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Abstract— This paper presents a distributed method for
navigating a team of robots in formation in 2D and 3D
environments with static and dynamic obstacles. The robots are
assumed to have a reduced communication and visibility radius
and share information with their neighbors. Via distributed
consensus the robots compute (a) the convex hull of the robot
positions and (b) the largest convex region within free space.
The robots then compute, via sequential convex programming,
the locally optimal parameters for the formation within this
convex neighborhood of the robots. Reconfiguration is allowed,
when required, by considering a set of target formations. The
robots navigate towards the target collision-free formation with
individual local planners that account for their dynamics. The
approach is efficient and scalable with the number of robots
and performs well in simulations with up to sixteen quadrotors.

I. INTRODUCTION

Muti-robot teams can be employed for various tasks, such
as surveillance, inspection, or automated factories. In these
scenarios, robots may be required to navigate in formation,
for example for maintaining a communication network, for
collaboratively handling an object, for surveilling an area or
to improve navigation.

Multi-robot navigation in formation has received extensive
attention in the past, with many works considering obstacle-
free scenarios. In [1] we leveraged efficient optimization
techniques, namely quadratic programming, semi-definite
programming and (non-linear) sequential quadratic program-
ming to devise a centralized method for local navigation in
formation. These techniques provided good computational
efficiency, local guarantees and generality, and were em-
ployed at different stages of the method for local motion
planning in formation among static and dynamic obstacles,
albeit centralized.

In this work we combine the optimization concepts pre-
sented in [1] with distributed consensus and geometric rea-
soning to achieve similar results in a distributed schema,
where robots are no more centrally controlled, but instead
have a limited field of view, and communicate with their
immediate neighbors.
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Given a set of target formation shapes, our method opti-
mizes the parameters (such as position, orientation and size)
of the multi-robot formation in a neighborhood of the robots.
The method guarantees that the team of robots remains
collision-free by rearranging its formation. A simplified
global planner, only waypoints for the formation center are
required, can use this method to navigate the group of robots
from an initial location to a final location. But a human
may also provide the global path for the formation, or a
desired velocity, and the robots will adapt their configuration
automatically.

A. Related works

Extensive work exists for real-time navigation of multiple
robots in formation. These techniques include using a set
of reactive behaviors [2], potential fields [3], navigation
functions [4] and decentralized feedback laws with graph the-
ory [5]. These have been mostly shown in 2D environments
and may require extensive tuning for the particular formation
and environment. In contrast, our method automatically opti-
mizes for the formation parameters natively in a 2D and 3D
dynamic environment. On the down side, our method does
not directly model the agent dynamics in the optimization,
although it includes them in the individual local planners.

Distributed formation control solutions are also abun-
dant in the literature [6]. The restriction of having a cen-
tral planner can be easily lifted using nearest neighbors
information [7]. These type of solutions usually rely on
consensus-type controllers, such as [8], [9], or optimization
methods [10], and assume the environment is obstacle-free.
Compared to them, we exploit consensus algorithms to
obtain all the necessary information to compute the optimal
formation in the presence of obstacles.

Convex optimization frameworks for navigating in forma-
tion include semidefinite programming [11] which considers
only 2D circular obstacles, distributed quadratic optimiza-
tion [12] without global coordination and limited adaptation
of the formation, and second order cone programming [13]
which triangulates the free 2D space to compute the optimal
motion in formation. In contrast, we propose a more general
optimization plus consensus based approach.

Offline centralized non-convex optimizations include a
mixed integer approach [14] and a discretized linear temporal
logic approach [15]. They provide global guarantees but scale
poorly with the number of robots. The second one is further
limited in the definition of the formation. In contrast, we aim
at on-line computation, albeit local, by solving a non-linear
program via sequential convex programming. This technique

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78069523?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


target target

obstacle

target

(a) Independent target formations

target target

obstacle

target

(b) Independent obstacle-free regions

target target

obstacle

target

(c) Our approach

Fig. 1. Example of three approaches for distributed formation planning with obstacles as discussed in Sec. II. (a) Each robot independently computes
a target formation (red/blue). Consensus on the formation’s parameters (green) would lead to a formation in collision with the obstacle. (b) Each robot
computes an obstacle-free region, but their intersection is empty. (c) Our approach, see Sec. II, with target formation, after consensus, in green. Note that,
in this example, the left most obstacle is not within the field of view of the robot in the right (blue region), but seen by the one in the left (red region).

has been employed [16] to compute collision-free trajectories
for multiple UAVs, but without considering formations.

B. Contribution

The main contribution of this paper is a distributed method
for navigation of a team of robots while reconfiguring their
formation to avoid collisions. The method applies to robots
navigating in 2D and 3D workspace among static and moving
obstacles.

As part of our holistic method, we present distributed
consensus methods to compute (a) the convex hull of the
robot’s positions and (b) the intersection of convex regions.
We further rely on convex and non-convex optimization
techniques first introduced in [1].

We provide a formal analysis with convergence guarantees
of the distributed algorithms composing the holistic approach
and simulations with teams of robots.

C. Organization

Sec. II provides a high level overview of the whole ap-
proach presented in the paper. Sec. III describes the notation
and the centralized solution to the problem. Sec. IV describes
the main algorithm and Sec. V discusses experimental re-
sults. Finally, the conclusions of the paper are in Sec. VI.

II. ALGORITHM OVERVIEW

Consider a team of robots, each with a limited field of
view, and a communication topology.

A naive approach could be that each robot computes
a target formation and then all robots perform consensus
on the formation parameters. Unfortunately, this can lead
to a formation in collision with an obstacle, as shown in
Figure 1(a). This problem can be solved if all the robots
compute a new formation in a common obstacle-free region
which is convex.

An approach to compute this common obstacle-free re-
gion could be that each robot computes an obstacle-free
region with respect to its limited field of view and then
the robots collaboratively compute the intersection of all
regions. Nonetheless, this could lead to an empty intersection
as shown in Figure 1(b).

This second problem can be solved by imposing that the
convex obstacle-free region computed by each robot accounts
for the robots’ positions, which is equivalent to it accounting
for the convex hull of the robots’ positions. See Figure 1(c)
for an example.

Following this line of thought, the proposed method con-
sists of the following steps.

1) Distributed computation of target formation:
a) Robots perform distributed consensus to compute the

convex hull of the robots’ positions.
b) Each robot computes the largest convex region in

obstacle-free space, grown from the convex hull of the
robots’ positions and which is directed in the preferred
direction of motion.

c) Robots perform distributed consensus to compute the
intersection of the individual convex regions.

d) Each robot computes the optimal target formation
within the resulting convex volume.

e) Robots are assigned, with a distributed optimization, to
target positions within the target formation.

2) Collision-free motion towards the target formation:
Robots, at a higher update rate, navigate towards their
assigned goals within the target formation. They locally avoid
collisions with their neighbors.

III. PRELIMINARIES

A. Definitions

1) Robots: Consider a team of robots navigating in for-
mation. For each robot i ∈ I = {1, . . . , n} ⊂ N, its position
at time t is denoted by pi(t) ∈ R3. Let G = (I, E) be
the communication graph associated to the team of robots.
Each edge in the graph, (i, j) ∈ E , denotes the possibility
of robots i and j to directly communicate with each other.
The set of neighbors of robot i is denoted by Ni, i.e.,
Ni = {j ∈ V | (i, j) ∈ E}. We assume that G is connected,
i.e., for every pair of robots i, j there exists a path of one
or more edges in E that links robot i to robot j. We denote
by d the diameter of G, which is the longest among all the
shortest paths between any pair of robots. In the following
we consider all robots to have the same shape (cylinders).
But the method is not strictly limited to this case.



2) Motion planning: This work presents an approach for
local navigation. We consider that a desired goal position
for the team of robots is given, and potentially known by
all robots. This can be given by a human operator or a
standard sampling based approach, and is outside the scope
of this work. Denote by g(t) ∈ R3 the goal position for
the centroid of the formation at time t. The distributed local
planner presented in this work computes a target formation
and the required motion of the robots for a given time horizon
τ > 0, which must be longer than the required time to stop.
Denote the current time by to and tf = to + τ .

3) Static obstacles and field of view: For each robot i,
its field of view, typically a sphere of given radius centered
at the robot’s position, is denoted by Bi ⊂ R3. Consider a
set of static obstacles O ⊂ R3 defining the global map, and
Oi = Bi

⋂
O the set of obstacles seen by robot i. Denote

by Ōi the set Oi dilated by half of the robot’s volume, i.e.,
the positions for which the robot of cylindrical shape would
be in collision with any of the obstacles within its visibility
radius.

4) Moving obstacles: Moving obstacles within the field
of view of robot i can be accounted for. Consider j ∈ Ji =
{1, . . . , nDO,i} ⊂ N the list of observed moving obstacles of
shape Dj ⊂ R3. We denote by Dj(t) the volume occupied
by the dynamic obstacle j at time t and D̄j(t) its dilation by
half of robot i’s volume. For predicted future positions we
employ the constant velocity assumption.

5) Position-time workspace: For robot i and current time
to denote the union of static and dynamic obstacles seen by
robot i by

Ôi(to) = Ōi × [0, τ ] ∪
⋃

t∈[0,τ ]
j∈Ji

D̄j(to + t)× t ⊂ R4.

The position-time workspace for the robot is then

W̄i(to) = R3 × [0, τ ] \ Ôi(to) ⊂ R4. (1)

B. Formation definition

We consider a pre-defined set of f ∈ N default formations,
such as square, line or T and known by all robots in
the team. Denote by F i0, 1 ≤ i ≤ f , one such default
formation. Formation F i0 is given by a set of robot positions
{ri0,1, . . . , ri0,n} and a set of vertices {fi0,1, . . . , f

i
0,ni
} relative

to the center of rotation (typically the centroid) of the
formation. The set of vertices represents the convex hull
of the robot’s positions in the formation, thus reducing the
complexity for formations with a large number of robots.
Denote by di0 the minimum distance between any given pair
of robots in the default formation F i0. See Fig. 2 for an
example.

A formation is then defined by an isomorphic transforma-
tion, which includes an expansion s ∈ R+, a translation
t ∈ R3 and a rotation represented by a unit quaternion
q ∈ SO(3), its conjugate denoted by q̄. The vector of
optimization variables is denoted by x = [t, s,q] ∈ R8 and
the vertices and robot positions of the resulting formation

c
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Fig. 2. Example of a square formation with sixteen disk robots and
transformed by x = [t, s, q]. The convex hull is given by vertices fj .

F i(x) are given by

rij = t + s rot(q, ri0,j), ∀j ∈ [1, n],

fij = t + s rot(q, fi0,j), ∀j ∈ [1, ni],
(2)

where the rotation in SO(3) is given by[
0 rot(q, x)

]T
= q×

[
0 x

]T × q̄. (3)

In the exposition of the method we rely on this definition
for the formation, but the method is more general and can be
applied to alternative definitions, such as a team of mobile
manipulators carrying a rigid object. For that description of
the formation, refer to Sec. V of the centralized method [1].

C. Centralized formation planning
The original algorithm for centralized local formation

planning [1] consists of the following steps.
First, compute the largest convex polytope P in free space,

grown from the current robot positions, pi(to) ∈ P , ∀i ∈ I,
and that is directed towards the goal g(tf ).

Second, compute the optimal formation F(tf ) contained
within P and minimizing the distance between the for-
mation’s centroid and the goal g(tf ). The parameters of
the formation are optimized subject to a set of constraints
via a centralized sequential convex optimization. In this
computation the robot’s dynamics are ignored.

Third, in a faster loop, the robots are optimally assigned
to target positions of the formation F(tf ) and move towards
them employing a low level local planner [17] that generates
collision-free inputs that respect the robot’s dynamics.

In the case that no feasible formation exists, the robots
navigate independently towards the goal.

We extend this to distributed navigation in formation.

IV. DISTRIBUTED ALGORITHM

In this section we present the distributed algorithm to
compute the obstacle-free target formation. The algorithm
accounts for the limited visibility and communication ca-
pabilities of all the robots by iterative message exchange
using a consensus-type scheme. To avoid confusions in the
notation, throughout the section we denote discrete-time
communication rounds using the index k and remove the
continuous time dependency of the previous section. We
assume that the final time tf is longer than the amount of
time required for the distributed algorithm to compute the
formation.



A. Convex hull of the robots’ positions
The first step the robots need to address to compute

the target formation is the computation of the convex hull,
C, of their positions. While this is a trivial problem in
centralized scenarios, the same is not true in the current
context of limited communications because each robot only
has access to partial information. To overcome this limitation
we propose a distributed algorithm that allows all the robots
to obtain the convex hull of their positions using only local
interactions. In the algorithm we assume that there is a
function, convhull, that computes the convex hull spanned
by a given set of points and that there are no pose variations
of the robots during its execution. Under these assumptions,
we let each robot handle a local estimation of the convex
hull, Ci, that is initialized containing exclusively the robot’s
position, i.e., Ci(0) = pi.

After that, the robots execute an iterative process where
at each iteration the local estimations are grown using the
convex hull estimations obtained by direct neighbors in the
communication graph. Then, the robots communicate to their
neighbors only the new points that are part of their convex
hull estimation, C̄i(k) = Ci(k)\Ci(k−1). The whole process
is repeated for a number of communication rounds equal
to the diameter of G, d. This method is synthesized in
Algorithm 1.

Algorithm 1 Distributed Convex Hull - Robot i
1: Ci(−1) = ∅, Ci(0) = pi
2: for k = 0 . . . d− 1 do
3: Send C̄i(k) = Ci(k) \ Ci(k − 1) to all j ∈ Ni
4: Receive C̄j(k) from all j ∈ Ni
5: Ci(k + 1) =convhull(Ci(k), C̄j(k))
6: end for

Proposition 1: The execution of Algorithm 1 makes the
local estimation of all the robots converge to the actual con-
vex hull of the whole team in no more than d communication
rounds. That is,

Ci(d) = C, ∀i ∈ I. (4)
Proof: In order to show that (4) holds, we first show

by induction that

Ci(k + 1) = convhull(Ci(k), Cj(k)), (5)

for all i ∈ I, j ∈ Ni and k ≥ 0.
Equation (5) holds for k = 1 because C̄i(0) = Ci(0) =

pi and, therefore, for all i, Ci(1) =convhull(Ci(0), Cj(0)).
Assume now that Eq. (5) is also true up to some other k > 0.
Thus,

Ci(k + 1) = convhull(Ci(k), C̄j(k))

= convhull(convhull(Ci(k − 1), Cj(k − 1)),

Cj(k) \ Cj(k − 1))

= convhull(Ci(k), Cj(k)),

where in the last equality we have accounted that all the
points that are not sent by robot j are already contained in
the convex hull at the previous step of robot i.

Now let Ni(k), k ≥ 0, be the set of robots that are
reachable from robot i after k propagation steps. That is,
for k = 1, Ni(1) = Ni, whereas for k = 2, Ni(k) contains
the neighbors of robot i and the neighbors of its neighbors.
In a second step we show that

Ci(k) = convhull(pi,pj), j ∈ Ni(k), (6)

for all k ≥ 0. Clearly Eq. (6) is true for k = 0 and k = 1.
Assume that it is also true for some other k. Using (5),

Ci(k + 1) = convhull(Ci(k), Cj(k)),

= convhull(pi,pj), j ∈ Ni(k) ∪Nj(k)

= convhull(pi,pj), j ∈ Ni(k + 1).

By induction, since the communication graph is assumed to
be connected, Ni(d) = I and (4) holds.

In the worst case, where the convex hull contains the
positions of all the robots, our algorithm presents a com-
munication cost equal to that of flooding all the positions
to all the robots. Nevertheless, even in such case, there are
practical advantages of using this procedure rather than pure
flooding. Besides the likely savings in communications from
positions that are not relayed because they do not belong
to the convex hull, with our procedure there is no need for
a specific identification of which position corresponds to a
particular robot, making it better suited for pure broadcast
implementations.

Remark 1 (Unknown d): If the diameter, d, is unknown,
the consensus runs until convergence for all robots. Since
only new points are transmitted at each iteration, the con-
vergence of the algorithm can be detected using a timeout
when no new messages are received.

B. Obstacle-free convex region

Denote by g ∈ R3 the goal position for the robot formation
and consider it known by all robots. Recall that, from the
previous step, all robots have knowledge of the convex hull
C of the robots’ positions. With this common information, but
different obstacle map due to the limited field of view, each
robot computes an obstacle-free convex region embedded in
position - time space, denoted Pi ∈ R3 × [0, τ ].

Analogously to the derivations in [1], Pi is given by the
intersection of two convex polytopes, both directed towards
the goal g, the first one containing C and the second one
containing only the centroid of C, denoted by c ∈ R3.
Following the notation therein, the convex polytope is then
given by Pi = Pfo→g|i ∩ Po→g|i = P [g,τ ]

C×0 (W̄i(to)) ∩
P [g,τ ]

c×0 (W̄i(to)) ⊂ W̄i(to).
Pi guarantees that the transition to the new formation, and

the transition, will be obstacle-free (from [C × 0] ⊂ Pfo→g|i
and Pi ⊂ Pfo→g|i) and is likely to make progress in future
iterations (Pi ⊂ Po→g). The convex regions are grown
in the direction towards the goal g following an iterative
optimization [18] as described in [1].

However, due to the local visibility of the robots, some of
these regions may intersect some obstacles that a particular
robot has not seen. Additionally, these regions might not be



equal for all robots, which, if used without further agreement,
would lead to different target formations. Thus, the robots
need to agree upon a common region that is globally free
of obstacles. For that purpose, we next propose a distributed
algorithm that computes the intersection of all the regions,
P =

⋂
i∈I Pi.

As in Algorithm 1, each robot handles a local estimation
of the region of interest. With a slight abuse of notation, we
denote Pi(k) the region of robot i at iteration k. This region
is initialized with the value provided by the local optimizer,
Pi(0) = Pi. At each iteration the regions are shrunk
computing local intersections with those regions received
from neighbors in the communication graph. The algorithm
finishes after d iterations, as shown in Algorithm 2.

Algorithm 2 Distributed Obstacle-Free Region - Robot i
1: Pi(0) = Pi
2: for k = 0 . . . d− 1 do
3: Send Pi(k) to all j ∈ Ni
4: Receive Pj(k) from all j ∈ Ni
5: Pi(k + 1) = Pi(k) ∩ Pj(k)
6: end for

Proposition 2: The execution of Algorithm 2 makes the
regions of all the robots converge to a common region, equal
to the intersection of the initial regions, in no more than d
communication rounds. That is,

Pi(d) = P =
⋂
j∈I
Pj(0), ∀i ∈ I. (7)

Proof: Similarly to the proof of Proposition 1, we let
Ni(k), k ≥ 0, be the set of robots that are reachable from
robot i after k propagation steps. We show by induction that

Pi(k) =
⋂

j∈Ni(k)

Pj , (8)

for all k ≥ 0. Clearly Eq. (8) is true for k = 0 and k = 1.
Assuming that it is also true for some k, using the associative
and distributive properties of the intersection with respect to
the intersection it is straightforward to show that it also holds
for k+1. Therefore, by the connectedness of G, Eq. (7) holds
for k = d.

To compute the intersections, we rely on a representation
of the obstacle-free convex polytope P given by its equiva-
lent set of linear constraints

P = {z ∈ R4 | Az ≤ b, for A ∈ Rnl×4, b ∈ Rnl}, (9)

where nl denotes the number of faces of P . This leads to
messages of size equal to nl × 4.

Compared to Algorithm 1, in this algorithm the robots
need to send all the linear constraints at each iteration. In
the worst possible scenario this can lead to bigger com-
munication demands than pure flooding if the number of
faces of the partial intersections is bigger than each of
the individual polytopes. However, in practice that is not
the case, usually obtaining a similar number of faces, or
even smaller. As a consequence, in most cases the total

communication demands of this algorithm is smaller than
the cost of flooding, besides keeping the size of messages
bounded at all iterations. In addition, the computational cost
of computing multiple intersections of fewer constraints is in
general smaller than the cost of computing one intersection
with a large number of constraints. A similar modification
to that of Algorithm 1 can be done to apply Remark 2 to
this algorithm, simply by not sending the new region if it is
equal to that of the previous iteration.

If P = ∅, an alternative convex region Pi is selected by
each robot as described in [1] - Sec. III-C, and consensus on
the intersection is repeated. The alternative regions are (a)
Pi = Pfo→g|i, (b) Pi = Po→g|i and (c) Pi = Pg|i.

Remark 2 (Unknown d): If the diameter, d, is unknown,
the consensus runs until convergence for all robots. Conver-
gence for robot i can be checked by computing the maximum
distance between Pi(k) and Pi(k + 1) 1.

C. Optimal formation

Recalling Sec. III-B and following [1], each robot i can
compute the optimal formation F∗ = F l∗(x∗), via the non-
linear optimization defined by

arg min
l∈{1,...,f}

x=[t,s,q]

||t− g||2 + ws||s− s̄||2 + wq||q− q̄||2 + cl

s.t. {A(t + s rot(q, fl0,j)) ≤ b} ∀j ∈ {1, . . . , nl}
{s dl0 ≥ 2 max(r, h)}
{||q||2 = 1}.

(10)
Where the deviation to the goal g, a preferred size s̄ and

orientation q̄ is minimized. The first contraints impose that
all vertices are within the convex region P . The second
constraint that no two robots within the formation are in
collision and the third one that the quaternion has unit length.

To solve this non-convex optimization we employ the
non-linear solver SNOPT [19], which internally executes
sparse Sequential Convex Programming. Note that all robots
execute this optimization with the same parameters, since
the template formations are known by all and the convex
region P is computed via consensus. Therefore, even when
the optimization is solved individually by each robot, they
all obtain the same values for the target formation.

D. Robot assignment to positions in the formation

The result of the computation of Sec. IV-C is a target
formation F∗ and its associated set of target robot positions
{r∗1, . . . , r∗n} computed with Eq. (2).

Robots are assigned to the goal positions with the objective
of minimizing the sum of squared travelled distances, with
assignment σ : I → I minimizing

min
σ

∑
i∈I
||pi − rσ(i)||2. (11)

There exists several distributed algorithms based on local
interactions that are able to find the optimal solution to the

1 We compute this distance as max(dist(Pi(k)|Pi(k + 1)), dist(Pi(k +
1)|Pi(k))), where dist(P |Q) = max(||Av− b||∞, for v vertex of Q and
Az ≤ b linear constraint representation of P ).



above linear program. In particular, in our implementation we
make use of the distributed simplex proposed in [20]. The
algorithm has a bounded communication cost per iteration
and proven finite-time termination.

E. Real-time control

Consider r∗i to be the goal position assigned to robot i.
To compute a collision-free local motion towards the goal,
we employ the recent work on distributed reciprocal velocity
obstacles with motion constraints for aerial vehicles [17] and
in particular its extension to account for static obstacles, as
described in [1]. This approach is able to adapt to changes
in the environment and moving obstacles in real-time and
respects the dynamics of the robot.

This low level controller drives the robot towards its goal
within the target formation at a higher update frequency than
that of computing a new target formation.

V. RESULTS

A. Consensus performance

In this section we present simulation results using Monte
Carlo experiments to analyze the distributed algorithms 1
and 2. In particular, we are interested in comparing the
communication demands of our algorithms with a solution
consisting on flooding the information of all the robots to
the whole network, i.e., a centralized solution under the as-
sumption of limited communication. Since the final solution
and the number of communication rounds are equivalent to
those of the centralized solution, we do not analyze these
parameters in the simulation.

1) Convex hull: For Algorithm 1 we have considered
different number of participating robots, from n = 5 to
n = 1024 robots. For each value of n we have considered
100 different initial conditions, where the robots have been
randomly placed in a 3 dimensional space, with minimum
inter-robot distance equal to 0.5 m, forcing the connectedness
of the communication graph for a communication radius of
one meter. Then, for each configuration we have considered
four different communication radii, CR = {1, 2, 5, 10} and
we have run the algorithm. The amount of information
exchanged over the network, relative to the amount required
when using flooding, is shown in Fig. 3 (a). The plot shows
the mean and standard deviation over the 100 trials for each
scenario.

First of all, it is observed that in all the cases our algorithm
requires less communication than pure flooding of all the
positions because the relative cost is always less than one.
The algorithm also shows the scalability with the number
of robots. As n increases, the amount of positions that do
not belong to the convex hull is also increased, resulting in
fewer information exchanges for any communication radius.
In a similar fashion, by increasing the communication radius,
the relative communication cost is also decreased. This
happens because at each communication round, the robots
are able to discard more points from their local convex
hull estimations, since they have information from more
neighbors available. Overall, taking into account that the

number of communication rounds of our algorithm is the
same as the one for flooding, we conclude that our distributed
solutions is always a better choice.

2) Intersection of convex regions: In order to analyze
Algorithm 2 we have considered again the same number
of robots and communication radii, as well as 100 random
initial configurations. The initial regions Pi have been cre-
ated using the following procedure: first we have created a
random polytope composed by 20 three dimensional vertices.
Then, for each robot we have randomly changed 5% of the
vertices and included perturbations on another 15% of the
vertices. These parameters have been designed taking into
account the properties of the polytopes obtained in the full
simulations containing real obstacles described in Section V-
B. The results of these experiments are depicted in Fig. 3 (b).

The plot shows a similar behavior to the one in Fig. 3 (a),
with smaller demands as n and the communication radius are
increased. In most of the cases our algorithm also performs
better than flooding. However, in this case when n is small
the relative communication cost is greater than one, which
means that if the team is small and the network is sparse, it
might seem that a better solution is to simply exchange all the
constraints and compute a global intersection individually.
Nevertheless, even in such case the extra routing control
mechanisms and storage capabilities required for flooding
make our solution an appealing alternative.

B. Simulation results

We present simulations with teams of quadrotor UAVs,
where we employ the same dynamical model and controller
of [17], which was verified with real quadrotors. A video
illustrating the results accompanies this paper.

We use SNOPT [19] to solve the non-linear program, a
goal-directed version of IRIS [18] to compute the largest
convex regions and the Drake toolbox from MIT 2 to handle
quaternions, constraints and interface with SNOPT.

In our simulations a time horizon τ = 4 s is considered for
the experiments with 4 robots and of τ = 10 s for the exper-
iments with 16 robots, due to the large size of the formation
and the scenario. In all cases a new formation is computed
every 2 s. The individual collision avoidance planners run at
5 Hz and the quadrotors have a preferred speed of 1.5 m/s.
Both the visibility distance and the communication radius
are set to 3 m.

We test the distributed algorithm described in this paper
in two scenarios previously introduced in [1]. This provides
a direct comparison and evaluation.

1) Four robots: Fig. 4 shows snapshots and trajectories
of four quadrotors tracking a circular trajectory while locally
avoiding three static obstacles and a dynamic obstacle. Three
default formations are considered: square (1st preference), di-
amond (2nd preference) and line. The optimal parameters are
computed with the distributed consensus algorithm and non-
linear optimizaiton, allowing rotation in 3D (flat horizontal
orientation preferred) and reconfiguration.

2http://drake.mit.edu
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(a) Consensus: convex hull (b) Consensus: obstacle-free region
Fig. 3. Communication cost of Algorithm 1 (Distributed Convex Hull) (left) and Algorithm 2 (Distributed Obstacle-Free Region) (right) relative to flooding.
The plots show the mean and standard deviation over 100 trials for different numbers of robots and communication radii. The convex hull computation
always requires less bandwidth than pure flooding in the same number of communication rounds. The collision free region computation performs worse
for a small number of robots but as the communication radius and n increase, it overperforms flooding.

The four quadrotors start from the horizontal square and
slightly tilt it (11 s) to avoid the incoming dynamic obstacle.
To fully clear it while avoiding the obstacle in the lower
corner, they shortly switch to a vertical line, and then back
to the preferred square formation (20 s). To pass through the
next narrow opening they switch back to the line formation
(30 s) and then to the preferred square, tilted to avoid the
dynamic obstacle (37 s). Once the obstacles are cleared they
return to the preferred horizontal square formation (45 s).

2) Sixteen robots: Fig. 5 shows the paths of 16 quadrotors
moving along a corridor of three different widths. Three
default formations are considered: 4x4x1 defined by four
vertices (preferred), 4x2x2 defined by eight vertices and
8x2x1 defined by four vertices. At each time step the method
computes the optimal parameters for each of the three and
selects the one with lowest cost. Between times 75 s and 110
s the method successfully rotates the formation by 90o for it
to be collision free (the default formations were horizontal,
which is also preferred in the cost function).

VI. CONCLUSION

In this paper we considered a team of networked robots
in which each robot only communicates with its close
neighbors. We showed that navigation of distributed teams
of robots in formation among static and dynamic obstacles
can be achieved via a constrained non-linear optimization
combined with consensus. The robots first compute an
obstacle-free convex region and then optimize the formation
parameters. In particular, non-convex environments can be
handled. In this work we consider known obstacle locations,
within the field of view of the robot, but we can rely on
sensing to detect them. Note that, thanks to the consensus
on the convex obstacle-free region, the robots do not need to
exchange the position of the static obstacles. This approach
presents low computational cost and requires substantially
fewer communication messages than flooding for consensus.

In several simulations we showed successful navigation
in formation where robots may reconfigure the formation as
required to avoid collisions and make progress. In fact, the
results are comparable to those obtained with our previous
centralized approach. Last, but not least, the approach is

general and can be adapted to other formation definitions
and applications, such as collaborative transportation with
mobile manipulations.

Since the approach is local, deadlocks may still occur.
In future works we are looking at adding a consensus step
to agree on the direction of movement too, which is a
distributed max-min problem.
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(a) Top view. From left to right, snapshots at 11 s, 20 s, 30 s, 37 s and 45 s, and paths of the robots in-between.

(b) Side view. From left to right, snapshots at 11 s, 20 s, 30 s, 37 s and 45 s, and paths of the robots in-between.

(c) Projection (red) of polytope P onto 2D top view. It can overlap with obstacles that are not in the field of view of the robots. The projection of the
target formation is shown in green and the convex hull C of the robot positions with blue stars.

Fig. 4. Four quadrotors (green-blue) navigate in a 12 x 12 x 6 m3 scenario with three static obstacles (grey) and a dynamic obstacle (yellow). The four
quadrotors track a circular motion and locally reconfigure the formation to avoid collisions and make progress.

(a) Top view (X-Y) with robot paths. Sixteen simulated quadrotors move from left to right.

(b) Side view (X-Z) with robot paths. Sixteen simulated quadrotors move from left to right.

Fig. 5. Sixteen quadrotors navigate along a 100 x 10 x 10 m3 corridor, with obstacles shown in grey (top view). The quadrotors locally adapt the
formation to remain collision free. The robots start in the preferred horizontal 4x4x1 formation and tilt it to vertical, to pass trough the narrow corridors.
In the wider middle region they transform to a 4x2x2 formation, which has lower cost than the vertical 4x4x1. They finally transition towards 4x4x1.
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