averaged
LFP coherence and spectra, within each of the frequency intervals (LOW 5–7 Hz, HIGH 8–
10 Hz). Statistical assessments of differences between coherence and spectra at HIGH and
LOW theta were made using 2-way ANOVA, followed by post-hoc comparisons. We
confirmed these analyses with permutations tests against the null hypothesis of no difference
between coherence/power in two theta bands, corrected for FWER as above. In order to
determine whether trial onset and decision stages differ, in terms of the trajectory
information processed, as well as theta coherence, we plotted and compared the average CG
and HIPP LFP coherence, spectra, and trajectory information, in the last 0.5 sec of EA (trial
onset, labeled EA in the plots) with the ones in the last 0.5sec of OC segments averaged
across trajectories for each dataset (decision stage, labeled OC in the bar plots). To address
whether distinct patterns of LFP coherence correspond to different levels of information
processing, from each dataset we extracted the average trajectory information value
corresponding to the points where a significant difference between HIGH and LOW was
found (high-theta periods), and the ones in which no such difference was found (wide-theta
periods). Mean accuracy values at distinct WWM stages, as well as high vs wide-theta
coherence modes, and their corresponding mean % changes in accuracy, were compared
over the 30 datasets using t-tests, with an α of 0.05 (Figure 5). We confirmed this result by
comparing relative accuracy levels between periods of different coherence frequency
centroid (Figure S5). Finally, we computed single-trial HIGH and LOW-theta coherence
values, which we compared between EA and OC, and correlated with corresponding single-
trial decoding accuracy values, separately for HIGH and LOW theta frequencies, and for EA
and OC stages.

CG-HIPP LFP, MUA, and LFP vs MUA temporal relationships—Phase locking and
phase precession were assessed by taking the Hilbert transform of the theta-filtered HIPP
LFP, extracting the phases corresponding to each HIPP and CG excitatory spike, and, for
each dataset, running a Rayleigh’s Z test for non-uniformity, or Circular-linear Cylindrical
Correlation (Figure S7), of spike phases, in each WWM region (all single units combined to
avoid having samples with few or no spikes, rendering the analysis hard to interpret, this is
except Figure S7 where HIPP single unit phases were used to confirm the presence of bona
fide theta at low frequencies). These analyses were performed using functions from the
CircStat toolbox (Philipp Berens 2009), and determining the ratio of all datasets or single-
units, at each WWM region, whose spikes’ phase distribution was significantly non-uniform
or regressing with linear position. Reported differences were confirmed using a χ2 test for
different percentages. To compute cross-correlations between the distinct types of neural
activity, we took the CG and HIPP LFP and 20ms-binned suMUA (all joined single
excitatory units’ spikes), detrended and normalized the data vectors, took the data
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corresponding to each of the WWM (EA through ENT) regions, and computed the cross-
correlation between the different types of CG and HIPP activity. From this we subtracted a
mean shift-predictor obtained by repeatedly computing cross-correlations on trial-shuffled
surrogate datasets.

Granger Causality (G-causality) was computed on the same data used for cross-correlation
analysis, using the two-variable formulation of (Seth 2010). Statistical significance was
determined using an F-test on the null hypothesis that, in the X1 X2 prediction of X2, the Xl,
coefficients are not different from zero, corrected for multiple comparisons. This was
implemented using the following functions, from the G-causality toolbox (Seth 2010):
cca_granger_regress_mtrial and cca_findsignificance. Thus, for each dataset we computed
the G-causality magnitude and significance, on both directions, between distinct types of
neural activity, on each region (EA-ENT) of the maze. We presented the results for each
WWM region as the ratio of datasets in which significant G-causality between HIPP and CG
was found, in either direction (color-coded).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The sequential win-shift task (WWM) and neurophysiological data acquired
(A) Left - Wagon wheel maze - each trial starts as the rat exits the CR area and progresses
through the exit arm (“exit” - EA) until it reaches the outer circle, where it faces different
entries (“entry” 1–4 color-coded arrows), defining distinct trajectories. Right – training
history for a representative subject. Non-sequential win-shift labeled “no-repeat”. 10–15
days into training the sequence contingency is introduced (“1–2–3–4 sequence”), with a
learning curve developing over ∼3 weeks, and performance eventually becoming
“asymptotic”. Rotation of the maze by 180° (“r”) results in a loss of performance, rescued
by reinstating the orientation (“ctrl”). (B) Results for the first group of 4 rats. After 17
sessions the group was significantly more proficient than up to session 10, t (4) = 3.58, p =
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0.011, all error bars in this figure are standard deviations. Interruption in training (8 days)
causes a drop in proficiency (comparison between the two days flanking the interval, (t (4) =
5.84, p = 0.0011), rescued upon a second session (comparison between the last day pre-
interval and the second day post-interval, t (4) = 1.39, p = 0.22, NS). (C) Rotation of the
maze (‘r’ in the panel) reversibly disrupts performance. Results for the very first rotation
experiment (n=3), comparison between one rotation day and its subsequent ctrl day, t (3) = −
2.9, p = 0.04, reverted once conditions were restored. Grey lines indicate the percentage of
correct sequences of 4 trajectories a rat would perform, if choosing randomly (p=0.0156).
(D) Single unit, raw and filtered (4–12 Hz, colored black) LFP, and xy positions (x is
plotted, green circles mark the entry arm, 3 in this case), were acquired during behavior (see
also Figure S1 for a picture of the tetrode arrays and locations). Black bars are 1sec.
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Figure 2. Bayesian decoding of behavior from CG and HIPP multiple single-unit spike trains
(A) Top panel: CG spikes plotted with linear position and color-coded markers for
individual trajectories (red - trajectory 1, blue - trajectory 2, green – trajectory 3 and yellow
– trajectory 4). The position data was linearized for further analysis, such that the position/
trajectory estimates and actual position are depicted as consecutive linear bins oriented
down the YY and forward on the XX axes. Bottom panel: Linear position and trajectory were
estimated from multi-neuron spiking activity on consecutive 250ms bins, given the
behavioral tuning curves, as explained in Methods. Overlaid in red is the actual linear bin/
trajectory occupancy, recorded from the rat’s behavior. (B) HIPP data and decoding. Panels
are equivalent to the ones in A. Note the relative accuracy at which both CG and HIPP
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estimates match the overlaid actual behavior, and also the increased linear position accuracy
of HIPP compared to CG estimates. Please see Figure S2 for preliminary analysis of CG
units on the WWM. Black horizontal bars represent 5 seconds duration.
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Figure 3. Validation of CG and HIPP decoding and dynamics of trajectory estimation accuracy
(A) CG and HIPP trajectory confusion plots: for each real linear bin from each trajectory,
the average neural-estimated linear bin and trajectory (computed by encoding (ratemaps),
and decoding (spike counts and behavior maps) within mutually exclusive half-sessions as
explained in Methods). Higher color intensity on the diagonal linear bins and on the
diagonal trajectory areas (four squares lying on the diagonal of the matrix) indicates accurate
estimation of linear bin and trajectory identity. The ratio between the estimated position at
any actual behavioral state (example on the left panel, delimited in green for the first CP
linear bin of trajectory 3) and the marginal probability corresponding to all possible
positions (delimited in red, see Methods), called trajectory information in the text, quantifies
estimation accuracy (max is 1 for a perfect decoder). Shown is the mean of all confusion
plots of all datasets. (B) Average trajectory information for CG (magenta) and HIPP (green)
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at linear bins: 1:9 of trj1 (1.8 m length), 1:13 from trj2 (2.6 m), 1:17 from trj3 (3.4m) or 1:21
from trj4 (4.2m). Note how the accuracy at both CG and HIPP significantly increases as rats
move from EA bins to those located on the outer circle (beyond 0.8m of linear position,
linear bin 4). Note also how HIPP trajectory information tends to significantly increase
earlier and to higher amounts than CG’s (color-coded plots, green is HIPP, magenta is CG,
asterisks mark the first linear bin in which accuracy is significantly higher than on EA,
Kruskall-Wallis, followed by post-hoc comparisons, * p<0.05, ** p<0.01). All plots depict
mean+/−SEM.
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Figure 4. Behavioral dynamics of CG-HIPP LFP coherence and spectra
(A) Leftmost column color plots represent, from top to bottom, CG-HIPP coherence, CG
spectrum and HIPP spectrum, plotted against frequencies 1–15 Hz, and linear position
(labels on WWM “landmarks” present on the bottom plot only: “EA” and “Choice”),
averaged across all datasets for trajectory 3 (please see Figures S3–4 for all four
trajectories). Note the expansion of coherence towards lower theta frequencies (arrow), on
outer circle segments, as animals move towards choice segment. (B) Average theta
coherence frequency decreases ∼ 1Hz as animals exit EA and run the OC towards “Choice”
(**, p<0.05, permutation tests). Plotted is the frequency centroid (see Methods) of coherence
against linear position, showing a qualitative change in the theta frequency composition
from EA to OC and closer to choice segments. (C) The variation in theta-coherence summed
magnitude, between EA and OC (EA-OC ΔCG-HIPP coherence, see Methods), at the same
linear positions of the four trajectories (color coded as in Figures 1 and 2), determined the
choice of the 8Hz cutoff to distinguish low, increasing-coherence (5–7 Hz), from high,
decreasing-coherence (8–10 Hz). (D) Two modes of theta-coherence characterize behavioral
phases. A HIGH-THETA mode accompanies trial onset, in which coherency at HIGH (8–10
Hz, red colored) frequencies is higher than at LOW (5–7 Hz, blue colored) frequencies (▣,
p<0.05, 2-way ANOVA, followed by post-hoc comparisons, subsequently confirmed by
permutation tests). This is followed by a WIDE-THETA regime at OC, in which coherence
at both high and low theta frequencies is of equal magnitude (wide-band theta). The two
subsequent plots depict the average spectra at CG and HIPP at the same linear positions.
HIPP theta is dominated by high frequencies throughout the trial, up to choice segments (▪,
p<0.05, permutation tests), contrary to CG in which theta frequency is wide-band. This
figure depicts data for TRJ3, please see Figures S3–4 for all four trajectories. All plots
depict mean+/−SEM.
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Figure 5. Increased trajectory information and lower theta coherence at the maze perimeter
(OC) compared to trial onset (EA)
(A) Two distinct CG-HIPP theta coherence regimes characterize consecutive stages,
matching increasing levels of trajectory information, quantified at the same time intervals
(lower panel, CG and HIPP time-decoding, color-coded as before, see Methods). Note an
increase in decoding accuracy at WIDE-THETA coherence periods, and trajectory
information increasing earlier in HIPP than in CG (color-coded **, p<0.05, Kruskal-Wallis
followed by post-hoc comparisons, later confirmed by permutation tests). Depicted are
results for TRJ3 only, please refer to Figure S3–4 for all four trajectories. (B) Compared to
trial onset (EA, defined as the last 0.5 sec of trial onset), at choice segments in the outer
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circle (OC, defined on all trajectories as the 0.5 sec before “Choice” point), CG and HIPP
process significantly higher amounts of trajectory information (decoding accuracy, *, EA vs
OC comparisons, t-test, p<0.05; CG (magenta) p=0.003; HIPP (green) p=0.00005), and
exhibit coherence at a lower mean frequency (CG-H coherence frequency, *, coherence
centroid value at EA vs OC, t-test, p<0.05, 0.029). (C) Left panel: at choice segments in the
outer circle (OC), CG-HIPP exhibit equivalent levels of HIGH and LOW theta coherence,
contrasting with trial onset (EA) periods (CG-H coherence,*, p<0.05, coherence at HIGH
(red) vs LOW (blue) frequency, t-test; EA p=0.0008; OC p=0.08). Right panel: at equivalent
WWM points HIPP theta is dominated by high frequencies, contrary to CG (CG and H
spectra, *, p<0.05, HIGH vs LOW theta spectrum, t-test, HIPP, EA p=0.000003, OC
p=0.002; CG, EA p=0.30, OC p=0.12). Comparable differences were not present for
coherences at 1–4Hz (Figure S6). Please see Figures S5 for accuracy at WIDE vs HIGH
theta coherence periods, and S8 for trial-by-trial-analyses of accuracy and coherence. All
plots depict mean+/−SEM.
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Figure 6. Behavioral dynamics of HIPP-CG temporal precedence and G-causality
(A) CG spikes are modulated by HIPP theta at two separable behavior stages, in which the
% of significantly modulated datasets is increased: trial onset (EA) and choice points (CP)
(*, p<0.05, χ2 test for percentages), this difference is not present in HIPP spike phases. (B)
Time-dependent relative magnitude of HIPP LFP referenced to CG LFP computed by cross-
correlating the detrended data, and subtracting a shift-predictor (see Methods). LFP cross
correlograms (left column) are stable throughout WWM stages, with HIPP preceding and
following CG by ∼50ms (CG is ref, labeled by a red dashed vertical line). A marked theta-
rhythmicity is present in the correlograms, indicating the presence of theta modulation.
Spikes cross-correlograms (right column) also exhibit theta rhythmicity, more clear on the
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OC segments CS2-CP, and revealing marked differences in CG-HIPP relative spike timing
across stages of the WWM. Namely, on EA the peak cross-correlogram is located at CG-
HIPP zero-lag, suggesting simultaneity of CG and HIPP spikes. As rats enter OC, HIPP
spikes start preceding CG’s by ∼80ms, suggesting that, while theta rhythms coordinate the
relative timing of CG and HIPP neural activity throughout the WWM task (B and A),
spiking activity changes between two distinct coordination modes. Simultaneous firing at
trial onset (EA), followed by a “cross-talk” mode at OC stages, during which the two
structures fire with a temporal delay (HIPP precedes CG by a longer delay). Please see
Figure S6 for HIPP spikes to CG LFP cross-correlograms. (C) The previous dynamics is
confirmed by a closer look at zero-lag cross-correlations, in which coincident firing at trial
onsets (EA) is followed by a significant decrease in zero-lag correlation coefficient at outer
circle stages (CS2-CP) (*, p<0.05, Kruskal-Wallis, followed by post-hoc comparisons).
Please refer to Figure S7 for an analysis of HIPP spike-CG LFP cross-correlograms and its
discussion. (D) Ratio of datasets in which significant Granger causality was found between
LFP (left column) and suMUA, at distinct WWM stages. There is significant HIPP-CG G-
causality in both LFP and suMUA neural activity. Twice as frequent in the HIPP-CG
direction (color coded in the bottom plots, LFP 29.6 vs 16.3% datasets, pooled across all
stages, p<0.05, suMUA 22 vs 10%, p<0.05, χ2). Please see Figure S2 for WWM
subdivisions and S7 for confirmation of theta at low frequencies. All plots depict mean+/
−SEM.
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