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Abstract. This analysis of long-term Ti trends in the F-region over dif-5

ferent local times is based on a database of incoherent scatter radar (ISR)6

observations spanning more than 3 solar cycles during 1968-2006 at Millstone7

Hill, and represents an extended effort to a prior study focusing on noon-8

time only [Zhang et al., 2011]. This study provides important information9

for understanding the difference between the ISR and other results. A gross10

average of the Ti trend at heights of Ti∼Tn is ∼ (200-350km) -4K/decade,11

a cooling trend close to the Tn estimation based on the satellite neutral den-12

sity data. However, there exists considerable variability in the cooling: it is13

strong during the day and very weak during the night with a large appar-14

ent warming at low altitudes (200-350km); it is strong at solar minimum for15

both daytime and nighttime. The strongest cooling for altitudes below 37516

km occurs around 90-120 solar flux units of the 10.7 cm solar flux, not at17

the lowest solar flux. There appears more cooling toward high magnetic ac-18

tivity, but this dependency is very weak. No consistent and substantial sea-19

sonal dependency across different heights was found. We speculate that a frac-20

tion of the observed cooling trend may be contributed by a gradual shifting21

away from the sub-auroral region at Millstone Hill, as part of the secular change22

in Earth’s magnetic field. In this 39-year long series of data record, two anoma-23

lous Ti drops were noticed, and we speculate on their connection to volcano24

eruptions in 1982 and 1991.25
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1. Introduction

If greenhouse gas concentrations are doubled, as predicted to happen by the end of26

the 21st century, Roble and Dickinson [1989] and Qian et al. [200] indicated that the27

decrease in thermospheric temperature will be as much as 50 K, and the decrease in28

thermospheric densities at a fixed height will be 40-50%. Observations of thermospheric29

total mass density by satellites revealed a 2-5% decrease per decade [Keating et al., 2000;30

Emmert et al., 2004; Marcos et al., 2005; Emmert et al., 2008], and have been considered as31

evidence of thermospheric cooling. The ionospheric consequence of thermal contraction32

includes a decrease in the F2 peak height [Rishbeth , 1990], a decrease in the topside33

ionospheric density [Zhang et al., 2011] and an increase in the F1 and E region ionospheric34

densities (e.g., Bremer [2008]). Progress has been made in identifying and understanding35

upper atmospheric trends in various observations in the past two decades, and is reviewed36

recently by, e.g., Qian et al. [2011]; Cnossen [2012]; Danilov [2012]; Laštovička et al. [2012].37

The greenhouse gas effect, however, may not be the sole reason for the observed secular38

changes in the ionospheric and thermospheric parameters. Long-term changes in both39

solar and geomagnetic activity [Mikhailov and Marin, 2001], and secular variations of the40

geomagnetic field [Yue et al., 2006; Cnossen and Richmond , 2008] are other drivers that41

have been suggested to cause long-term changes in the upper atmosphere. More recently,42

W. L. Oliver et al. (W. Oliver, S.-R. Zhang, and L. Goncharenko, Is global thermospheric43

cooling caused by gravity waves? submitted to J. Geophys. Res., 2013) have proposed a44

new mechanism for the observed upper atmospheric cooling as caused by the long-term45
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enhancement of gravity wave activity, which resulted from ocean-atmosphere interaction46

and wave propagation into the thermosphere47

The upper atmospheric temperature is a key to understanding variations in the iono-48

sphere and thermosphere. A drop in the neutral temperature can cause corresponding49

changes in the neutral composition and circulation (winds), therefore affecting ionospheric50

density through photo-ionization, chemical loss, diffusion and dynamics. The ground51

based incoherent scatter radar (ISR) can provide long-term and continuous monitoring52

of the upper atmospheric thermal status; radar observations of plasma temperatures and53

densities can be even used to derive neutral temperature and composition [Bauer et al,54

1970; Oliver, 1979]. In particular, ion temperature (Ti) is very close to neutral tempera-55

ture (Tn) at heights below the F2 peak, and features a well-defined high positive correla-56

tion with the solar 10.7 cm flux, the proxy F107, which allows to easily separate effects57

of the solar activity on long-term trends. Altitude profiles of the radar measured iono-58

spheric/thermospheric parameters contain crucial information for understanding varying59

relative roles of factors perhaps associated with long-term changes in the main part of the60

ionosphere.61

In an initial attempt to prove a direct measure of the upper atmospheric temperature62

trend, Zhang et al. [2005b] identified a negative Ti trend for most F2 region altitudes and63

seasons above Millstone Hill over 1978-2002. Holt and Zhang [2008] showed a long-term64

cooling rate of -4.7K/year in Ti with a 95% confidence interval of -3.6 to -5.8K/year at65

noon for 375 km, based on Millstone Hill ISR data for the period of 1978-2007. Using66

a similar Millstone Hill ISR data set but for the 100-500 height range over nearly 4067

years in 1968-2006, Zhang et al. [2011] provided the noontime height profile of the Ti68
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trend. The cooling was found to grow increasingly into the topside, stay less changed at69

200-250 km, and show apparent warming in the E and F1-region. The noontime cooling70

is more significant at low solar activity than at high solar activity. These results appear71

qualitatively similar to the cooling trends from the theoretical modeling [Qian et al., 2011;72

Akmaev et al., 2006; Roble and Dickinson, 1989]. The Millstone Hill electron temperature73

(Te) shows a warming trend [Zhang et al., 2011], the Millstone Hill electron density (Ne)74

shows an increasing trend in the E-low F region and a decreasing trend above the F275

peak, with minor changes around the F2 peak, all of which agree with speculation based76

on long-term cooling in the upper atmosphere.77

Donaldson et al. [2010] used St. Santin ISR data to examine Ti trends during a two-78

solar cycle period (1966-1987), and a significant cooling trend was revealed in the topside79

ionosphere. They also indicated the local time dependency of the trend, being larger80

during the day than at night. It should be noted that the St. Santin data set covered only81

up to 1987 when the global warming signals in the ground/low atmospheric temperature82

just emerged. The so-called trend “breakpoint” in the early 1980s was noticed from these83

radar and other observations [Danilov, 2008; Walsh and Oliver, 2011; Zhang et al., 2011]84

and its connection to a plausible O3 influence [Akmaev et al., 2006] was initially speculated85

by Walsh and Oliver [2011] but then disputed by Laštovička [2012].86

This paper addresses variability in the Ti trend as measured by the Millstone Hill87

radar, and discusses plausible causes for the observed variability. In addition to the height88

dependency of the trend, we will resolve the diurnal variation of the trend, and determine89

the diurnal average trend based upon data from different local times of the day. We will90

also examine the seasonal, solar activity and magnetic activity dependency of the diurnal91

D R A F T March 30, 2013, 10:29pm D R A F T



X - 6 ZHANG AND HOLT: UPPER ATMOSPHERIC COOLING

average trend. This work updates what has been shown in Zhang et al. [2011] for the92

noon-time only result. These new results are particularly important when one attempts93

to make direct quantitative comparisons between ISR observations and the global means94

from model and satellite observations [Cnossen, 2012; Akmaev, 2012]; these global means95

were calculated typically using data with different local times. As it turns out, some of96

the quantitive discrepancies may be ascribed to variability in the temperature trend, in97

addition to other factors.98

2. Data and Method

Detailed description on the long-term observational dataset from the Millstone Hill ISR,99

as well as trend-detecting method were given in Zhang et al. [2011]; here we highlight only100

some significant aspects, in particular, those different from the previous work.101

While the previous work by Zhang et al. [2011] focused on noontime data only, the102

current work deals with data from different local times. Typically, nighttime measure-103

ments are fewer than during the daytime, especially in the E region where the volume104

of nighttime observations suited for detecting subtle long-term trends is insufficient. We105

therefore opt to the F-region observation (i.e., 200-500 km). As in the previous work, we106

concentrate on the zenith antenna observations of the radar from the year 1968 through107

the end of the year 2006. More recent data have not been included in the analysis to108

avoid complication caused by the recent extended solar minimum [Emmert et al., 2010].109

Data distribution statistics for Ti measurements within 200-550 km is shown in Fig-110

ure 1. These are the measurements that will enter into the next step of monthly median Figure 1111

calculation after binning in height and local time, with obvious bad-data and outliers112

removed. The top panel (a) shows counts of observational points in log10 units as a func-113
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tion of year and UT. The mid-panel (b) shows the data counts in log10 as a function114

of year and month. On average, for any given local time, month, year, and height bin,115

there are 30-40 qualified data points that enter into the statistics, or for any given local116

time and year (regardless height and month) 3,500 data points (panel a), for any given117

month and year (regardless height and local time) 4,600 data points (panel b), and for118

any given local time and month (regardless height and year) 13,000 data points (panel c).119

There were relatively more data points in the later years (since 1990s) than in the earlier120

years; in the later years, there were more data during the day than at night. The three121

months, March, September, and October, have many more data points, and this was due122

to the three month-long campaigns during October 2002, September 2005 and March 2006123

[Zhang et al., 2005a; Zhang and Holt, 2008]. Therefore calculating the monthly median124

is an important procedure to effectively avoid the oversampling issue.125

The data are first binned into 24 local time subsets, each corresponding to observations126

within 1 hour local time. This will allow us to derive the diurnal variation. The subsequent127

procedure is the same as described in Holt and Zhang [2008] and Zhang et al. [2011]: the128

data in a given local time subset is further binned according to height, with a 50 km bin129

size. For a given height and local time bin, a monthly median is found if the number130

of data points is greater than 6. Taking monthly median values allows us to eliminate131

outliers, over-sampling issues for some of the months, and short-term (hours or days)132

auto-correlation. This binning and averaging process results in the Ti dataset shown in133

Figure 2, where each point corresponds to a monthly median for a given local time bin Figure 2134

and altitude bin. The associated F107 and Ap indices are also included. Solar cycle135
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and seasonal variations in Ti can be easily seen. Data with F107 > 300 or Ap > 80 are136

eliminated to minimize effects from extreme solar-geophysical conditions.137

The long-term trend is then determined for each local time-height bin based on these138

monthly means through least-squares fitting to a model including terms of background139

constant, solar flux, magnetic activity and the long-term trend. This model takes the140

following form:141

Ti = Tb + t(y − ȳ)

+ f1(F107 − F107) + f2(F107 − F107)2

+ a(Ap− Ap) (1)

where y is the floating-point year containing day number of the year information in the142

floating-point, ȳ is the mean floating-point year, F107 is the daily solar 10.7 cm flux, F107143

is the mean F107 determined over the entire time span, Ap is the daily Ap index, and144

Ap is the mean Ap value determined over the entire time span. The background constant145

term Tb, long-term trend t, and F107 and Ap term coefficients f1, f2 and a are obtained146

through least square fitting for each local time-height bin. Currently the model does not147

include cross terms but gives simple and straightforward dependencies. Results shown148

in the later sections, in particular variabilities with F107 and year, may imply effects of149

these cross terms which we may pursue in the future.150

The monthly data may be decomposed into various components of variation as shown in151

Figure 3. The decomposed data are residuals, for instance, the trend residuals (left panel) Figure 3152

are calculated by subtracting regression values with all terms except for the trend one153

(i.e., background, solar activity and magnetic activity terms from the monthly means) for154

a given height bin and each of the 24 hourly bins. These trend residuals are the primary155
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data we will be examining in the following sections. The diurnal, seasonal, yearly, and156

long-term variations are indicted by the gray dots. In this panel, the red line is the linear157

trend determined based on these data points. The yearly averaging over all hours of the158

day and all seasons of the year is also performed in order to characterize year-by-year159

variations; these results are indicted by the blue dots. The F107 residuals (middle panel),160

however, are calculated by subtracting regression values with all terms except for the F107161

terms. These data from each hour of the day, each season and each year are given by the162

gray dots. A linear fit to them is shown by the red line, while a parabolic fit to them is also163

given by the yellow line. The two fits are essentially the same for F107 < 250 sfu (solar164

flux unit, 10−22Wm−2Hz−1, hereafter we drop “sfu” to treat F107 as a dimensionless165

index). This plot shows the overall good linearity of the Ti-F107 dependency for F107 <166

250. This is somewhat different from the midday only situation where a parabolic function167

fits data better due to the saturated response in Ti for high F107 [Zhang et al., 2011].168

Similarly, the Ap residuals (right panel) are calculated by subtracting regression values169

with all terms except for the Ap one for a given height bin and each of the 24 hourly170

bins. The positive correlation between Ti and Ap is a very significant feature, and as a171

first order approximation, they exhibit primarily a linear relationship which can be seen172

by the red line.173

3. Result and discussion

We now present results for the Ti trend residuals, derived after removing solar and174

magnetic activity influences as described in the last section. The overall feature can been175

seen on the left panels in Figure 3 and a number of turning points may be summarized176

in the chronological order as the follows: (1) A positive temperature spike near the year177
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1976, being more significant for > 350 km. (2) A clear drop in the year 1982, being more178

prominent at low altitudes. (3) Another drop centering the year 1993. (4) A fairly large179

drop around the year 2004. We do not fully understand these spikes and drops, which180

are residuals after subtracting solar cycle and magnetic activity influences. However, it181

seems that some of these drops (in 1982 and 1993) in Ti are possibly correlated to volcano182

activities. This will be further addressed in Section 4.2.183

In the following subsections, we will describe trend variability with height, local time,184

season, solar activity and magnetic activity. These characteristic variations are based on185

trend residuals, with background constant, solar and magnetic activity terms removed.186

3.1. Diurnal and height variations

The long-term trend in Ti exhibits a distinct day-night difference. Here we define187

daytime hours as 12±4 LT and nighttime hours 00±4 LT. Figure 4 shows the trends Figure 4188

derived with a least square linear fitting using daytime, nighttime and all (24 hourly)189

residual data respectively (the left panel). Standard deviation error bars for the trend190

fitting are given also. Both daytime and nighttime trends show an increasing cooling with191

height, however, the cooling during the day is stronger and overwhelming throughout the192

F2 region height. At 225 km and 275 km heights where Ti is considerably close to Tn,193

the daytime cooling is -0.749 ± 0.131 K/year, -1.416 ± 0.144 K/year, respectively. The194

nighttime trends, however, are cooling above 350 km and warming below 350 km, with a195

maximum apparent warming of +1.624 ± 0.191 K/year at 275 km. The apparent warming196

at fixed heights does not necessarily mean a true warming in the upper atmosphere; a197

downward shift in the pressure level that is initiated with a large cooling at low altitudes198

can cause an apparent warming, because of subsidence of the warmer air with a substantial199
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height gradient in temperature as is the case for the low F region [Akmaev and Fomichev,200

1998; Donaldson et al., 2010; Zhang et al., 2011]. This apparent warming is observed at201

very low altitudes during the day (see also Zhang et al. [2011]), and at higher altitudes202

at night. The large cooling in the underlying atmosphere needed to cause this apparent203

warming includes, among other possibilities, the CO2 long-term cooling with additional204

contributions from O3 cooling [Akmaev, 2012]. However, the observed apparent warming205

appears sometimes (at night) around the F2 peak height, well above the E region or the206

E-F1 region heights indicated by these CO2 and O3 based modelings.207

It is interesting to note that the weak cooling trend at night comes along with the208

absence of solar irradiation. During the day, the cooling caused neutral density decrease209

can lead to less absorption of the solar EUV energy, even though the optical depth is210

increased. Based on the reduced energy absorption, the thermal balance may lead to211

a lower thermospheric temperature. During the night, however, this extra reduction in212

energy absorption from the solar EUV irradiation does not take place, and therefore a213

weak cooling trend may be expected. Further more, the height gradient in the neutral214

temperature depends very much on thermospheric temperature and on absorption of solar215

heating at low altitudes where neutral densities are high, and therefore subsidence of the216

warmer air may be more significant at night with the absence of solar heating and cause217

stronger apparent warming.218

The variation of the trend between the daytime and the nighttime is gradual as shown219

in Figure 5. Below 350 km, the sharp day-night difference with a characteristic apparent Figure 5220

warming at night starts to emerge between 0500-0800 LT in the morning, being earlier221

at higher altitudes, and between 1800-2000LT in the afternoon, being later at higher222
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altitudes. The timing of the day-night transition in the cooling trend intensity is compat-223

ible with the speculation based on the day-night transition of solar irradiation influence224

mentioned above.225

As a result of day-night difference in the cooling trend, the diurnal average cooling is226

lower than the daytime one and higher than the nighttime one. This average cooling227

is at a rate of -0.044 ± 0.101 K/year for 225 km, -0.159 ± 0.101 K/year for 275 km,228

-0.857 ± 0.100 K/year for 325 km. In other words, the Millstone Hill ion temperature229

reduction over the 39 year period from 1968-2006 is -1.73K at 225 km, -6.21K at 275230

km, and -33.4K for 325 km. These values are much smaller than, or nearly half of, those231

derived for noontime only data reported in Zhang et al. [2011]. Akmaev [2012] estimates232

a 4-6K/decade neutral temperature decrease between 200-400 km based on the observed233

neutral density trend; for comparison, our Ti average over 225 km, 275 km and 325 km,234

which are altitudes of Ti∼ Tn, is -0.3533 K/year or -3.5K/decade.235

At higher altitude (>350km), where Ti>Tn, the diurnal average trend is -15.5K/decade236

at 375 km and -28.0K/decade at 425 km. In comparison, Holt and Zhang [2008] gave a -237

47K/decade trend for midday at 375 km (in years 1978-2007); the apparent deviation from238

the trends in the current study arises largely from the characteristic diurnal variation in the239

trends. Ti trends for these heights, however, may be different from Tn trends. In fact, Ti is240

biased typically by ∼70 K from Tn at midday in spring for median solar activity at 350 km.241

This bias is determined by neutral density, electron (ion) density and electron temperature,242

because the F region ions are primarily heated by electrons through Coulomb collisions,243

and cooled by elastic collisions with the neutrals, as indicated in a very simplified energy244

balance equation for the ions (O+) [Bauer et al, 1970], aNeNi(Te − Ti) = bNiNO(Ti − Tn)245
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where a and b are collision frequency related terms, Ni ion (O+) density and NO oxygen246

density. The Ti and Tn separation depends very much on neutral density for the same247

amount of electron heating: the less the NO density (as a result of long-term cooling, for248

instance), the larger the Ti and Tn separation inclines to be. On the other hand, the249

less the electron density, the less energy the ions can gain and the greater the ion and250

electron temperature separation is, as demonstrated in Zhang et al. [2004]. The long-251

term reduction in the topside ionospheric electron density, associated with the long-term252

cooling (plasma/neutral scale height reduction), was shown in Zhang et al. [2011]; this253

electron density reduction may lead to less energy transfer to the ions from electrons.254

Therefore the long-term decrease in Ti is a combined result of increased cooling of the255

ions by the neutrals and decreased energy transfer from electrons to the ions and neutrals.256

The latter effect is less important at low altitudes due to the dominance of close thermal257

coupling between the neutrals, ions and electrons. Detailed quantitative calculations will258

help understand the trend difference between Ti and Tn, but a relevant consequence of259

the same long-term electron density reduction at the topside has been seen as the Te260

enhancement. This was on the order of +20K/decade as evidenced in Zhang et al. [2011].261

3.2. Seasonal variation

Seasonal variation can be obtained by sorting data with different local times and years262

according to month (or day number of the year). Figure 6 gives seasonal variation of Figure 6263

the trends at 4 altitudes and the corresponding median Ti. The seasonal bin size is264

3 months. Ti exhibits clear and simple annual variations with higher temperatures in265

summer between May and July, and lower temperatures in winter. The trend, however,266

is less variable over the year, especially, at lower altitudes than at higher altitudes. At267
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high altitudes, the cooling is slightly stronger in April, and weaker in winter and summer268

months. Only at above 375 km can semiannual variations be seen with less cooling in269

winter and summer month, and more cooling in equinox, but reasons for more cooling270

in equinox (especially in April) remain unknown. Overall, seasonal variations in the Ti271

trend are negligible and this conclusion is similar to what was noted in the noontime data272

in Zhang et al. [2011]. These results of a negligible seasonal dependency are in agreement273

with those from the neutral density trends given by satellite measurements [Emmert et274

al., 2004].275

3.3. Solar activity dependency

The solar activity dependency of the long-term trend in the upper atmosphere has been276

recognized as a profound feature with cooling and the related neutral density decrease be-277

ing stronger at low solar activity than at high solar activity [Emmert et al., 2008; Zhang278

et al., 2011]. We confirm this feature based on our 24-hour dataset. Figure 7 provides Figure 7279

profiles of trends derived from the trend residuals with F107<130 (low solar activity) and280

with 130 <F107<180 (high solar activity), respectively. The cooling trend at low solar281

activity is enhanced by more than 2K/year from that at high solar activity, consistently282

throughout the 200-550km height range. An apparent warming appears strongly in the283

whole-day average trend at high solar activity. This is primarily caused by the enhanced284

apparent warming at night. Considering daytime only data (12±4LT; solid lines in the285

figure), the apparent warming disappears and the trend is very close to zero at low alti-286

tudes. This time dependent difference between solar activities is illustrated in Figure 8 Figure 8287

where the Ti trends as a function of height and local time are compared for the two levels288

of solar activities. The apparent warming exists at night for high solar activity.289
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So far our analysis has classified data into two levels of solar activity. Now to examine290

closely the solar activity dependency in more detail, we group trend residual data into fine291

F107 bins based on availability of observations shown in the F107 histogram in Figure 9 Figure 9292

(upper panel). It is interesting to note that this is not a normal distribution where most293

of available F107 data is close to its median value. Instead, observations for low solar294

activity were confined to a small range of F107, in particular, between 70 – 90 where the295

number of observations is very high. On the other hand, observations at high solar activity296

show a very long tail from 135 – 240 . The fine F107 bins as illustrated in the bottom of297

the top panel are designed to be roughly equal in the number of data points, with their298

central F107 values meaningfully distributed so that these bins are distributed narrower299

for low solar activity and wider for high solar activity. The variation of the trends as a300

function of F107 shows little variability with height. They decrease (more cooling) with301

increasing F107 till F107=90–100 is reached, then they increase rapidly (weak cooling)302

with F107 further increasing, and the least change (close to a 0 trend) is observed at ∼130303

. Within 200 > F107 > 125, the trends stay roughly constant, being less cooling.304

Because of the apparent warming that occurs at low altitudes during the nighttime,305

more strongly toward high solar activity, as noted earlier, the daytime and the whole-day306

average trends start to behave somewhat differently for F107 beyond 125. In particular,307

when F107 runs from 180 to 250, the whole day trend stays fairly stable while the daytime308

cooling enhances toward higher solar activity. Due to the number of data points, the309

uncertainty for the estimated trend at F107=250 is large. In summary, this analysis310

shows an expected feature of more cooling at low solar activity than at high solar activity,311
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however, a deep cooling around 90-125 of F107 is unusual and contributes significantly to312

the overall strong cooling at low solar activity.313

The CO2 infrared emission at 15 µm is the dominant cooling mechanism of the ther-314

mosphere above 100km among the three key ones, the other two being NO emission at315

5.3 µm and the fine structure emission line of oxygen at 63 µm. Two important aspects316

of the NO cooling should be noted [Qian et al., 2011]. (1) NO radiative cooling tends to317

mitigate the CO2 cooling effect: the enhanced CO2 cooling rate (due to a long-term CO2318

concentration enhancement in the underlying atmosphere) at ∼110 km is accompanied by319

the reduced NO cooling rate at ∼ 150-200 km. This is because the reduction in neutral320

densities (caused by the enhanced CO2 concentration), including NO and O, can cause321

the NO cooling rate decrease. (2) The importance of NO cooling, relative to that of CO2322

cooling, in governing the thermospheric temperature structure is not ignorable at solar323

maximum, because of the substantial increase in the NO cooling rate [Marsh et al, 2004].324

NO density is high at solar maximum and low at solar minimum . The excited nitrogen,325

which reacts with molecular oxygen to produce NO, comes primarily from energetic elec-326

trons impact and NO+ dissociation recombination. They both increase with increasing327

solar activity. As a result, at solar minimum, the CO2 cooling is relatively more important328

than the NO cooling.329

These results shown in Figures 7 and 8 are based on trend residuals, which are de-330

termined by subtracting from data all dependencies except for the long-term trend, as331

indicated in Equation (1). In particular, the solar activity dependency is expressed as the332

two F107 terms. The question is then whether the NO cooling effect has been effectively333

removed using the F107 terms in this equation. If the answer is yes, our residual trend334
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data should not be subject to the substantial solar activity variability caused by the NO335

effect. The enhanced solar activity can cause enhanced NO cooling, implying a potential336

negative correlation between solar activity and temperature, whereas both neutral and ion337

temperatures can also increase with increasing solar activity to respond to the enhanced338

solar EUV flux, implying a positive correlation. These two competing processes work to339

cancel effects from the other to some degree. But overall, as indicated in Figure 3, there340

appears a strong positive correlation. Therefore these terms are considered as the first341

order effect, and the dependency of the trend residuals on F107 shown here represents a342

secondary effect, perhaps involving contributions from multiple competing factors.343

The nonlinearity, shown as the deepest cooling for F107 between 90-125 and weak344

cooling for F107<90, may be also due to the failure of the F107 index to be a good345

solar EUV flux proxy at extremely low solar activity. For instance, the F107 index can346

overestimate the solar EUV effect on the thermospheric density, as was the case for the347

recent extended solar minimum [Emmert et al., 2010; Solomon et al., 2010, 2011], or the348

very low F107 index gives Ti higher than it should be, and therefore the corresponding349

residual trend will be lower, or more cooling, which seems to be opposite to our results350

here where we see less cooling toward the low end of F107. Detailed knowledge on the351

solar EUV and F107 index within a whole spectrum of F107 range is desired to clarify352

the observed nonlinearity in the temperature trends.353

Projecting this non-monotonic trends-F107 relation into the trends-year relation, we354

may find decadal fluctuations about the trend line (Figure 3). These fluctuations differ355

from solar cycle variation and may possibly suggest influences by additional factors.356

D R A F T March 30, 2013, 10:29pm D R A F T



X - 18 ZHANG AND HOLT: UPPER ATMOSPHERIC COOLING

3.4. Magnetic activity dependency

The magnetic activity control on the upper atmospheric thermal status is complicated,357

however, since we are primarily focusing on less stormy conditions with Ap ≤ 80, a linear358

relationship between Ti and Ap may be assumed as in the MSIS models [Hedin, 1987],359

and can be seen in Figure 3. The trend residuals for Ap<30 and for Ap=[20 80] are ana-360

lyzed to derive long-term trends for very quiet and moderate magnetic activity conditions361

(Figure 10). We can see that the cooling is more significant consistently throughout all Figure 10362

heights, by more than approximately 1-2 K/year, for higher magnetic activity than for363

lower magnetic activity. Proceeding as we did with F107 (as in Figure 9), we obtain the364

magnetic activity dependency based on 4 groups of Ap indices (Figure 11). A somewhat Figure 11365

monotonic relationship between Ap and the trends can be identified: we can see that366

cooling is gradually enhanced toward high magnetic activity.367

A long-term increase in magnetic activity over the 20th century was indicated in some368

previous studies (e.g. Clilverd et al. [1998]; Mursula and Martini [2006]). Can such an369

increase, if true indeed, cause a long-term cooling based on our observed Ap increasing370

and Ti cooling correlation for the 1968-2006 time span? It is not immediately clear371

that the thermosphere-ionosphere behavior and magnetic activity during 1968-2006 are372

representative of those over the entire last century. There are additional problems: firstly,373

it is hard to imagine that the upper atmosphere as a whole can be cooled with more374

incoming solar energy inputs in the form of the enhanced magnetic activity; the observed375

cooling trend may not be explained in term of secular magnetic activity changes unless376

we can assume that appropriate energy transfer takes place between high and and low377

latitudes or between high and low altitudes. Secondly, the magnitude of increase in378
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magnetic activity over the time frame (1968-2006) of our observations is rather weak.379

The Ap index, with an average of 14.5, drops at a rate of -0.018 /year, or by less than380

1 Ap unit over the entire time span. This is simply too tiny. As shown in Figure 11,381

for Ap≤30 where the trend dependency is most strong, the rate of change in the trend382

is approximately -0.06 K/year per Ap unit for 325 km. Thus this analysis suggests that383

secular change in the magnetic activity does not seem to be strong enough to account for384

the observed cooling trend in the upper atmosphere.385

4. Further discussion

These characteristic variabilities in the trend demonstrated the complexity of the upper386

atmosphere system in modifying forcing from the atmospheric long-term change. One387

further plausible cause among those suggested drivers possibly responsible for the trend388

is a secular change of the Earth’s magnetic field. This section will examine this effect.389

We will also explore a possible connection between volcano activities and the ionospheric390

temperature drops.391

4.1. Secular changes in the magnetic field

At 300 km altitude over Millstone Hill, within the last 40 years from 1965-2005, the392

corrected geomagnetic (CGM) latitude decreased by 2.9◦ from 54.9 to 52.0◦N, the Apex393

latitude decreased by 2.8◦, the dipolar latitude decreased by 5.4◦, and the the magnetic394

inclination angle decreased by 3.6◦. These calculations are primarily based upon the395

IGRF2010 model [IAGA Working Group V-MOD, 2010]. They indicate that Millstone396

Hill is shifting away from its sub-auroral type location to be more mid-latitude in a397

very tangible way. This means that Millstone Hill is becoming less directly affected by398
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the solar and magnetosphere events where precipitating energetic particles and enhanced399

electric fields can bring about heating on the neutrals and accelerate the ions, among other400

consequences. Much of the observed Ti variability at Millstone Hill has its origin in small401

fluctuations of magnetic activity, as reported in Zhang and Holt [2008] for a variability402

study based on a month-long campaign of ISR observations. Therefore, the secular change403

in the magnetic field is a potential factor for the observed long-term cooling in Ti over404

Millstone Hill.405

To quantify this effect, we select results specifically for Millstone Hill from a global406

simulation performed by Cnossen and Richmond [2013]. In that simulation, the Coupled407

Magnetosphere-Ionosphere-Thermosphere (CMIT) model [Wang et al., 2004; Wiltberger408

et al., 2004; Wang et al., 2008] was employed. Simulations with the magnetic field of 1958409

and 2008 as specified by the IGRF model [IAGA Working Group V-MOD, 2010], were410

carried out to investigate upper atmospheric changes associated with the use of different411

magnetic fields. The two runs were for a period of 15 days, from 0 UT on 21 March to 0412

UT on 5 April, and used the solar wind conditions for that time interval in 2008. The solar413

activity level was also set to the level in 2008. Therefore these runs allow for some day-414

to-day variability near spring equinox at solar minimum. The day-to-day variability is of415

course very large and the signals from magnetic field changes can be better viewed based416

on the means obtained over each of the two 15-day periods. These means are typically417

with an standard deviation uncertainty of 30K. The difference of the calculated mean Ti418

between 2008 and 1958 magnetic field scenarios is shown as a function of local time and419

height in Figure 12. The blue color in the figure indicates a Ti decrease throughout most Figure 12420

of the local times and heights, indeed an expected cooling trend. The cooling grows as421
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a function of height, stronger during the day, somewhat similar to observations shown422

in Figure 5. The magnitude of cooling is ∼-2K at around 250 km (and up to 10K at423

400 km). This change over 50 years can be translated into approximately -0.4K/decade,424

which accounts for ∼8% of the observed ∼ -4K/decade cooling over 1968-2006. Due to425

the large day-to-day variability in simulation, the amount of cooling given here remains426

to be a very coarse estimate.427

4.2. Connections to volcano activity?

During the time period of 1968-2006 of interest to the paper, there were 4 major volcano428

eruptions with a vocalic explosivity index (VEI) up to 5. VEI provides a measure of the429

volcanic eruption magnitude [Newhall and Self, 1982]. This logarithm scale index is open-430

ended with the largest volcanic eruptions in history given magnitude 8. A value of 0 is431

given for non-explosive eruptions. The volcanic impact on the atmosphere is measured432

by the so-called volcanic dust veil index (DVI). DVI is a numerical index that quantifies433

the impact of a particular volcanic eruption’s release of dust and aerosols over the years434

following the event, especially the impact on the Earth’s energy balance [Lamb, 1985].435

This index is based on a review of the observational, empirical, and theoretical studies of436

the possible impact on climate of volcanic dust veils. The methods used to calculate the437

DVI have been intercalibrated to give a DVI of 1000 for the eruption of Krakatoa in 1883.438

The El Chichon volcano (17.36◦N, 266.77◦E) erupted on March 28, 1982 with VEI=5.439

The weighted DVI was 366 [Mann et al, 2010] for the year 1982, the largest in the last440

150 years before this event. The Ti drop in 1982 mentioned at the beginning of Section441

3 (Figure 3, left panel) happened to be around the same time frame of the El Chichon442

volcano eruption. The drop reached 70-90K at 250-350 km. We notice that Ti at St443
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Santin (44.6◦N, 2.2◦E) experienced the same drop in 1982 for 50K at 350km [Donaldson444

et al., 2010].445

The enormous eruption of the Mountain Pinatubo volcano (15.13◦N, 120.35◦E) took446

place on April 2, 1991 with a VEI=6. The weighted DVI was 500 for 1991, 375 for447

1992 and 250 for 1993. These large VEIs in years 1991-1993 may be also contributed448

by another major volcano eruption at Mountain Hudson (45.90◦S, 287.04◦E) in August-449

October, 1991 with VEI=5, immediately following the Pinatubo eruption earlier in the450

year. These effects, with their primary origins in the Asia and South America sectors,451

were not very noticeable in the Millstone Hill Ti data till 1992, and maximized in the452

Ti data in 1993 when the Ti decreased by 50-60 K at 250-350 km. The time delay (by453

∼2 years) in the ionospheric temperature response to the dramatically enhanced weighted454

VEI is very similar to the impact function determined for the LIDAR observation of the455

mesospheric temperature data for the Pinatubo volcano events [She et al, 1998].456

The forth major volcano eruption during this 1968-2006 period was at St. Helens457

(46.20◦N, 237.82◦E) starting in March 1980 with a VEI=5. The weighted DVI was merely458

51 for 1980, which is too low to produce any important influence in the atmosphere. No459

clear anomalous Ti behavior was found for this year. Even if a 2-year time delay in the460

impact function is real, the Ti drop in 1982 could hardly be contributed by this small461

weight DVI event.462

The connection between the atmospheric temperature and volcano eruptive activities463

has been explored previously. In general, the volcanic aerosol causes a decrease in the464

mean global temperature because the droplets both absorb solar radiation and scatter465

it back into space. This temperature decrease was observed during the El Chichon and466
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Pinatubo eruptions (see, e.g., Rampino and Self [1984]). But for high altitudes of the467

atmosphere, a stratospheric temperature increase on a global scale was found to follow the468

Mountain Pinatubo volcano eruption [Labitzke and McCormick, 1992], and a mesopause469

temperature warming at a midlatitude site was also found following the same eruption [She470

et al, 1998]. The increased absorption due to mass loading of sulfuric acid aerosol into the471

stratosphere can possibly cause an immediate and regional temperature increase, however,472

the complex atmospheric dynamics can lead to global consequences in a delayed time.473

Interestingly, observations of the OH rotational temperature (a proxy for atmospheric474

kinetic temperatures at 87 km), made over the 18 year period between 1980-1998 at an475

European midlatitude site, showed clear coolings with minima around 1981 and 1992-1993476

in the annual mean temperatures [Bittner et al., 2002]. The timing and cooling are very477

much similar to those for Ti presented here.478

The ISR observations at Millstone Hill presented here and at St. Santin shown by479

Donaldson et al. [2010] provide multiple cases showing sizable Ti drops on the order of 50-480

100K in the F2 region heights, corresponding to those major volcano eruptions. The causal481

relationship between the upper thermospheric temperature drops and volcano eruptions,482

however, remains speculative, but their effect on low atmosphere is more definite as shown483

in literature and thus, if it shall finally arrive at the thermobase, the thermosphere can484

be disturbed. Nevertheless, a number of open questions concerning how low atmospheric485

responses propagated upward to impact the upper atmospheric thermal budget exist and486

need to be answered in more dedicated future studies.487
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5. Summary

This paper provides a comprehensive view of the long-term trend in the ionospheric488

ion temperature over the 200-550 km height range, as measured by the incoherent scatter489

radar at Millstone Hill over an extraordinary long time span between 1968-2006. This490

study extends a prior work [Zhang et al., 2011] which focused on midday only. These491

new results are highly necessary as inter-comparisons among ISR Ti, satellite density and492

modeling are emerging, and the latter two results have been typically averages throughout493

different local times. This study addresses the trend variability with local time, season,494

solar activity, and magnetic activity, in addition to discussion on potential impacts of the495

secular change in Earth’s magnetic field locally on Millstone Hill. Results from this study496

can be summarized as the following:497

(1) A gross average of the Ti trend in the heights where Ti∼Tn (200-350 km), regardless498

of solar activity, season, local time and magnetic activity (low to moderate levels), is ∼499

-4K/decade over 1968-2006, close to the Tn estimate based on the satellite neutral density500

data. In comparison, for the same 39-year time span and altitude range but at local noon,501

the cooling trend was found to be -11.6K/decade by Zhang et al. [2011]. In that same502

study, a cooling was registered as -21K/decade for the same conditions (local noon in 1968-503

2006) except for a higher altitude of 375 km. This differs from a cooling of -47K/decade504

determined for the same altitude and local time but over a shorter and later time span505

in 1978-2007 in Holt and Zhang [2008], indicating much stronger cooling in the later506

years than in the earlier years over the entire 1968-2007 period. There exists considerable507

height dependency and day-night, solar minimum-solar maximum, and magnetic activity508

variations in the trend, and these have to be carefully addressed for inter-comparisons.509

D R A F T March 30, 2013, 10:29pm D R A F T



ZHANG AND HOLT: UPPER ATMOSPHERIC COOLING X - 25

In particular, the stronger cooling trend at high altitudes may be caused in part by less510

energy transfer from electrons due to the long-term electron density reduction at high511

altitudes.512

(2) The cooling trend is strong during the day, and very weak during the night with a513

large apparent warming at low altitudes. The solar cycle dependency is prominent for both514

daytime and nighttime, with more cooling at solar minimum and less cooling or apparent515

warming at solar maximum. The strongest cooling below 375 km occurs not at the lowest516

level of the F107 flux, but around 90-120. The substantial day-night and solar maximum-517

solar minimum differences can lead to the gross average trend significantly reduced from518

the strong cooling under conditions of midday for solar minimum. No consistent and519

substantial seasonal dependency across different heights was found.520

(3) There appears more cooling toward high magnetic activity, but this dependency is521

too weak to ascribe the observed upper atmospheric cooling to the long-term magnetic522

activity increase during the time period being examined.523

(4) We speculate that a fraction of the observed cooling trend over Millstone Hill may be524

contributed by gradually shifting away from the sub-auroral region, as part of the secular525

change in Earth’s magnetic fields. This effect can be seen in a theoretical simulation.526

(5) In the 39-year long series of Ti data record, two anomalous Ti drops were found527

in 1982 and 1993 respectively. We speculate on their connection to volcano eruptions in528

1982 (El Chichon) and 1991 (Pinatubo), a topic worth further investigation.529
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Figure 1. Data distribution as a function of year and universal time (the top panel,

a), as a function of year and month (the middle panel, b), and as a function of universal

time and month (the bottom panel, c).
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Figure 2. Long-term observational Ti data obtained with data binning in local time and

height and averaging over a month (top panel), and corresponding F107 (middle panel)

and Ap index (bottom panel). The solid lines in the top and middle panels and the black

bars in the bottom panels are yearly averages.
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Figure 3. Ti residuals calculated by subtracting geophysical terms from the observed

data for different altitude bins as a function of time of the day, month and year. The

trend residuals (a) are a result of subtracting all terms except for the trend one, the F107

residuals (b) are a result of subtracting all terms except for the F107 terms, and the Ap

residuals are a result of subtracting all terms except for the Ap one. See text for more

details. Red lines in each panel are a linear fit to the gray dots which are residuals for a

given local time, month and year. The green line (only in panel b) is a fit to a parabolic

function. Solid dots (only in panel a) are yearly averages calculated from different local

times and months.
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Figure 4. Height profiles of the Ti trend for daytime (12±4 LT, circles), nighttime

(0±4LT, squares), and over the entire day (0-24LT, solid dots). Error bars are χ2-scaled

standard deviations for the calculated linear trends. The left panel shows trends in the

K/year unit and the right panel shows trends in the %/decade unit, defined as the Ti

trend per decade divided by the average Ti.
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Figure 5. Diurnal vs height variations of the Ti trend. Contours are marked with trend

values at a 0.5 unit interval between -4 and 2 K/year. Overlapped is the color shaded

contours.
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Figure 6. Seasonal variation of the Ti trend at various heights in the F2 region

(bottom), and the corresponding median Ti (topside). Both Ti trend and median Ti are

calculated within a running 3-month seasonal bin size from data with different local times

and years. Error bars are χ2-scaled standard deviations for the calculated linear trends.
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Figure 7. Height profiles of the Ti trends derived from trend residuals for two solar

activity levels: F107<130 (low solar activity), and 130 <F107<180 (high solar activity).

The solid lines are results for daytime (12±4 LT) data only while the dashed lines are daily

averages for all data regardless local time. Error bars are χ2-scaled standard deviations

for the calculated linear trends.
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Figure 8. Long-term trends in Ti as a function of height and local time for low solar

activity (F107<130; upper panel) and for high solar activity (130 <F107<180; bottom

panel).
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Figure 9. Dependency of the Ti trend on F107. F107 histogram is shown with a bin

width of 5 sfu in the top panel, the next two panels show the trends as a function of

F107 for daytime (12±4LT; middle panel) and for the whole day (bottom panel). These

trend values are determined for trend residuals within particular F107 ranges, which are

indicated by the horizontal bars at the bottom of the top panel. Error bars shown with

the trend are χ2-scaled standard deviations for the linear trend fitting.
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Figure 10. Height profiles of Ti trends derived from trend residuals for two magnetic

activity levels: Ap <30 (low activity), and 20<Ap<80 (high activity). Error bars are

χ2-scaled standard deviations for the calculated linear trends.

D R A F T March 30, 2013, 10:29pm D R A F T



ZHANG AND HOLT: UPPER ATMOSPHERIC COOLING X - 43

0 10 20 30 40 50 60
−5

−4

−3

−2

−1

0

Ap index

tr
e
n
d
s
 (

K
/y

e
a
r)

 

 

275km

325km

375km

425km

0 10 20 30 40 50 60

0

1000

2000

3000

4000

5000

6000

Ap index

d
a

ta
 p

o
in

t 
n
u
m

b
e
r

Figure 11. Dependency of the Ti trend on Ap. Ap histogram is shown in the top

panel with a bin width of 1 unit. Trends as a function of Ap for the F region heights are

given in the bottom panel. These trend values are determined for trend residuals within

particular Ap ranges, which are indicated by the horizontal bars at the bottom of the top

panel. Error bars shown with the trend are χ2-scaled standard deviations for the linear

trend fitting.
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Figure 12. A CMIT simulation of Ti changes due to the secular change in magnetic

fields between 1958 and 2008 as specified by the IGRF model. Ti differences are shown

as a function of local time and height. The simulation runs were carried out for 15

days around spring equinox under solar minimum conditions. Mean values over the 15

day period for each run are first calculated before the differences are taken. Blue color

represents a cooling trend.
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