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ABSTRACT
We propose a specification-free technique for finding missing
security checks in web applications using a catalog of access
control patterns in which each pattern models a common
access control use case. Our implementation, Space, checks
that every data exposure allowed by an application’s code
matches an allowed exposure from a security pattern in our
catalog. The only user-provided input is a mapping from
application types to the types of the catalog; the rest of the
process is entirely automatic. In an evaluation on the 50
most watched Ruby on Rails applications on Github, Space
reported 33 possible bugs—23 previously unknown security
bugs, and 10 false positives.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation

Keywords
web application security, access control, bug finding

1 Introduction
Web application security holes represent a large and growing
class of bugs. Programming frameworks and static analysis
tools have begun to address bugs that violate generic, cross-
application specifications (for example, injection, cross-site
scripting and overflow vulnerabilities). However, applica-
tion-specific bugs (like missing security checks) have received
less attention. Traditional solutions, such as verification
and dynamic policy-enforcement techniques, ask the user to
write a specification of the intended access control policy.

We propose a specification-free technique for finding appli-
cation-specific security bugs using a catalog of access control
patterns. Each pattern in our catalog models a common
access control use case in web applications. Our catalog
is based on the assumption that developers usually intend
for a particular pattern to be applied uniformly to all uses
of a given resource type—an assumption supported by our
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experience with real-world applications.
Our approach checks that for every data exposure allowed

by an application’s code, our catalog also allows the ex-
posure. When the application allows a data exposure not
allowed by the catalog, we report that exposure as a secu-
rity bug. This process requires only that the user provide
a mapping of application resources to the basic types (such
as user, permission, etc.) that occur in our catalog. From
this information alone, application-specific security bugs are
identified automatically.

We have implemented this technique in Space (Security
Pattern Checker). Space uses symbolic execution to ex-
tract the set of data exposures [25] from the source code
of a Ruby on Rails application. The constraints associ-
ated with these exposures and the user-provided mapping
are passed through a constraint specializer, which re-casts
the constraints in terms of the types in our pattern catalog.
Then, Space uses the Alloy Analyzer to perform automatic
bounded verification that each data exposure allowed by the
application is also allowed by our catalog.

We applied Space to the 50 most watched open-source
Rails applications on Github. We found that 30 of the 50
implement access control, and Space found bugs in 8 of
those 30—a total of 23 unique bugs. Both the symbolic
execution and bounded verification steps of our technique
scale to applications as large as 45k lines of code—none of
our analyses took longer than 64 seconds to finish.

This paper makes the following contributions:

• A highly automated technique for finding security bugs
based on the idea of matching extracted access pat-
terns to known safe patterns;

• An initial catalog of common security patterns, based
on those we encountered in an analysis of real-world
applications;

• An open-source implementation,1 Space, that has been
used to find previously unknown bugs in open-source
Rails applications.

In section 2, we describe Space from the user’s perspec-
tive and demonstrate its use to find a bug. In section 3, we
formalize our catalog of patterns and the technique used to
check them against an application. Section 4 describes our
implementation of Space, and section 5 details our evalu-
ation of its effectiveness. In section 6, we discuss related
work, and section 7 contains our conclusions.

1http://www.cs.berkeley.edu/˜jnear/space
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class UserController < ApplicationController
before filter : signed in user , : only => [:show, : edit ,

:update]
before filter : correct user , : only => [:show, : edit ]

...
def show

@user = User.find(params[: id ])
@posts = find posts by user id @user. id
@editing = true if signed in ?

end

def edit
@user = User.find(params[: id ])
@url = ’/user/’ + params[:id]

end

def update
@user = User.find(params[: id ])
if @user. update attributes (user params)

redirect to @user, success : ’ Editing successful ! ’
else

redirect to edit user path (@user. id) , error : ’ Editing
failed ! ’

end
end

end

Figure 1: Controller Code for MediumClone

2 Description & Example
Space (Security Pattern Checker) finds security bugs in
Ruby on Rails2 web applications, and requires only that the
user provide a mapping from application-defined resource
types to the object types of the standard role-based model
of access control (RBAC) [30, 15]. Space is otherwise com-
pletely automatic: it analyzes the target application’s source
code and returns a list of bugs.

Space is designed primarily to find mistakes in the imple-
mentation of an application’s security policy. Most often,
these mistakes take the form of missing security checks. In
this section, we describe an example open-source applica-
tion (MediumClone) and demonstrate how we used Space
to find security bugs in its implementation.

2.1 Example Application: MediumClone
MediumClone3 is a simple blogging platform designed to
mimic the popular web site Medium. Using MediumClone,
users can read posts and log in to create new posts or update
existing ones. The site requires users to sign up and log
in before writing posts, and prevents users from modifying
others’ posts.

A Rails application is composed of actions, each of which
handles requests to a particular URL within the applica-
tion. Controllers are collections of actions; each controller’s
actions implement an API for interacting with a resource ex-
posed by the site. Resources are defined using the ActiveRe-
cord library, which implements an object-relational mapper
to persist resource instances using a database, and which
provides a set of built-in methods for querying the database
for resource instances.

Figure 1 contains a part of the controller code for Medi-
umClone’s UserController, which provides a RESTful API
for user profiles. Following the REST convention, the show

2http://rubyonrails.org/
3https://github.com/seankwon/MediumClone

action is for displaying profiles, the edit action displays an
HTML form for editing the profile, and submitting that form
results in a POST request to update action, which actually
performs the database update (using update attributes ). The
call to before filter installs a filter—a procedure that runs
before the action itself—for the show and edit actions. The
filter checks that the logged-in user has permission to per-
form the requested action, and redirects them to an error
page if not. This use of filters to enforce security checks
is common in Rails applications, and helps to ensure that
checks are applied uniformly.

MediumClone’s Security Bug. The code in Figure 1
fails to apply the correct user filter to the update action, so
an attacker can send an HTTP POST request directly to
the update URL of the MediumClone site to update any
user profile. The filter is properly applied to the edit ac-
tion. In our experience, this kind of mistake is common: the
developer assumes the user will use the interface provided
by the site (in this case, the edit page), and will not craft
malicious requests to constructed URLs. Developers often
fail to consider alternative paths not accessible through the
interface, and therefore omit vital security checks.

Finding the Bug Using Space. Space compares the
checks present in the application code against its built-in
catalog of common security patterns. When the applica-
tion code is missing security checks required by the patterns,
Space reports a bug in the code.

Space’s security patterns are formalized in terms of role-
based access control (RBAC), which defines sets of users,
roles, operations, objects, and permissions. Space’s formal
models of security patterns enforce security checks by con-
straining relations between these sets. In order to check
these patterns against a piece of code, the user provides a
mapping of the application’s resources to the sets of objects
defined in the RBAC model. MediumClone’s User type rep-
resents the User type in the RBAC pattern, and Posts are
special RBAC objects that have an owner. The owns rela-
tion is defined by our model of ownership, and user: owns
means that the user field of a Post specifies its owner. The
user provides this mapping for MediumClone as follows:

Space.analyze do
mapping User: RBACUser,

Post: OwnedObject(user: owns)
end

Space requires the mapping above and MediumClone’s
source code—it needs no further input or guidance from the
user. The mapping provided by the user translates between
the RBAC objects constrained by the pattern catalog and
the resource types defined in the application code. Space
uses this mapping to specialize the constraints derived from
the checks present in the code to the set of RBAC objects,
so that the two sets of security checks can be compared.

Space compares the specialized constraints against the
constraints required by the pattern catalog. When Space
finds a missing check, it builds a counterexample demon-
strating the security vulnerability caused by the missing
check. The counterexample is specific to the application
code under analysis: it involves resource types defined in
the code, rather than RBAC concepts.

For MediumClone, Space produces the counterexample
shown in Figure 2(a). The “Update0” box indicates that an
update is possible on the profile of“AUser0”(the“target”—a

http://rubyonrails.org/
https://github.com/seankwon/MediumClone


(a) (b)

Figure 2: Space Counterexample Showing Medium-
Clone Security Bugs: (a) user can update another
user’s profile; (b) unauthenticated user (“NoUser”)
can update any post

renaming of“User”to avoid clashes) by the distinct“AUser1”
(the “current user”, or currently logged-in user). This coun-
terexample demonstrates a user updating another user’s pro-
file using the update action—a situation that is not captured
by our security pattern catalog. The User Profile Pattern
explicitly requires that users can update their own profiles,
but no pattern exists that allows updating another user’s
profile. The bug can be fixed by adding :update to the list
of actions for which the : correct user filter is applied.

More Bugs in MediumClone. Fixing the bug and run-
ning Space again yields a new counterexample, shown in
Figure 2(b). This counterexample suggests that Post re-
sources in MediumClone can be updated not only by users
who did not create them, but by users who are not logged
in (“NoUser”) at all! The code for PostController checks that
the user is logged in before performing the new, create, and
edit actions, but omits this check for the update action:

class PostController < ApplicationController
before filter : signed in user , : only => [:new, :create ,

: edit ]
...

end

This bug is interesting because the intended security policy—
that users only modify their own posts—is forgotten across
the entire application codebase. This mistake exemplifies a
class of bugs that are difficult to detect with testing or with
our previously-developed consistency checker, Derailer [25].

3 Formal Model
This section formalizes our catalog and Space’s method for
comparing it to a web application’s code. The first step is
to derive a list of data exposures from the application code,
representing the different ways users of the application can
read or update data stored in the database. Second, Space
uses the mapping defined by the user to specialize each expo-
sure’s constraints to the objects constrained by the catalog.
Finally, Space verifies that each data exposure allowed by
the application code is also allowed by the catalog.

3.1 Web Applications
We consider web applications in terms of sets of Databases,
Requests, and Resources. An application defines relations
response and update describing (in the context of a given
database) the resources sent to the requester and updated

in the database, respectively. Note that the updates do not
specify the resulting state of the database; our concern is
only whether modifications can be made to particular re-
sources, and not the actual values of those modifications.

Databases ⊆ P(Resources×Values)
response ⊆ Databases× Requests× Resources

update ⊆ Databases× Requests× Resources

Space approximates these relations by using symbolic ex-
ecution to build the exposures relation, representing the ap-
plication’s set of data exposures:

Operations = {read,write}
Constraints ⊆ first-order predicates over requests

and databases
exposures ⊆ Requests× Constraints ×

Operations× Resources

The exposures relation characterizes the conditions (φ)
under which the application code allows a particular re-
source to be read or written. The formula (db, req, res) ∈
response⇒ φ means that if the application exposes resource
res, it must be under conditions φ.

∀db, req, res, φ . ((db, req, res) ∈ response⇒ φ) ⇐⇒
(req, φ, read, res) ∈ exposures

∀db, req, res, φ . ((db, req, res) ∈ update⇒ φ) ⇐⇒
(req, φ,write, res) ∈ exposures

Space builds the exposures relation by symbolically eval-
uating each action of the web application under analysis,
passing symbolic values for the database and user-supplied
parameters. Space enumerates the symbolic values that can
appear on a rendered page and constructs an exposure for
each one. These exposures have the form (req, φ, read, res),
where req is the original symbolic request, φ is the path con-
dition derived from the symbolic execution, and res is the
symbolic expression representing the exposed resource. Sim-
ilarly, when Space finds a database update, it constructs an
exposure of the form (req, φ,write, res), where req is the re-
quest, φ is the current path condition, and res is a symbolic
expression representing the resource being updated.

Example. As a running example, we take MediumClone’s
UserController bug from section 2. For this controller’s buggy
update action, Space generates the exposure:

(update(user.profile), true,write, user)

meaning that when the application receives a request to up-
date a user profile of user, it performs the modification with-
out enforcing any constraints. The exposure that correctly
enforces the desired security policy (by enforcing that the
modified profile is the current user’s) is instead:

(update(user.profile), user = current user,write, user)

3.2 Role-Based Access Control
As a basis for representing security policies, we adopt the
role-based access control model of Sandhu et al. [30] (specif-
ically, RBAC0). The standard model of role-based access
control consists of sets Users, Roles, Permissions, and Ses-
sions, over which the following relations are defined to assign
permissions and users to roles:

permissiona ⊆ Permissions× Roles
usera ⊆ Users× Roles

We adopt the extension of this model by Ferraiolo et al.
[15] with Objects and Operations, where Objects contains the



targets of permissions (which will correspond to the web ap-
plication’s resources) and Operations (for our applications)
contains the operation types read and write already used in
the definition of the exposures relation. This model defines
Permissions to be a set of mappings between operations (ei-
ther read or write) and objects allowed by that permission:

Permissions = P(Operations×Objects)

3.3 Security Pattern Catalog
The patterns in our catalog constrain the relations of the
generic RBAC model to specifically allow certain behaviors.
Each one of these pattern definitions corresponds to a stan-
dard use case for resources in web applications; in effect, the
patterns “whitelist” common kinds of correct data accesses.

Access Pattern 1: Ownership. In most applications,
resources created by a user “belong” to that user, and a
resource’s creator is granted complete control over the re-
source. To express this use case, we define a relation owns
between users and objects, and then allow those owners to
perform both reads and writes on objects they own:

owns ⊆ Users×Objects

∀u, o . (u, o) ∈ owns⇒
∃r . (u, r) ∈ usera∧

((read, o), r) ∈ permissiona∧
((write, o), r) ∈ permissiona

Access Pattern 2: Public Objects. Many applications
make some resources public. A blog, for example, allows
anyone to read its posts. This pattern defines PublicObjects
to be a subset of the larger set of Objects, and allows anyone
to read (but not write) those objects:

PublicObjects ⊆ Objects
∀u, r, o, p . o ∈ PublicObjects ∧ (u, r) ∈ usera ⇒

((read, o), r) ∈ permissiona

Access Pattern 3: Authentication. Every application
with access control has some mechanism for authenticating
users, and many security holes are the result of the program-
mer forgetting to check that the user is logged in before al-
lowing an operation. To model authentication, this pattern
defines logged in, a (possibly empty) subset of Users rep-
resenting the currently logged-in users, and constrains the
system to allow permission only for logged-in users (except
for public objects):

logged in ⊆ Users

∀u, r, o, op, p .
(u, r) ∈ usera ∧ ((op, o), r) ∈ permissiona ⇒

(op = read ∧ o ∈ PublicObjects)∨
u ∈ logged in

Access Pattern 4: Explicit Permission. Some applica-
tions define a kind of resource representing permission, and
store instances of that resource in the database. Before al-
lowing access to another resource, the application checks for
the presence of a permission resource allowing the access. To
model this use case, this pattern defines PermissionObjects
to be a subset of Objects, defines a relation permits relat-
ing a permission object to the user, operation, and object it
gives permission to, and allows users to perform operations
allowed by permission objects:

PermissionObjects ⊆ Objects
permits ⊆ PermissionObjects×Users×

Operations×Objects
∀u, o, p, op . (p, u, op, o) ∈ permits⇒
∃r . (u, r) ∈ usera ∧ ((op, o), r) ∈ permissiona

Access Pattern 5: User Profiles. Applications with
users tend to have profile information associated with those
users. Programmers commonly forget checks requiring that
the user updating a profile must be the owner of that profile;
this pattern constrains the allowed writes so that no user can
update another user’s profile:

profile ⊆ Users×Objects
∀u, p . ∃r . (u, r) ∈ usera ∧ (u, p) ∈ profile ∧

((write, p), r) ∈ permissiona

Access Pattern 6: Administrators. Many applications
distinguish a special class of users called administrators that
have more privileges than normal users. We can represent
these users with a special role called Admin, which grants its
users full permissions on all objects:

Admin ∈ Roles

∀o . ((read, o),Admin) ∈ permissiona∧
((write, o),Admin) ∈ permissiona

Access Pattern 7: Explicit Roles. A few applications
specify distinct roles and represent them explicitly using a
resource type. They then assign roles to users and allow
or deny permission to perform operations based on these
assigned roles. This pattern introduces a level of indirection
to allow mapping these resource-level role definitions to the
RBAC-defined set of roles:

RoleObjects ⊆ Objects
object roles ⊆ RoleObjects× Roles

user roles ⊆ Users× RoleObjects

∀ro, r, u . (ro, r) ∈ object roles∧
(u, ro) ∈ user roles⇒

(u, r) ∈ usera

3.4 Mapping Application Resources to RBAC
Objects

To compare the operations allowed by an application to
those permitted by our security patterns, a mapping is re-
quired between the objects defined in the RBAC model and
the resources defined by the application. In many cases, this
mapping is obvious (a resource named “User” in the appli-
cation, for example, almost always represents RBAC users),
but in general it is not possible to infer the mapping directly.

Space asks the user to define this mapping. Formally, it
is a mapping from types of application resources to types of
RBAC objects; the mapping is a relation, since some appli-
cation resources may represent more than one type of RBAC
object. The set of resource types can be derived from the ap-
plication’s data model (which is present in its source code),
and the set of RBAC object types is based on the formal
model of RBAC defined here.

τResource = application-defined types
τRBAC = {User, Object, PermissionObject,

OwnedObject, PublicObject,
RoleObject}

map ⊆ τResource × τRBAC

We also need to provide definitions from the application
for the new concepts introduced in our pattern definitions:
PublicObjects, PermissionObjects, and the owns and permits



relations. The map relation can be used to define public and
permission objects, but we must define a separate mapping
from field names of resources to the corresponding relations
they represent in our security patterns. We use mapfields for
this purpose.

FieldNames = application-defined field names
RelationNames = {owns, permits, logged in,

object roles, user roles}
mapfields ⊆ FieldNames× RelationNames

Finally, we define session relating web application Requests
and the currently logged-in RBAC User :

session ⊆ Requests×Users

The session relation is needed to determine the currently
logged-in user (if any—some requests are sent with no au-
thentication) of the application. Since Rails has session
management built in, this mapping can be inferred auto-
matically.

Example. Based on the mapping provided for Medium-
Clone in section 2, Space populates the mapping relations
as follows:

τResource = {MUser, MPost}
map = ((MUser, User),

(MPost, OwnedObject))
FieldNames = {author, ...}

mapfields = ((author, owns))

3.5 Finding Pattern Violations
To find bugs in a given application, the goal is to find expo-
sures that are not allowed by some security pattern. For each
exposure in exposures, this process proceeds in two steps.

To check exposure (req, φ, op, res):

1. Build a specialized constraint φ′ from φ by substituting
RBAC objects for application resources using the map
relation supplied by the user.

2. Determine whether or not some pattern allows the ex-
posure by attempting to falsify the formula:

φ′ ⇒ (u, r) ∈ usera ⇒ ((op, obj), r) ∈ permissiona

where u, r and obj are RBAC objects corresponding
to the current user sending req and the resource res.
Intuitively, this formula holds when the conditions im-
posed by the application imply that some pattern al-
lows the exposure.

Building φ′. We use map to build a specialized constraint
φ′ from φ as follows:

• Replace each reference res to an application resource
in φ with an expression {τ |(res, τ) ∈ map} represent-
ing the corresponding set of possible RBAC objects.

• Replace each field reference o.fld in φ with an expres-
sion {o′|(fld, r) ∈ mapfields∧ (o′, o) ∈ r} representing a
reference to the corresponding relation defined by our
security patterns.

Intuitively, this means replacing references to application re-
sources with the corresponding RBAC objects (based on the
user-supplied map), and replacing references to fields of re-
sources that represent object ownership, permission type, or
permission for a particular object with formulas representing
those concepts in terms of RBAC objects.

Checking Conditions. For each (req, φ, op, res) ∈ exposures:

• Let φ′ be the result of performing substitution on φ
using the user-supplied map.

• Let obj be the RBAC objects corresponding to the
application resource res, so that if (res, o) ∈ map then
o ∈ obj.
• Let u be the current user, so that (req, u) ∈ session.

• Let C be the conjunction of all of the constraints de-
fined by our pattern catalog.

• Then the following formula must hold:

C∧φ′ ⇒ ∃r. (u, r) ∈ usera∧((op, obj), r) ∈ permissiona

This process checks that if both the pattern catalog and
the specialized condition hold, then the current user u is
allowed to perform operation op on the RBAC object obj
corresponding to the resource res acted upon by the appli-
cation code. If a counterexample is found, it means that the
application allows the user to perform a particular operation
on some object, but no security pattern exists allowing that
action. In other words, such a counterexample represents a
situation that does not correspond to one of our common
use-cases of web applications, and is likely to be a security
bug.

Example. To check the buggy exposure in our running
example, Space sets op = write, φ′ = true, obj = user,
and u = current user. Then, Space attempts to falsify the
formula:

C ∧ true⇒ ∃r. (current user, r) ∈ usera∧
((write, user), r) ∈ permissiona

This formula is falsified by any assignment under which
user 6= current user and usera and permissiona do not give
the current user permission to update user’s profile, since
the user profile pattern requires only that the current user
be able to update his or her own profile. An example of such
an assignment is the one that Space reports for this bug,
shown earlier in Figure 2.

The exposure corresponding to the correct security policy,
in contrast, yields φ′ = (user = current user), so the formula
to be falsified is:

C ∧ user = current user⇒
∃r. (current user, r) ∈ usera∧
((write, user), r) ∈ permissiona

Since this formula requires that the profile being updated is
the current user’s, any assignment that falsifies it also falsi-
fies the user profile pattern. Substituting the (specialized)
user profile pattern for C results in a tautology:

∃r . (current user, r) ∈ usera∧
((write, current user), r) ∈ permissiona∧

user = current user⇒
∃r. (current user, r) ∈ usera∧
((write, user), r) ∈ permissiona

4 Implementation
Our implemented tool, Space (Security Pattern Checker),
finds security bugs in Ruby on Rails web applications. Fig-
ure 3 contains an overview of Space’s architecture. Space
extracts the data exposures from an application using sym-
bolic execution, specializes the constraints on those expo-
sures to the types of role-based access control using the
mapping provided by the user, and exports the specialized
constraints to an Alloy specification. Then, Space uses the
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Figure 3: Summary of the Architecture of Space

Alloy Analyzer—an automatic bounded verifier for the Al-
loy language—to compare the specialized constraints to our
pattern catalog (which is also specified in Alloy).

4.1 Symbolic Execution
Implementing a standalone symbolic evaluator is difficult for
any language, but especially so for Ruby. Ruby is dynamic,
has no formal specification, and changes quickly. Since Rails
is a large library using nearly all of Ruby’s features, however,
a symbolic evaluator for Ruby on Rails applications must
implement all of those features too.

Rather than attempt to build a standalone symbolic eval-
uator, we used a symbolic execution library to coerce Ruby’s
standard interpreter into performing symbolic execution. We
developed this approach for Rubicon [24], which performed
bounded verification of user-defined properties on Rails ap-
plications, and Derailer [25], which interacts with the user to
find mistakes in the uniform application of a security policy.

We present a brief explanation of the library-based ap-
proach to symbolic execution here for completeness. De-
tailed descriptions of our approach to symbolic execution is
available as part of our earlier work; a formal description of
the technique, including an embedding in a simplified Ruby-
like language with a formal semantics and a proof that it
produces the same results as the standard approach to sym-
bolic execution, is available in [26].

Symbolic Values. Our library defines Ruby classes for
symbolic objects and expressions. When a program invokes
a method on a symbolic object, Ruby’s method missing fea-
ture is used to produce a new symbolic expression.

def method missing(m,∗a)
Exp.new(m, [self ]+a)

end
def ==(o)

Exp.new(:==,[self,o])
end

end

class Exp<SymbolicObject
def initialize (m, a)

@meth = m
@args = a

end
end

These class definitions define symbolic values, and can be
used to perform simple symbolic execution. For example,
the following three statements evaluate to (written ⇒) the

result of symbolically evaluating the given method call:

x = SymbolicObject.new
y = SymbolicObject.new
x.foo(y)

⇒ Exp(foo, [x, y ])

Similarly, since Ruby’s infix operators are interpreted as
method calls, the symbolic evaluator we have defined works
for these operators as well:

x+y == y+x ⇒ Exp(==,[Exp(+,[x,y]),Exp(+,[y,x]) ])

Conditionals. Symbolic execution runs both branches of
each conditional. Ruby does not allow redefining condition-
als, so we rewrite the source code of the target application
to call our own definition of if .

x = SymbolicObject.new
if x.even? then

(x+1).odd?
end

⇒ Exp( if ,[ Exp(even?,[x ]) ,
Exp(odd?,[Exp(+,[x,1]) ]) ])}

Side effects. Programs may perform side effects inside of
conditionals; the results should be visible only if the con-
dition holds. We split the current state into two versions,
recording the condition and values using a Choice object.

x = SymbolicObject.new
if x.even? then x = 1
else x = 2 end
x

⇒ Choice(Exp(even?,[x ]) ,1,2)

4.2 Analyzing Rails Applications
Space symbolically evaluates each action in a Rails appli-
cation and collects the set of symbolic objects appearing on
a page or written to the database. These symbolic objects
represent the set of possible exposures of the application.

Wrapping ActiveRecord. Rails applications interact with
the database using ActiveRecord, an object-relational map-
per (ORM) that provides methods like“find”and“ all .” These
methods are wrappers around database queries: they al-
low the specification of queries (including features of SQL
like where and group by) directly in Ruby, and are trans-
lated by the ORM into SQL queries. Space provides a new
implementation of the ActiveRecord API that ignores the
concrete database and instead returns symbolic values rep-
resenting the set of possible results for all databases. Given
a “User” class extending ActiveRecord, for example, the fol-
lowing code would normally find users with the name “Bob,”
but it returns a symbolic expression representing the query
under our redefinition of ActiveRecord.

User. find :name => ”Bob”

⇒ Exp[User, [Exp(query, [name => ”Bob”])]]

Rendering. The Rails renderer evaluates a template—
which contains both HTML and Ruby expressions—to pro-
duce an HTML string. Space wraps the Rails rendering
API, recording the symbolic objects referenced during eval-
uation of the Ruby expressions contained in the template.
This strategy allows the existing renderer to run unchanged,
which is valuable because Rails developers often replace the
standard Rails renderer with other versions.

4.3 Constraint Specializer
Using the user-provided mapping from application resources
to role-based access control objects, the constraint special-
izer substitutes one for the other in each exposure’s con-
straints and translates the result into the Alloy language.



User-provided Mapping. As in the example in Section 2,
the user provides the mapping between application resources
and role-based access control objects using a Space-provided
embedded domain-specific language. The mapping specifi-
cation is written according to this grammar:

<map spec> ::= <Clause>∗

<Clause> ::= <Resource>: <Object>
| <Resource>: <Object>(<FMap>∗)

<FMap> ::= <FieldName>: <MapRelation>

where Resource is the set of resource names in the appli-
cation under analysis, Object is the set of object names in
the role-based access control model, FieldName is the set
of resource field names defined by the application code, and
MapRelation is the set of relation names defined by our se-
curity patterns (in section 3.4).

Resource/Object Substitution. As in Section 3.5, the
specializer replaces all references to names in the Resource
set with references to their corresponding RBAC objects in
Object. A field reference r.f is replaced by a reference to one
of the relations defined by our patterns using the mapping
from FieldName to MapRelation (if one is present). Some
field references are not security-related; since no mapping is
provided, the specializer leaves these unchanged.

Translation to Alloy. Finally, the specializer translates
the substituted constraints into Alloy for comparison to the
security pattern models. Since Alloy is based on first-order
relational logic, this translation is straightforward.

4.4 Bounded Verification
Alloy [17] is a specification language based on first-order re-
lational logic with transitive closure. Space uses Alloy to
represent both the complete pattern catalog and the spe-
cialized constraints derived from an application’s exposures.
Due to the kinds of quantifier alternation present in our pat-
tern catalog, analysis of first-order formulas is required, and
so Space’s verification task is not decidable. Unbounded
tools such as SMT solvers are therefore less suited than a
bounded verifier like Alloy. As detailed in Section 5.4, our
experience suggests that Alloy’s analysis is a good fit for the
kinds of bugs Space is designed to find: it scales well to
the bounds required to find the bugs we discovered in our
experiments.

We model web applications, role-based access control, and
our security pattern catalog in Alloy after the formal descrip-
tion given in Section 3. Each pattern consists of a set of Al-
loy constraints on RBAC objects. The patterns that define
new subsets of the set of RBAC objects are modeled Alloy’s
extends keyword, and the relations defined by the pattern
catalog are represented using Alloy’s global relations.

Space uses the Alloy Analyzer to compare the specialized
constraints to the security pattern models and find bugs.
The Alloy Analyzer is a tool for automatic bounded analysis
of Alloy specifications; it places finite bounds on the number
of each type of atom present in the universe, then reduces
the specification to propositional logic.

Space builds a single Alloy specification containing the
model of role-based access control, the definitions of secu-
rity patterns, and for each exposure, an Operation definition
and a predicate imposing its specialized constraints. Finally,
Space invokes the Analyzer to check that each operation
predicate is implied by the pattern catalog.

4.5 Limitations
Space’s analysis sacrifices soundness for compatibility and
scalability, and is therefore capable of analyzing real-world
applications. This compromise leads to several limitations:

Dynamic environment changes. No static analysis can
provide guarantees about a Ruby program without making
assumptions about the environment, since Ruby allows re-
placing any method’s implementation at any time. Space
assumes that the environment at analysis time is the same
as in production.

Unexpected API calls. Space detects only information
flowing from ActiveRecord calls to rendered pages. It there-
fore misses leaks through native code, direct network con-
nections, or non-ActiveRecord data sources. Space relies on
the application developer to ensure that these mechanisms
do not introduce security bugs.

Bugs outside the finite bound. Space uses a bounded
model finder to find violations of its pattern library. If the
counterexample exposing a bug contains a large number of
objects, the model finder may not be able to represent it
within its finite bound. In this situation, the model finder
may report no bugs even when one exists. In practice, all of
the bugs we encountered require only a handful of objects
to represent a counterexample.

5 Evaluation
In evaluating Space, we examined three questions:

Is Space effective at finding bugs? We applied Space to
the 50 most watched open-source Ruby on Rails applications
on Github. 30 of those implement access control; Space
found bugs in 8 (a total of 23 bugs). Space reported 10
false positives in addition to these actual bugs. These results
suggest that Space is effective at finding security bugs and
does not produce excessive false positives.

Does Space’s analysis scale to real-world applica-
tions? We recorded analysis times for the 30 analyses per-
formed in the experiment above; every analysis finished within
64 seconds, and the average time was 38 seconds. We also
tested Space’s symbolic execution step on the 1000 most
watched Rails applications on Github; every execution fin-
ished within one minute. These results suggest that Space’s
symbolic evaluator scales to applications of many sizes.

How does the bound selected for verification affect
the number of bugs found and the scalability of the
analysis? For the bugs found in the experiment described
above, we re-ran the bounded verification step at progres-
sively lower finite bounds until the verifier no longer detected
the bug. A finite bound of 3 was sufficient to find these bugs;
Space uses a bound of 8 (thus considering 8 objects of each
type) by default—a bound well in excess of that required to
find the bugs we discovered. For a bound of 8, the verifi-
cation step finished in under 10 seconds for all applications.
These results suggest that Space’s default bound of 8 scales
well and is large enough to catch most bugs.

5.1 Experimental Setup
We considered the 50 most-watched open-source Ruby on
Rails applications hosted by Github, assuming that the num-
ber of “watchers” a repository has is proportional to its pop-
ularity. These applications fall into two categories: applica-
tions intended for installation by end-users and fragments of
example code intended to help programmers build new ap-



Exposure Verifi- Finite
Author / Application LOC Expo- Generation cation Bugs False Bound

sures Time Time Found Positives Required
RailsApps/rails3-bootstrap-devise-... 1103 16 45.02 s 7.66 s 0 0 -
nov/fb graph sample 655 87 41.13 s 8.31 s 2 1 2
tors/jquery-fileupload-rails-paperclip... 727 15 28.71 s 7.11 s 0 0 -
heartsentwined/ember-auth-rails-demo 742 28 28.94 s 6.48 s 0 0 -
kagemusha/ember-rails-devise-demo 619 24 29.84 s 3.25 s 0 0 -
openbookie/sportbook 3568 94 49.67 s 7.16 s 4 0 3
shageman/rails container and engines 778 39 23.94 s 7.20 s 0 3 -
OpenFibers/TOT2 1470 54 34.07 s 5.21 s 2 0 2
Eric-Guo/bootstrap-rails-startup-site 389 17 41.00 s 4.72 s 0 0 -
IcaliaLabs/furatto-rails-start-kit 293 16 44.69 s 4.95 s 0 1 -
ngauthier/postgis-on-rails-example 206 22 21.56 s 4.14 s 0 0 -
johnbender/jqm-rails 340 43 24.66 s 3.84 s 3 0 2
GAFuller/rails-4-landing 800 21 41.67 s 3.09 s 0 0 -
netxph/redport 142 9 22.68 s 3.73 s 0 2 -
PaulL1/league-tutorial 833 31 22.50 s 3.14 s 0 0 -
jwhitley/requirejs-rails-jasmine-... 197 11 23.36 s 8.17 s 0 0 -
danneu/grinch 1059 24 32.27 s 5.44 s 0 0 -
phaedryx/rails-angularjs-example 423 17 23.31 s 8.18 s 0 0 -
brobertsaz/railscrm-advanced 2373 132 59.75 s 4.63 s 5 0 3
Ask11/dreamy 243 13 22.14 s 8.84 s 0 1 -
m1k3/tada-ember 200 8 26.60 s 6.67 s 0 0 -
tomgrim/ribbit 473 41 24.53 s 3.35 s 2 0 2
myitcv/test-signet-rails 282 20 27.05 s 4.51 s 0 0 -
hjhart/yelp 1077 48 21.78 s 6.55 s 0 1 -
geraldb/world.db.admin 866 63 27.95 s 7.22 s 0 0 -
seankwon/MediumClone 797 46 38.43 s 3.43 s 4 0 2
yakko/permissions 523 58 22.82 s 7.82 s 0 0 -
theef/rails-devise-backbone-auth 296 14 26.19 s 7.69 s 0 1 -
asterite/geochat-rails 9596 89 49.32 s 3.99 s 0 0 -
OAGr/rails-api-authentication 1003 51 32.22 s 4.56 s 1 0 2

Figure 4: Results of Running Space on Access Control-Enabled Open-Source Rails Applications on Github

plications. Security bugs are a serious issue in both types of
application: in end-user applications, they make user data
vulnerable, while in example code, they can propagate to
applications that have copied the code.

Selecting Applications. We used the Github Archive
database4 to make a list of the most-watched Rails-associated
repositories. We developed a Ruby script to automatically
clone each repository in the resulting list, check that it con-
tains a Rails application, install its dependencies, and run
the application. We used this script to filter the original list
of 4000 repositories down to the 1000 most-watched reposi-
tories containing actual Rails applications. We used the first
50 of these to perform our bug-finding experiments, and the
full list of 1000 applications for our scalability tests.

Building Mappings. We first eliminated those applica-
tions with no access control through manual inspection, leav-
ing 30 applications with some access control checks. For
each of these, we constructed a mapping from application
resources to RBAC types as detailed in section 3. We used
application documentation and the code itself as a guide; in
most cases, it was a straightforward process, involving map-
ping the “User” type to RBAC users, a “Permission” type to
permission objects, a subset of resources to owned objects,
and perhaps a role type to role objects. This process took
us approximately 15 to 25 minutes per application.

4https://www.githubarchive.org/

Experimental Setup. We used Ubuntu GNU/Linux on
a virtual machine equipped with a single Intel Xeon core
at 2.5GHz and 2GB of RAM. We used RVM to install the
version of Ruby required by each application and Bundler
to install each application’s dependencies. We ran Space on
each application using its default finite bound of 8 (atoms
per data type) for the verification step. After running the
experiment, we examined each reported bug and classified
it as either a duplicate, a false positive, or a real bug.

Limitations. The 50 applications we considered contained
a number of abandoned and “toy” projects that likely have
few real-world users. Our experimental design—sorting ap-
plications by number of watchers—was an attempt to miti-
gate this factor in an objective way; we speculate that a large
number of real-world Rails codebases are not open source,
causing a bias in open-source applications towards example
and toy projects.

5.2 Bug Finding
The results of the experiment are summarized in Figure 4.
In total, Space reported 23 bugs and 10 false positives. The
longest analysis took 64 seconds, while the average time was
38 seconds. In most cases, the symbolic execution step (gen-
erating exposures) took most of the time.

Bugs Found. Figure 5 classifies the 23 bugs we found ac-
cording to the pattern we believe the programmer intended
to implement. The largest category is Authentication, indi-

https://www.githubarchive.org/


No. Bugs Pattern Violated
5 Ownership
2 Public Objects
10 Authentication
3 Explicit Permission
3 User Profiles

Figure 5: Classification of Bugs Found by Pattern
Violated

cating that the check programmers forget most often is the
one ensuring that the user is logged in. The next largest,
Ownership and Explicit Permission, indicate situations in
which a user is allowed to view or modify a resource owned
by someone else without permission. The User Profiles cat-
egory includes situations where a user can modify another
user’s profile, and the Public Objects category includes bugs
where a resource was marked public when it should not have
been. We did not find any bugs violating the Administrator
or Explicit Roles patterns; developers, it seems, tend to use
these patterns correctly.

The vast majority of vulnerabilities we discovered fell out-
side the standard use cases of the applications. To exploit
these, an attacker must craft a URL or form submission
manually; exposing the bug using the application’s exposed
user interface is impossible. This is the kind of security bug
that is difficult to detect using testing, because the program-
mer writing the test cases is biased towards the standard use
cases of the application, and often ignores access paths out-
side of those use cases.

False Positives. In our experiment, Space produced a
total of 10 false positives. All of these were situations in
which the application exposed a particular field of a resource
in a different way from the other fields of that resource. For
example, the redport photo manager allows users to provide
“feedback” on a photo that another user owns, but does not
allow changing any of that photo’s other fields. Because
Space maps whole resource types to RBAC objects, it does
not allow per-field permissions to be specified.

However, this limitation is not inherent in our approach—
it is a conscious decision to make the resource mapping easier
to construct. A finer-grained mapping would eliminate these
false positives, but would require more effort to construct.

False Negatives. The possibility of false negatives is in-
herent to our approach: our security patterns are intended
to capture common use cases of web applications, but some
applications may intend to implement a security policy that
is more restrictive than the common cases expressed by our
patterns. A mistake in such an implementation would not
be caught by our technique.

For example, an e-commerce web site may implement ad-
ministrative access, but may disallow even administrators
from viewing customers’ saved credit card numbers. Our
catalog, on the other hand, includes a pattern allowing ad-
ministrators to view everything. Space would therefore miss
a bug allowing administrators to view card numbers, since
the intended policy is actually more restrictive than the pat-
tern in our catalog.

We examined the code of the applications in our experi-
ment for precisely this situation—security policies intended
(based on evidence in the code itself) to be more restrictive
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than the corresponding patterns in our catalog—and found
none. Given the correct user-provided mapping, the pat-
terns applied by Space were always at least as restrictive
as those enforced by the target applications. However, the
number of applications we considered was limited: we do
not consider this enough evidence to conclude that security
policies are generally less restrictive than our patterns.

5.3 Scalability
Since exposure generation time dominates verification time,
we performed an additional experiment to test the scalability
of the exposure generator more thoroughly. We ran the ex-
posure generation step only on the 1000 most-watched Rails
applications on Github. Figure 6 plots exposure generation
time against lines of source code for each of these applica-
tions. Exposure generation finished within one minute for
every application, with most taking much less time.

5.4 Choice of Finite Bounds
Space uses the Alloy Analyzer, which requires the user to
place finite bounds on the number of objects it will consider.
Since these bounds both scalability and bugs found (because
bugs requiring a counterexample larger than the finite bound
will be missed), choosing the default bound carefully is vi-
tal. We ran the verification step against the applications in
Figure 4 using finite bound settings from 3 to 15. The re-
sults, in Figure 7, indicate that the verification step runs in



an acceptable time at finite bound settings below 10. Above
that bound, the verification time grows quickly.

We chose the default bound of 8 based on these perfor-
mance results and the counterexample sizes required for the
bugs we discovered. Bugs may exist beyond this bound, but
the distribution of bounds required to find the bugs we dis-
covered (100% of bugs with bound 3, and 0% of bugs from
bounds 3-15) suggests that more bugs have small counterex-
amples than have large ones. Users of Space can easily select
a different bound in order to tune the verifier.

6 Related Work
Modeling Security Patterns. Conceptually, our cata-
log of security patterns is similar to the built-in specifica-
tions of common bugs that static analysis tools have used for
decades: memory errors, race conditions, non-termination,
null pointer exceptions, and so on. Like Space, tools that
attempt to find these classes of bugs can run without user
input. However, these specifications represent a blacklist—
a model of situations that should not occur—in contrast to
our catalog of patterns, which whitelist only those situa-
tions that should occur. Our pattern catalog is similar in
approach to the formal model of web security by Akhawe et
al. [1], which defines a general model of the actors (browsers,
servers, attackers etc.), and threats (XSS, CSRF, etc.) in-
volved the larger picture of web security problems, then uses
a constraint solver to discover attacks that potentially in-
volve several different components; the model is not directly
applicable to code. Our technique, by contrast, focuses on
mistakes in access control policies, and compares the model
against the code automatically.

Symbolic Execution. Symbolic execution was first pro-
posed by King [20] and Clarke [11] in 1976, and recent sym-
bolic evaluators [7, 18, 28, 33, 32, 16] have made improve-
ments in scalability and applicability of the idea. Symbolic
execution has also seen application to dynamic languages in
recent years, with systems for evaluating Javascript [32, 13,
32], PHP [2, 19], Python [31], and Ruby [9]. In contrast to
Space, all of these use standalone symbolic evaluators.

Other recent efforts implement symbolic execution as a
library, like Space. NICE-PySE [8] and Commuter [12]
both implement library-based symbolic execution in Python,
but only for particular domain-specific languages. Yang et
al. [36] and Köskal et al. [21] use the same technique in Scala,
but to enforce security policies and perform constraint pro-
gramming, respectively. Rosette [35] uses a library to sym-
bolically execute Racket for verification and program syn-
thesis. None of these systems allow symbolic execution of
arbitrary programs, however.

Chef [5] produces symbolic evaluators for interpreted lan-
guages by symbolically executing the standard interpreter
itself on the target program. Like our approach, Chef re-
sults in a system that is 100% compatible with the standard
interpreter; however, the indirection of symbolically execut-
ing the interpreter incurs significant overhead (at least 5x
over NICE-PySE [8], which is implemented like Space).

Static Analysis of Web Applications. Existing work
on the application of static analysis to web applications fo-
cuses on modeling applications, and especially on building
navigation models. Bordbar and Anastasakis [4], for exam-
ple, model a user’s interaction with a web application using
UML, and perform bounded verification of properties of that
interaction by translating the UML model into Alloy using

UML2Alloy; other approaches ( [22, 34, 29]) perform similar
tasks but provide less automation. Nijjar and Bultan [27]
translate Rails data models into Alloy to find inconsistencies,
but do not examine controller code. Bocić and Bultan [3]
and Near and Jackson [24] check Rails code, but require the
user to write a specification. Space, in contrast, requires
only that the programmer provide a simple object mapping.

Techniques that do not require the programmer to build
a model of the application tend to focus on the elimina-
tion of a certain class of bugs, rather than on full verifica-
tion. Chlipala’s Ur/Web [10] statically verifies user-defined
security properties of web applications, and Chaudhuri and
Foster [9] verify the absence of some particular security vul-
nerabilities for Rails applications; unlike Space, neither ap-
proach can find application-specific bugs. Derailer [25] can
find application-specific bugs but lacks Space’s automation:
it requires the user to interact with the tool to discover bugs.

Run-Time Approaches to Web Application Security.
Resin [37] is a runtime system that enforces information flow
policies attached to data objects; it has been successfully ap-
plied to web applications. Jeeves [36], a similar language for
enforcing information flow policies, has also been applied
to the web. Jif [23], an extension of Java, also supports
checking policies at runtime. GuardRails [6] allows the pro-
grammer to annotate ActiveRecord classes with access con-
trol information, then performs source-to-source translation
of the application’s implementation, producing a version of
the application that enforces, at run time, the access con-
trol policies specified by the annotations. Nemesis [14] is a
similar effort for PHP applications: it is a tag-based system
that enforces authentication and access-control at runtime.
All of these approaches, in contrast to Space, require the
programmer to write some form of specification to encode
the application’s security policy.

7 Conclusion
In this project, we explored the idea that a small set of
formal models—our catalog of access control patterns—is
enough to capture a large portion of the access control poli-
cies that web applications use in practice. We have presented
a technique leveraging this idea to find security bugs in web
applications, based on checking that if the application allows
some data to be exposed, then some pattern in the catalog
must also allow it. To be effective, this approach relies on
the premise that real-world web applications share common
patterns of access control.

Our implementation, Space, demonstrates that our cat-
alog of patterns, plus a mapping from application types to
the types of the catalog, is sufficient to find bugs in real-
world applications automatically. The results of our evalua-
tion indicate that this approach is effective: Space scales to
large applications, produces few false positives, and found a
significant number of previously unknown bugs, suggesting
that our pattern-based approach is a promising strategy for
eliminating application-specific security bugs.
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Generalized symbolic execution for model checking
and testing. Tools and Algorithms for the Construction
and Analysis of Systems, pages 553–568, 2003.

[19] Adam Kieyzun, Philip J Guo, Karthick Jayaraman,
and Michael D Ernst. Automatic creation of sql
injection and cross-site scripting attacks. In Software
Engineering, 2009. ICSE 2009. IEEE 31st
International Conference on, pages 199–209. IEEE,
2009.

[20] J.C. King. Symbolic execution and program testing.
Communications of the ACM, 19(7):385–394, 1976.
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