
GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 1–5, doi:10.1002/2013GL057933, 2013

Ionospheric symmetry caused by geomagnetic declination
over North America
Shun-Rong Zhang,1 Ziwei Chen,1,2 Anthea J. Coster,1
Philip J. Erickson,1 and John C. Foster1

Received 6 September 2013; revised 4 October 2013; accepted 7 October 2013.

[1] We describe variations in total electron content (TEC)
in the North American sector exhibiting pronounced lon-
gitudinal progression and symmetry with respect to zero
magnetic declination. Patterns were uncovered by applying
an empirical orthogonal function (EOF) decomposition pro-
cedure to a 12 year ground-based American longitude sector
GPS TEC data set. The first EOF mode describes overall
average TEC, while the strong influence of geomagnetic
declination on the midlatitude ionosphere is found in the sec-
ond EOF mode (or the second most significant component).
We find a high degree of correlation between spatial varia-
tions in the second EOF mode and vertical drifts driven by
thermospheric zonal winds, along with well-organized tem-
poral variation. Results strongly suggest a causative mech-
anism involving varying declination with longitude along
with varying zonal wind climatology with local time, sea-
son, and solar cycle. This study highlights the efficiency and
key role played by the geomagnetic field effect in influenc-
ing mesoscale ionospheric structures over a broad midlati-
tude range. Citation: Zhang, S.-R., Z. Chen, A. J. Coster, P. J.
Erickson, and J. C. Foster (2013), Ionospheric symmetry caused by
geomagnetic declination over North America, Geophys. Res. Lett.,
40, doi:10.1002/2013GL057933.

1. Introduction
[2] Large spatial variations of the upper atmosphere have

often been explained in terms of the offset between magnetic
and geographic coordinates [Rishbeth, 1998; Zeng et al.,
2008]. In this study, we will for the first time visualize obser-
vations of detailed mesoscale ionospheric structures clearly
suggesting the fundamental influence of magnetic declina-
tion, through an analysis of total electron content (TEC)
long-term measurements over North America where a dense
network of GPS receivers exist.

[3] Geomagnetic declination varies over the globe, with
zones of positive and negative declinations occurring alter-
natively; in North America, the zero declination line is
along 85ıW–95ıW longitudes. In sectors of significant dec-
lination change, midlatitude ionospheric variations can be
significantly affected by a dynamic process combining dec-
lination controls with thermospheric zonal wind influences.
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This process is a contributing factor to some nighttime iono-
spheric variations [e.g., Kil et al., 2006; Luan et al., 2008;
He et al., 2011] and to the Weddell Sea anomaly, character-
ized as an electron density-evening enhancement in summer
[Lin et al., 2010; de Larquier et al., 2011].

[4] Recently, the community has identified a new class
of ionospheric longitudinal variations at midlatitudes across
zero magnetic declination. These variations exhibit east-
west electron density differences with characteristic diurnal
and seasonal variations. They were first noticed over the
U.S. continent [Zhang et al., 2011] and then confirmed
through statistical analysis in the North and South American
and Oceania sectors [Xu et al., 2013]. Comparisons between
American and Asian sectors also revealed significant east-
west differences with varying characteristics depending on
geophysical conditions [Zhao et al., 2013]. A declination-
zonal wind mechanism was proposed to account for this
class of variations based on long-term observations by
the Millstone Hill midlatitude incoherent scatter radar in
the northeast U.S. [Zhang et al., 2012a] and by collo-
cated Fabry-Perot interferometer (FPI) observations. Cor-
relation between incoherent scatter radar-derived east-west
density differences at night and FPI thermospheric zonal
winds is very strong, exceeding 0.95 [Zhang et al., 2012b].
Sporadic reports for similar east-west differences observed
over paired stations and speculative suggestions for the
declination control and neutral wind contributions have
been available in the literature since 1960s [Eyfrig, 1963;
Goldberg, 1966; Kohl et al., 1969].

[5] Given the fact that key ionospheric drivers such as
meridional winds are likely not distributed uniformly with
longitude, east-west ionospheric differences driven by sig-
nificant zonal wind-declination effects have often been pos-
tulated, but more observational based studies of these effects
are needed. In this study, we focus on the questions of
whether these postulated east-west differences are statisti-
cally significant in space and time and whether these differ-
ences fit the more general picture of longitudinal ionospheric
variation which follows a gradual longitudinal change of
declination. Our study reveals that these effects are indeed
present and significant. In particular, a very symmetric longi-
tudinal variation in TEC with respect to the zero declination
line stands out markedly using an empirical orthogonal func-
tion (EOF) decomposition analysis on a GPS TEC data set
spanning more than a full solar cycle in 2001–2012. This
EOF approach allows for separation of spatial and tem-
poral variations and provides a basis set of components
with varying significances along with an ordered hierarchy
of modes. We find that this analysis provides a geophysi-
cally meaningful way of investigating a large observational
data set.
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Figure 1. GPS TEC variations over North America
averaged over the entire data set. (a) Spatial variation aver-
aged over all times. Superposed are the contours of CGM
magnetic latitudes (white solid line) and of meridional wind
(200 m/s) induced vertical drifts vm

?
= 200 cos I sin I cos D

(dotted lines). (b) Yearly (dash-dotted blue line) and monthly
(solid red line) variation averaged over local times, latitudes,
and longitudes. (c) Seasonal (monthly) and local time vari-
ations, averaged over different latitudes and longitudes as
well as over local times or over months. Error bars represent
standard deviations.

2. Data and Methodology
2.1. Data

[6] Our study uses GPS TEC data for our variation analy-
sis. The Massachusetts Institute of Technology (MIT) Auto-
mated Processing of GPS (MAPGPS) system generates and
archives global TEC data in bins of 1ı (latitude) � 1ı (lon-
gitude) at 5 min cadence. The TEC data are derived from
worldwide GPS observations [Mannucci et al., 1998; Coster
et al., 2003]. Satellite biases are provided by Jet Propulsion
Laboratory and receiver biases are estimated [Rideout and
Coster, 2006]. GPS satellite biases that are used have been
shown to be consistent on a monthly basis [Wilson et al.,
1999]. MAPGPS tracks closely errors from measurements
and data processing. The current study will focus on con-
tinuous observations made during 2001–2012 over North
America within the geodetic coordinate range (20ıN–60ıN,
135ıW–50ıW).

[7] The daily TEC is first binned into hourly bins of
3ı� 3ı latitude and longitude resolution and then bin
averages of the TEC are calculated. Following this, monthly
means are derived for each local time and latitude and lon-
gitude bin. Since we are interested in quiet time behavior,

data with Kp�3 are excluded. Notice that in the origi-
nal data, there are very small but persistent offshore data
gaps, mostly near the lowest latitudes of east-most and
west-most edges. The decomposition step which follows
requires a uniform data set with continuous coverage in
space and time; therefore, these gaps are filled with data
from a Kriging interpolation. This statistics-based linear
estimator makes use of surrounding measurements to derive
unbiased optimal values for missing points, with appropri-
ate error estimates. These measurements are weighted based
on the distance between locations of measurements and data
gaps and the overall spatial distribution of the measurements
[Orus et al., 2005].

[8] Following this initial binning and averaging, we
obtain hourly data for each month which can be analyzed
for general TEC characteristics. Figure 1a shows spatial
TEC variation, and Figure 1b shows temporal TEC vari-
ation. When spatial variations are averaged over all times
for each given locations, we find a gradual increase in
TEC toward lower geographic latitudes along with some
longitudinal dependence. All these suggest modification
by effects keyed to magnetic latitude (white solid lines).
Figure 1b gives monthly and yearly variations, obtained
with averaging over local times and locations. Unsur-
prisingly, yearly variations track solar cycle phase (see
Figure 3b for variations in a solar activity proxy). Figure 1c
shows detailed seasonal and local time variations over the
entire region averaged over the 12 year period analyzed.
Semiannual peaks are found in equinoxes near April and
October, with the spring equinox being higher in TEC.
Summer TEC levels are close to winter TEC levels and
in some cases exceed them. The diurnal maximum appears
at 13:00 LT. We use these statistical characteristics (which
on their own are of potential interest to other climatol-
ogy studies) [Rishbeth, 1998; Lei et al., 2012; Qian et al.,
2013] to set background and first-order ionospheric con-
ditions and proceed in the following sections to examine
smaller-scale variations.

2.2. EOF Decomposition
[9] To perform empirical orthogonal function (EOF)

decomposition, 2-D hourly (t) and monthly (n, months
throughout the 12 years) TEC values T can be expressed
mathematically by a set of orthogonal basis functions b(�,�)
in latitude (�) and longitude (�). These basis functions are
determined from the data set itself rather than by predefined
functions,through construction of corresponding principal
components P(t, n) with an explicit temporal variation, i.e.,
T(t, n,�,�) =

PI
i=1 bi(�,�)Pi(t, n), where i = 1, ..., I repre-

sents a series of modes. The EOF approach determines the
most likely basis function set bi by computing the eigen-
vectors of the covariance matrix C for the data T(t, n,�,�),
along with eigenvalues!i in the equation Cbi = !ibi. Result-
ing EOF basis functions bi are ordered in importance by the
magnitude of !i for each function. Depending on geophys-
ical processes, the first four modes may account for >97%
variance in the data, as is the case in this study and oth-
ers [Zhao et al., 2005; A et al., 2012; Lei et al., 2012]. The
powerful EOF decomposition technique has found a num-
ber of recent applications to upper atmospheric modeling
and data analysis; Daniell Jr. et al. [1995] and Matsuo et al.
[2002] are examples of earlier attempts on large ionospheric
data sets.
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Figure 2. Basis function b2(�,�) for the second EOF
mode (see text) derived from EOF decomposition, indicat-
ing strong longitudinal dependence controlled by magnetic
declination. We note that b2(�,�) is either positive or neg-
ative, depending on longitude, with zero values along the
longitudes marked by the white area and the green curve.
The zero magnetic declination is along the black line. Solid
blue lines (+) and dashed red lines (–) mark contours of the
quantity vz

?
= 200 cos I sin I sin D at intervals of five units,

highlighting declination (D) and dip (I) angle effects.

3. Result: TEC Variations in Mode 2
[10] EOF decomposition separates spatial and temporal

variations of various modes and assigns them different rel-
ative strengths. The most significant variation is contained
in the first EOF mode, which accounts for �94% of the
variance in the data. This mode is essentially equivalent to
the overall averages as discussed in the previous section
and shown in Figure 1. They exhibit a primary latitudinal
variation with clear modification by background magnetic
field geometry. We call attention to the large and significant
second EOF mode in Figures 2 and 3.

3.1. Spatial Variations b2(�,�)
[11] The EOF basis function for the second mode,

b2(�,�), has a clear longitudinal dependence (Figure 2). The
b2 is positive on the west side, and in particular, is more pos-
itive toward the west and south. It is negative for the east
side and becomes increasingly negative toward the east and
south. The zero contour (the white area and the green curve)
is along the 85ıW to 95ıW longitude line (notice that b2 has
a 3ı�3ı spatial resolution) and is slightly tilted westward in
azimuth. The 85ıW to 95ıW line defines longitudes of least
temporal variability for this mode, since the TEC component
for this mode T2 = b2(�,�)P2(t, n) and T2 will stay zero if
b2 is zero, regardless of temporal variability in P2. A very
small portion of these longitudes were previously exam-
ined in Zhang et al. [2011] where three midlatitude zones
in the continental U.S. were examined based on morning-
to-evening variability derived from a month-long TEC data
set. In this study, application of the EOF technique allows us
to precisely define the full extent of these longitudes using
the entire 12 year long data set. Significantly, our analysis
reveals that these longitudes happen to be along zero mag-
netic declination in North America as shown by the black

line, strongly suggesting an important correlation between
T2 and declination.

3.2. Temporal Variations P2(t, n)
[12] The principal component for the second mode,

P2(t, n), describes temporal variability in the T2 compo-
nent (Figure 3). The color-shaded variation in Figure 3a
representing the whole P2(t, n) data set shows a well-
defined dependence on local time and on month and year.
The monthly variation, p2(n) (diurnally averaged), fluctu-
ates about an overall negative average (the horizontal gray
line) with substantial monthly (red line) and yearly (black
line) variability. The yearly variation seems to be somewhat
correlated with the solar 10.7 cm flux index F10.7, in partic-
ular, its yearly averages (Figure 3b). In fact, P2(t, n) can be
further decomposed into a new EOF basis ˇj(t, m), repre-
senting monthly (m) and diurnal (t) variations, and a new
principal component �j(y), representing yearly (y) variations,
i.e., P2(t, n) =

P
j ˇj(t, m)�j(y). The first mode, �1(y) (line

and circles in Figure 3b), is highly correlated with F10.7:
High solar activity corresponds to a large P2(t, n) magnitude.

[13] Therefore inserting P2(t, n) and b2(�,�) information
into the TEC component T2, we conclude that (1) on average,
T2 is positive on the east side and negative on the west side,

2002 2004 2006 2008 2010 2012
50

100

150

200

Month / Year (n)

M
on

th
ly

 F
10

.7 (b)monthly 12−month running

0

4

8

12

16

20

24

lo
ca

l t
im

e(
ho

ur
)

(a)

−6

−4

−2

0

2

4

6

monthly
12−month running avg

0 3 6 9 12 15 18 21

J

M

M

J

S

N

local time (hour)

M
on

th

(c)

−1

−0.5

0

0.5

1

Figure 3. (a) The second EOF mode principal component
P2(t, n), shown as coded colors as a function of local time
and month/year, overlapped with (using the y axis on the
right) monthly average p2(n) (averaging over local times)
and its 12 month running average. The horizontal gray line
is the level of the gross average for P2(t, n). (b) Anticorre-
lation between F10.7 index (red line for monthly and black
line for 12 month running averages) and intensity of P2(t, n)
(blue line and circles), derived as the first EOF mode princi-
pal component for P2(t, n) (see text). (c) Seasonal and local
time variations of P2(t, n), derived as the first EOF mode
basis for P2(t, n) (see text).
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i.e., TEC tends to be higher to the east than to the west. (2)
East-west differences, as presented in this EOF mode, appear
to be positively correlated with solar activity, being strong at
solar maximum and weak at solar minimum.

[14] There are substantial day-night and summer-winter
differences in P2(t, n). These were shown in Figure 3a and
are further illustrated in the first mode ˇ1(t, m) (Figure 3c),
which is a decomposed local time versus month basis func-
tion for P2(t, n). This basis function is negative, and there-
fore, P2(t, n) is positive due to negative �1(y) approximately
between 8 daytime hours 06:00–14:00 LT and positive for
the better part of the day. As a result of this day-night asym-
metry, P2(t, n) is biased toward negative values (see the
horizontal line in Figure 2b as well), and therefore, the TEC
component T2 is positive (higher TEC) on the east side at
night and on the west side during the day.

[15] The local time dependency in ˇ1(t, m) is modulated
by seasonal variability both in duration for being positive
or negative and in magnitude. The ˇ1(t, m) shows maximum
magnitudes in equinox months for 8 h during the day and
maximum magnitudes in winter for all other local times.
Accordingly, east-west differences in TEC, represented by
T2, are largest at winter night and by equinox day.

3.3. Coincident Spatial Variations in b2
and Wind Dynamics

[16] The substantial TEC control enforced by Earth’s
magnetic fields, in particular the declination D and dip angle
I, is particularly evident when examining overlapping con-
tours of vz

?
= 200 cos I sin I sin D in Figure 2. This vz

?

expression assumes 200 m/s thermospheric westward winds
that induce vertical ion drifts, upward for D positive (the
west side), and downward for D negative (the east side).
Thermospheric winds are highly variable in space and time.
The 200 m/s wind is typical for the midlatitude F region
ionosphere at night, but of course, assumption on this wind
constant affects the wind effect efficiency but does not
affect spatial variations in vz

?
. In the longitude/latitude sec-

tor under study, the latitude varies by�40ı and the longitude
by �90ı, I varies between 34ı–83ı, and D varies between
–27ı to +21ı. We find therefore that the directional reverse
across zero declination and dynamical forcing represented
by vz
?

contours match well with the spatial symmetry in the
second EOF mode of TEC variations.

3.4. Relative Significance of the Second EOF Mode
[17] The significance of the second EOF mode may be

assessed by different measures: T2 variance = 1.57, account-
ing for 1.61% of the total variance (for comparison, the first
mode T1 variance = 91.9, accounting for 94.0% of the total
variance) and the third mode T3 variance = 1.24, account-
ing for 1.27% of the total variance. We note that some
well-known midlatitude phenomena, such as daytime elec-
tron density levels being higher in winter than in summer
[Rishbeth, 1998], are observed in the third mode, but appar-
ently are not as significant as longitudinal variations rep-
resented in the second EOF mode. This effect will be the
subject of a future study.

4. Discussion and Conclusion
[18] The second EOF mode of TEC data exhibits strong

longitudinal variations that retain significant variability in

local time, season, and to a lesser extent, solar activity. These
longitudinal variations are essentially symmetric around the
zero magnetic declination line. Results shown in Figure 2
clearly demonstrate a smooth and gradual longitudinal pro-
gression and reveal the large extension of this symmetry
into both higher and lower midlatitudes. These results also
reveal a pronounced similarity between the longitudinal and
latitudinal pattern in b2 and in the zonal wind induced ver-
tical drift vz

?
. This strongly suggests a causative zonal wind

effect on ionospheric variations, as proposed by Zhang et al.
[2011], but our study quantifies for the first time the large
spatial extent and significant amplitude of its effect. For a
westward thermospheric wind, vz

?
is upward on the west

side and downward on the east side due to opposite decli-
nation angles and therefore drives east-west differences in
electron densities since chemical recombination rates fall off
exponentially with height. While longitudinal variation is
clearly a dominant characteristic, there appears minor latitu-
dinal variation, in particular, at lower latitudes on the west
side where b2 does not perfectly match vz

?
. This variation

is originated more likely from low-latitude electrodynamics
than midlatitude wind-declination dynamics.

[19] Temporal variability in T2, as a function of solar
activity, season, and local time, reflects well similar patterns
in zonal wind climatology. These effects were demonstrated
in Zhang et al. [2012b] based on winds and electron den-
sity measurements over Millstone Hill in the northeast U.S.
Derived from a much larger region, our results suggest that
in order to explain the P2(t, n) variability, (1) the zonal winds
at winter night and by equinox day must be the strongest,
(2) the daytime zonal wind must be mostly westward and
the nighttime one eastward, and (3) the zonal wind may
be dependent on solar cycle. These zonal wind characteris-
tics over North America generally agree with known wind
climatology, e.g., in empirical models [Drob et al., 2008].
The solar cycle dependence in (3), in particular, is some-
what complicated since prior observations show increasing
wind speeds with either decreasing [Zhang et al., 2012a] or
increasing solar activity [Brum et al., 2012], depending on
many factors [Emmert et al., 2006]. These factors control
the relative importance of competing forces such as neutral
pressure gradients and ion drag.

[20] In midlatitude ionospheric dynamics, meridional
winds (um) play significant roles by inducing vertical drifts
vm
?

= um cos I sin I cos D, where the cos D factor varies pri-
marily between 0.9 and 1. In Figure 1a, contours of vm

?
for

um = 200 m/s are given as dashed lines. The vm
?

appears to
follow CGM (Corrected GeoMagnetic) latitude (white solid
lines) closely. We therefore conclude that spatially uniform
meridional winds at a given local time can only cause the
type of TEC variations in Figure 1a, patterns representing
a gross average of the monthly means as shown in the first
EOF mode.

[21] Longitudinal homogeneity of winds for a given
local time, however, remains an open question. Neutral
pressure gradients and horizontal viscosity may contribute to
maintaining longitudinal homogeneity of winds for a given
local time, while other localized factors such as ion drag on
neutral particles or wave forcing [Lühr et al., 2007] may
serve as a potential contributor to the inhomogeneity. So far,
however, there is no indication of longitudinal changes in
meridional winds, which would vary as a function of local
time and season, that could systematically explain observed
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longitudinal changes in T2 at midlatitudes during nonstorm
conditions. TIE-GCM simulations of magnetic meridional
winds do show some longitudinal dependency, mostly at
midnight [Luan et al., 2008]. These variations are due to
the combined declination and zonal wind effect discussed
in this study: Longitudinal gradients in geographic merid-
ional winds are much smaller than in magnetic meridional
winds. Longitudinal inhomogeneity in zonal winds at given
local times has been previously reported primarily at equa-
torial zones [Meriwether et al., 1997; Lühr et al., 2007] but
has rarely been reported at midlatitudes probably due to lack
of observations. To this end, future measurements with suf-
ficient high spatial and temporal resolutions as described in
Makela et al. [2012] will be extremely helpful.

[22] In conclusion, using a 12 year long ground-based
GPS TEC data set for North America and performing EOF
decomposition for spatial and temporal variations, this paper
reveals a large and significant symmetric longitudinal vari-
ation of the ionosphere, organized with respect to magnetic
declination. The correlation of such a gradual spatial vari-
ation to that in zonal wind-driven vertical drifts, along
with well-organized temporal variations, strongly suggests
a causative mechanism involving varying declination with
longitude and varying zonal wind climatology with local
time, season, and solar cycle. This study highlights the sub-
stantial influence of the geomagnetic field on mesoscale
ionospheric structures at midlatitudes.
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