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Effect of spatial variability on the slope stability using random field numerical 1 

limit analyses 2 

This paper presents a probabilistic approach to evaluating the geotechnical stability problem 3 
by incorporating the stochastic spatial variability of soil property within the numerical limit 4 
analyses. The undrained shear strength and unit weight of soil are treated as a random field 5 
which is characterized by a log-normal distribution and a spatial correlation length. The 6 
current calculations use a Cholesky Decomposition technique to incorporate these random 7 
properties in numerical limit analyses. The Random Field Numerical Limit Analyses are 8 
applied to evaluate effects of spatial variability of soil property on the slope stability and 9 
failure mechanism of slope. Monte Carlo iterations are then used to interpret the slope 10 
reliability and the dimension for collapsed slope for selected ranges of the coefficient of 11 
variation in soil property and the ratio of correlation length to slope height. Finally, the 12 
variation in the dimension of collapsed slope is examined in terms of the variability of slope 13 
reliability. 14 
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 16 

Introduction 17 

The spatial variability and uncertainty of soil parameters such as unit weight and shear strength 18 

should be treated rationally and quantitatively to evaluate the safety of slope failure. The reliability 19 

design based on the probabilistic and statistic theory can evaluate the safety of slope as a liability 20 

index and failure probability. Sakurai & Doi (1983) and Mellah et al. (2000) proposed the stochastic 21 

finite element method for the stability problem of slope and embankment. Husein Malkawi et al. 22 

(2000) performed the reliability design for slope stability based on the First Order Second Moment 23 

method (FOSM) and Monte Carlo iteration. For the practical application of reliability design, 24 

Christian et al. (1994) and El-Ramly et al. (2002) reported appropriate safety factor for a large scale 25 

embankment on saturated clayey ground considering the testing error, statistical estimation error 26 

and spatial variability of soil parameters. Moreover, Griffiths & Fonton (2004) clarified the 27 

reliability of slope using the random field finite element method and Monte Carlo iteration.  28 



This paper presents a Random Field Numerical Limit Analyses to evaluating the 1 

geotechnical stability problem by incorporating the stochastic spatial variability of soil property 2 

within the numerical limit analyses. The Random Field Numerical Limit Analyses are applied to 3 

evaluate effects of spatial variability of soil property on the slope stability and failure mechanism of 4 

slope. Monte Carlo iterations are then used to interpret the slope reliability and the dimension for 5 

collapsed slope for selected ranges of the coefficient of variation in soil property and the ratio of 6 

correlation length to slope height. Finally, the variation in the dimension of collapsed slope is 7 

examined in terms of the variability of slope reliability 8 

 9 

Random Field Numerical Limit Analyses 10 

Numerical limit analyses 11 

The Numerical Limit Analyses (NLA) used in this study were based on 2-D, plane strain linear 12 

programming formulations of the Upper Bound (UB) and Lower Bound (LB) theorems for rigid, 13 

perfectly plastic materials presented by Sloan & Kleeman (1995) and Lyamin & Sloan (2002). The 14 

upper-bound formulation assumes linear variations in the unknown velocities (ux, uy) within each 15 

triangular finite element. Nodes are unique to each element and hence, the edges between elements 16 

represent planes of velocity discontinuities. Plastic volume change and shear distortion can occur 17 

within each element as well as along velocity discontinuities. The kinematic constraints are defined 18 

by the compatibility equations and the condition of associated flow (based on an appropriate 19 

linearization of the Tresca criterion) within each element and along the velocity discontinuities 20 

between elements. The external applied load can be expressed as a function of unknown nodal 21 

velocities and plastic multiplier rates. The upper bound on the collapse load can then be formulated 22 

as a linear programming problem, which seeks to minimize the external applied load using an active 23 

set algorithm (after Sloan and Kleeman, 1995). 24 

Recent numerical formulations of upper and lower bound limit analyses for rigid perfectly 25 



plastic materials, using finite element discretization and linear or non-linear programming methods, 1 

provide a practical, efficient and accurate method for performing geotechnical stability calculations. 2 

For example, Ukritchon et al. (1998) proposed a solution to the undrained stability of surface 3 

footings on non-homogeneous and layered clay deposits under the combined effects of vertical, 4 

horizontal and moment loading to a numerical accuracy of +/- 5%. One of the principal advantages 5 

of NLA is that cohesion and friction angle were only input parameters. Hence, NLA provides a 6 

more convenient method of analyzing stability problems than conventional displacement-based 7 

finite element methods which also require the specification of stiffness parameters and simulation 8 

of the complete non-linear load-deformation response up to collapse (e.g., Ukritchon et al., 1998; 9 

Kasama & Whittle, 2012; Huang et al., 2013).  10 

Figure 1 illustrates a typical finite element mesh used for two dimensional slope stability 11 

program with the slope angle of 45o. The model considers a soil layer with depth z/H = 1.0 and the 12 

width x/H =5.0, where H is the height of the slope. The dimension of square mesh divided into four 13 

quarter elements is 0.1 H. The mean undrained shear strength µc is 100 kPa and mean unit soil 14 

weight µγ is 18 kN/m3. The boundary conditions are rollers on the left and right vertical boundaries, 15 

and full fixity at the base. The number of elements is 1800 and the number of node is 5400. It took 16 

six minutes to complete one irritation of Monte Carlo simulation including generate the random 17 

field. 18 

 19 

Random field iterations 20 

The effects of inherent spatial variability are represented in the analyses by modeling the undrained 21 

shear strength, cu, and unit weight, γ, as a homogeneous random field (Vanmarcke, 1984). The 22 

undrained shear strength and unit weight are assumed to have an underlying log-normal distribution 23 

with mean, µc and µγ, and standard deviation, σc and σγ, and an isotropic scale of fluctuation (also 24 

referred to as the correlation length), θc and θγ. Current iteration assumes that correlation length of 25 



unit weight θγ is similar to that of undrained shear strength θc. Following Griffiths & Fenton (2004) 1 

the current analyses present results based on assumed values of the ratio of the correlation length to 2 

slope height, Θ = θc /H = θγ/H as an input parameter. The similar correlation length lies with the 3 

range of the undrained shear strength and unit weight. 4 

The mean and standard deviation of log cu and log γ are readily derived from µc and σc and 5 

µγ and σγ as follows (e.g., Baecher & Christian, 2003): 6 

)1ln( 2
ln cc σσ += ; )1ln( 2

ln γγ σσ +=       (1) 7 

  2
lnln 2

1ln ccc σµµ −= ; 2
lnln 2

1ln γγγ σµµ −=        (2) 8 

The spatial variability is incorporated within the NLA meshes by assigning the undrained shear 9 

strength, ci, and unit weight, γi, corresponding to the ith element: 10 

 )exp( lnln icci Gc ⋅+= σµ       (3.1) 11 

  )exp( lnln ii G⋅+= γγ σµγ       (3.2) 12 

where Gi is a random variable that is linked to the spatial correlation length, θc and similar Gi is 13 

used to calculate ci and γi in this study. Namely, it is assumed that unit weight of ith element, γi was 14 

assumed to be perfectly correlated with the undrained shear strength of ith element, ci, which agrees 15 

with experimental findings that there is strong correlation between undrained shear strength and 16 

unit weight of soil. Values of Gi are obtained using a Cholesky Decomposition technique (Matthies 17 

et al., 1997; Baecher and Christian, 2003; Kasama et al., 2006; Kasama and Whittle, 2011) using an 18 

isotropic Markov function which assumes that the correlation decreases exponentially with distance 19 

between two points i, j: 20 

)2exp()( θρ ijij xx −=         (4) 21 



where ρ is the correlation coefficient between two random values of cu and γ at any points separated 1 

by a distance xij = |xi – xj| where xi is the position vector of i (located at the center of element i in the 2 

finite element mesh).  3 

This coefficient can be used to generate a correlation matrix, K, which presents the 4 

correlation coefficient between each of the elements used in the NLA finite element meshes: 5 
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where ijρ  is the correlation coefficient between element i and j, and ne is the total number of 7 

elements in the mesh. 8 

The matrix K is positive definite and hence, the standard Cholesky Decomposition algorithm 9 

can be used to factor the matrix into upper and lower triangular forms, S and ST, respectively: 10 

  S
T S = K        (6) 11 

The components of ST are specific to a given finite element mesh (for either UB or LB) and 12 

selected value of the correlation length, θlnc. 13 

The vector of correlated random variables, G (i.e., {G1, G2,…., Gne}, where Gi specifies the 14 

random component of the undrained shear strength and unit weight in element i, eqn. 3) can then be 15 

obtained from the product: 16 

RSG T=           (7) 17 

where R is a vector of statistically independent, random numbers {r1, r2,…., rne} with a standard 18 

normal distribution (i.e., with zero mean and unit standard deviation).  19 

The current implementation implicitly uses the distance between the centroids to define the 20 

correlations between undrained shear strengths and unit weights in adjacent elements.  This is an 21 

approximation of the random field, which involves the integral of the correlation function over the 22 

areas of the two elements. Noted that the effects of the mesh refinement an element size on random 23 

field were presented by Kasama et al. (2012). 24 



Values of the random variable vector R are re-generated for each realization in a set of 1 

Monte Carlo iterations. Figure 1 illustrates the spatial distribution of undrained shear strength 2 

obtained for a typical mesh for one example iteration with input parameters µc =100kPa, COVc = 3 

(σc/µc) = 0.4 and Θ = 1.0.  The lighter shaded regions indicate areas of higher shear strength. A 4 

parametric study has been performed using the ranges listed in Table 1. The angle of slope is 30o, 5 

45o and 60o. It is noted that input coefficient of variability of undrained shear strength, COVc, 6 

ranges from 0.2 to 1.0 while input coefficient of variability of unit weight, COVγ, is fixed at 0.1 7 

because the spatial variability of unit weight is generally less than that of shear strength (e.g. Phoon 8 

& Kulhawy, 1999). Normalized correlation length Θ ranges from 0.25 to 4.0 in addition to very 9 

small correlation length which is corresponding that the strength of elements was randomly 10 

determined (called “Random” for input parameter in this paper). Although horizontal correlation 11 

length is generally larger than vertical one for naturally deposited soils, horizontal correlation 12 

length assumed to be identical to vertical correlation length in this study. This assumption expected 13 

to induce the instability of slope. For example, Al-Bittar & Soubra investigated the effect of 14 

anisotropic correlation structure of shear strength on the bearing capacity problems suggesting that 15 

the variability of the ultimate bearing capacity for a given vertical correlation length decreases 16 

when the horizontal correlation length increases. For each set of parameters, a series of 1000 Monte 17 

Carlo iterations have been performed. In this paper, the result of UB calculations is mainly used to 18 

examine the failure dimension of collapsed slope in addition to evaluate the slope stability. 19 

 20 

Numerical Result 21 

Stochastic stability number 22 

In order to evaluate the stochastic property of slope stability with the spatial variability of soil 23 

property, the computed Cousins’ stability number for slope can then be reported for each iteration, 24 

i, of the random field, Nsi, as follows (Cousins 1978): 25 
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where Fsi is a conventional safety factor of slope for ith iteration. It is noted that the Cousins’ 2 

stability number is the reciprocal of Taylar’s stability, which indicates that a safety factor for slope 3 

is a linear function of Cousins’ stability number, namely, large Cousins’ stability number means 4 

large safety factor of slope. That is the reason why Cousins’ stability number for slope was used in 5 

this study. In addition, the Cousins’ stability number for a given inclined angle β of slope shows 6 

constant value meaning that safety factor of slope Fs, soil unit weight γ, slope height H and 7 

undrained shear strength c are balanced. For example, increase in slope height H for a slope with 8 

similar strength c, unit weight γ and the inclined angle β cause reduction of safety factor of slope Fs 9 

to maintain the constant value of Cousins’ stability number. The Cousins’ stability number NsDet for 10 

homogeneous slope of 45o with µc and µγ is 5.57, which is equivalent to 5.52 and 5.59 reported by 11 

Taylor (1948) and Terzaghi & Peck (1967) respectively. Hence, the mean, µNs, and standard 12 

deviation, σNs, of the stability number are recorded through each set of Monte Carlo iterations, as 13 

follows: 14 
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Figure 2 illustrates one set of results for the case with n = 1000, Θ = 1.0, COVγ = 0.1 and 16 

COVc = 0.2, 0.6 and 1.0. The results confirm that the accumulative mean and standard deviation of 17 

Ns both become stable within 1000 iterations and hence, reliable statistical interpretation of the data 18 

can be obtained from this set of iterations. Several studies (e.g., Phoon et al., 2008) have performed 19 

to determine an appropriate number of Monte Carlo iteration combining reasonable accuracy of the 20 

results in terms manageable computational efforts for a large parametric study. 21 

Figure 3 shows a 20-bin histogram of the stability number from one complete series of 22 

Monte Carlo iterations with COVc = 1.0 and Θ = 0.25 and 1.0. Based on χ2 goodness-of-fit tests, it 23 



is concluded that normal or log-normal distribution functions can be used to characterize the 1 

stability number at a 5% significance level.  2 

 3 

Mean and standard deviation of stability number 4 

In order to evaluate the effect of the slope dimension on the stability for slope with the spatial 5 

variability of soil property, Figure 4 shows the relationships between mean stability number µNs for 6 

Θ = 1.0 and slope angle. Noted that the result of mean stability number for the slope with uniform 7 

strength (COVc = 0 and COVγ = 0.1) is also shown in Figure 4. The stability number for a given 8 

COVc decreases linearly with increasing slope angle while the decrease rate of stability number 9 

against slope angle is similar irrespective of COVc. 10 

In order to examine the variability of stability number, Figure 5 shows the relationships 11 

between COVNs = (σNs/µNs) and COVc for a given Θ. For the slope with elements having randomly 12 

determined strength (Θ = Random), COVNs indicates constant value of 0.1 irrespective of COVc, 13 

which is considered to be attributed from the variability of unit weight (COVc = 0.1). Except for Θ 14 

= Random, COVNs for a given Θ increases linearly with increasing COVc while the increase rate of 15 

COVNs increases from Θ = 0.25 to Θ = 2.0. It can be emphasized that the magnitude of COVNs is 16 

relatively small at most 0.25 even if the magnitude of COVc is large (COVc = 1.0) suggesting that 17 

the variability of strength averages locally along a slip surface of slope. 18 

  Figure 6 shows the mean stability number µNs against normalized correlation length Θ for a 19 

given slope angle and COVc = 0.4 and 0.8. The mean stability number µNs increases with increasing 20 

Θ irrespective of slope angle and COVc while the increase rate increases as COVc increases.  For 21 

example, the mean stability number µNs for COVc = 0.8 increases 40% when Θ change from 0 to 22 

4.0. It can be seen that the magnitude of Θ affect greatly the mean stability number particular for 23 

the slope with large spatial variability. 24 



Figure 7 shows the relationships between COVNs = (σNs/µNs) and Θ for COVc = 0.4 and 0.8. 1 

COVNs indicates the maximum value at Θ = 2.0. COVNs for slope angle = 60o indicates larger value 2 

compared with those for slope angle = 30o and 45o. It can be suggested that the variability of 3 

stability number becomes large when the slope angle is large. This is because the variability of 4 

undrained shear strength along the slip surface become small when the length of slip surface 5 

becomes short with decreasing slope angle, namely the local averaging of undrained shear strength 6 

occurs along the slip surface. 7 

 8 

Reduction of stability number due to spatial variability 9 

Figures 8 summarize the reduction ratio of mean stability number obtained by equation (9) to 10 

deterministic solution for homogeneous slope with µc and µγ, RNs = µNs/NsDet (where NsDet = 5.57) 11 

for combinations of the input parameters (COVc, Θ).  In general, RNs < 1 and hence spatial 12 

variability causes a reduction in the expected slope stability. The trends show that the largest 13 

reductions in µNs occur when the coefficient of variation is high and/or the correlation length is 14 

small. 15 

Figure 9 shows the reduction ratio of accumulative mean stability number and 99% lower 16 

confidence bound of stability number against normalized correlation length Θ. It is noted that the 17 

99% lower confidence bound of stability number, RNs99% = Nsl99%/NsDet, was calculated where Nsl99% 18 

is estimated by assuming a log-normal distribution with µNs and σNs.  Accumulated mean stability 19 

number gradually increases with increasing Θ while the increase rate slightly increase as COVc 20 

increases. The 99% lower confidence bound of stability number shows a minimum value at Θ = 1.0. 21 

Moreover, the difference of the 99% lower confidence bound of stability number for a given COVc 22 

is less than 10 % for 0 < Θ < 4.0 suggesting that correlation length is less important among input 23 

parameters representing the spatial variability of slope. 24 



 1 

Failure Mechanism 2 

Figures 10 illustrate typical failure mechanisms from a series of UB calculations for slope with the 3 

inclined angle of 45o, COVc = 0.4 and Θ = 1.0. Figure 10a) shows deformed FE mesh and the 4 

distribution of input shear strength. Figure 10b) shows dissipated energy together with the vectors 5 

of the computed velocity field. Figures 11 illustrate failure mechanisms for similar slope with 6 

uniform strength and unit weight. Taylor proposed that a conventional failure mechanism for the 7 

slope the inclined angle of 45o is a deep failure mechanism tangent to the base as shown in Figures 8 

11. On the other hand, due to the random field, close inspection shows that the computed failure 9 

mechanisms find paths of least resistance, passing through weaker soil elements in the slope. It can 10 

be seen that there is a well defined toe failure passing through the weak soil zone near the slope toe 11 

and there is a concentration of dissipated energy at the toe of slope. It is suggested that the location 12 

of weak soil elements in the slope affects failure mechanism of slope. 13 

  In order to evaluate a dimension of slope failure statistically, Figures 12 shows a histogram 14 

of the depth and width of collapsed slope for a given COVc and the inclined angle of slope β. It is 15 

noted that the width of slope failure WDet for uniform strength, unit weight and the inclined angle β 16 

of 30o, 45o, and 60o are 6.0 H, 5.0 H and 3.6 H respectively while the depth of slope failure DDet for 17 

uniform strength and unit weight is 2.0 H irrespective of the inclined angle of 30o, 45o, and 60o. The 18 

depth and width of slope failure for β = 30o and the COVc = 0.2, which is small spatial variability, 19 

indicates the maximum frequency at 2.0 H and 5.0 H respectively and the frequency decreases as 20 

the width decreases. However, the frequency of the depth less than 2.0 H and width less than 5.0 H 21 

increases when COVc increases. Therefore, the dimension of collapsed slope for COVc = 0.6 and 1.0 22 

indicates more complex distribution, particularly the frequency of the width and depth becomes 23 

uniform distribution as the inclined angle of slope becomes large.  In addition, it is interesting point 24 

that the width of slope failure for β = 30o includes larger width then 3.6 H, which is the width of 25 



slope failure for uniform strength, unit weight and the inclined angle of 60o. For the depth of slope 1 

failure, the frequency of 2.0 H is large irrespective of COVc and β, meaning that the slope failure 2 

shows a deep failure mechanism tangent to the base (base failure). In addition, the frequency of 1.0 3 

H increases with increasing β and COVc especially for β = 60o. The depth of 1.0 H for slope failure 4 

means that slope failure shows a toe failure mechanism passing the toe of slope. It can be expected 5 

that failure mechanism for steep slope shifts from a base failure to toe failure with the increasing 6 

spatial variability. Finally, it is suggested that the depth and width of slope failure decrease with 7 

increasing spatial variability of soil unit weight and shear strength, namely a slope with a large 8 

spatial variability causes a local failure resulting from the pre-failure of weak soil elements. 9 

Figure 13 shows the relationships between the depth and width for collapsed slope with β = 10 

30 o, 45o and 60 o, Θ = 1.0 and COVγ = 0.1. The square range indicates the coordinates of mean width 11 

µW +/- standard deviation σW and the mean depth µD +/- standard deviation σD for a given COVc 12 

because an original relationships between the depth and the width of slope failure scatter 13 

remarkably. The center of square decreases with increasing COVc and the area of square range 14 

extends with increasing COVc, which is suggesting that the dimension of collapsed slope becomes 15 

small and local as the spatial variability of soil property increases while the variability of the 16 

dimension increases as the spatial variability of soil property increases. In addition, the area of 17 

square range extends with increasing β, which is suggesting that there is a wide variation in the 18 

dimension of collapsed slope as the angle of slope increases. 19 

In order to examine effects of spatial variability on the failure mechanism for slope, Figure 20 

14 shows the relationships between mean width of failure zone and mean depth of failure surface 21 

for a given β obtained from a series of Monte Carlo iteration. It is noted that the width and depth of 22 

failure zone in horizontal and vertical axis respectively are normalized by those for homogeneous 23 

slope. For the inclined angle of slope of 30o, there is a linear relationships between depth and width 24 

irrespective of values of Θ and the dimension of slope failure decreases with increasing COVc 25 



suggesting that small slope failure is generated due to the spatial variability of mechanical property. 1 

 For the inclined angle of slope of 45o, it can be seen that the mean width and depth of failure zone 2 

for slope with spatial variability decreases with increasing COVc and Θ. It can be suggested that the 3 

spatial variability of soil property greatly affects to failure mechanism of slope. Moreover, the 4 

location of weak soil elements in slope is important to local failure of slope and the scale of slope 5 

failure decreases with increasing the magnitude of spatial variability of soil property. For the 6 

inclined angle of slope of 60o, the depth for spatially variable slope decreases sharply up to less than 7 

80% of that for uniform slope. It can be emphasized that small and local failure mechanism induces 8 

for spatially variable slope as the inclined angle of slope increases. 9 

In order to evaluate stability number for spatially variable slope in terms of the failure 10 

mechanism, the relationships between stability number and the width of slope failure is shown in 11 

Figure 15 for β = 30 o, 45o and 60 o, Θ = 1.0 and COVγ = 0.1. The square range of mean stability 12 

number µNs +/- standard deviation σNs and the mean width µW +/- standard deviation σW for a given 13 

COVc is shown in this Figure because an original relationships between stability number and the 14 

width of slope failure scatter remarkably. The area of square range extends with increasing COVc, 15 

which is suggesting that the stability for spatially variable slope is closely related to the failure 16 

mechanism and slope with a large spatial variability tends to induce a local and diverse failure. 17 

 18 

Failure Probability and Safety Factor 19 

In order to link obtained probabilistic results to conventional evaluation for slope stability using 20 

safety factor, the relationship between the probability of slope failure and mean safety factor of 21 

slope for a given COVc and the inclined angle of slope β are shown in Figure 16 together with 22 

results of conventional FOSM by Matsuo (1984). The probability of slope failure became over 0.5 23 

even for the mean safety factor of 1.0 because the mean stability number for slope with spatial 24 

variability is less than that for homogeneous slope as shown in figure 4. The probability of slope 25 



failure for given COVc and Θ decreases drastically as Fs increases compared to results of 1 

conventional FOSM. Moreover, the probability of slope failure for a given Fs increases with 2 

decreasing Θ and increasing β, which is suggesting that the potential of local slope failure increases 3 

with decreasing Θ and increasing β. In addition, the probability difference among different becomes 4 

small as the inclined angle of slope increases. It can be characterized that the numerical limit 5 

analyses incorporated with the random field theory is useful for representing local slope failure 6 

induced by the spatial variability of soil property. 7 

 8 

Conclusions 9 

This paper has presented initial results from a probabilistic study on the slope stability problem 10 

using random field numerical limit analyses and Monte Carlo iteration. The main conclusions are as 11 

follows: 12 

1) The stability number of slope considering the spatial variability of shear strength and unit soil 13 

weight can be characterized by both normal and log-normal distribution functions with 5% 14 

significance level. 15 

2) The stability number decreases linearly with increasing the coefficient of variation in the shear 16 

strength while the 99% lower confidence bound of stability number shows a minimum value at Θ = 17 

1.0.  18 

3) The failure zone of slope can be localized by generating failure surface through weak soil 19 

elements. The stability for spatially variable slope is closely related to the failure mechanism and 20 

slope with a large spatial variability tends to induce a local and diverse failure. It can be emphasized 21 

that small and local failure mechanism induces for spatially variable slope as the inclined angle of 22 

slope increases because failure mechanism for steep slope shifts from a base failure to toe failure 23 

with the increasing spatial variability. 24 



4) The probability of slope failure for given COVc and Θ decreases drastically as Fs increases 1 

compared to results of conventional FOSM. The probability of slope failure for a given Fs increases 2 

with decreasing Θ, and increasing the inclined angle of slope β which is suggesting that the 3 

potential of local slope failure increases with decreasing Θ and increasing the inclined angle of 4 

slope β.  5 

 6 
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a) Mesh for slope stability with uniform strength 3 

  4 

b) Mesh considering the spatial variability of shear strength 5 

Figure 1. Typical mesh for slope stability. 6 
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a) Accumulative mean stability number 3 

  4 

b) Accumulative standard deviation of stability number 5 

Figure 2. Accumulative mean and standard deviation of stability number in Monte Carlo iterations. 6 
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Figure 3. Histogram of stability number for slope. 2 

 3 

Figure 4 Mean stability factor and slope angle. 4 

 5 

Figure 5 COV of slope stability number and COVc. 6 
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Figure 6 Mean stability number and normalized correlation length. 2 

 3 

Figure 7 COV of stability number and normalized correlation length. 4 

 5 

Figure 8. Reduction of stability number due to COVc for a given Θ. 6 
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a) Accumulative mean stability number 2 

  3 

b) 99% lower confidence bound of stability number 4 

Figure 9. Reduction of stability number due to Θ for a given COVc. 5 
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a) Deformed mesh 2 

  3 

b) Dissipated energy and displacement vector 4 

Figure 10. Typical failure mechanism. 5 
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a) Deformed mesh 3 

  4 

b) Dissipated energy and displacement vector 5 

Figure 11. Failure mechanism for slope with uniform strength and unit weight. 6 
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a) The depth of collapsed slope for a given β 6 
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b) The width of collapsed slope for a given β 4 

Figure 12. Histogram of the dimension of collapsed slope. 5 
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Figure 13. The relationships between the depth and width for collapsed slope for a given β. 6 

0.8

1

1.2

1.4

1.6

1.8

2

2.2

1 2 3 4 5 6

D
ep

th
 o

f s
lo

pe
 fa

ilu
re

 D
 (×

H
)

Width of slope failure W (×H)

The result of uniform strength

COV
c
=0.2

COV
c
=0.6

COV
c
=1.0

µ
W
 +/- σ

W

β=30ο
Θ=1.0
COVγ=0.1

µ
D
 +/- σ

D

0.8

1

1.2

1.4

1.6

1.8

2

2.2

1 2 3 4 5 6

D
ep

th
 o

f s
lo

pe
 fa

ilu
re

 D
 (×

H
)

Width of slope failure W (×H)

The result of uniform strength

COV
c
=0.2

COV
c
=0.6

COV
c
=1.0

µ
W
 +/- σ

W

β=45ο
Θ=1.0
COVγ=0.1

µ
D
 +/- σ

D

0.8

1

1.2

1.4

1.6

1.8

2

2.2

1 2 3 4 5 6

D
ep

th
 o

f s
lo

pe
 fa

ilu
re

 D
 (×

H
)

Width of slope failure W (×H)

The result of uniform strength

COV
c
=0.2

COV
c
=0.6

COV
c
=1.0

µ
W
 +/- σ

W

β=60ο, Θ=1.0, COV
γ
=0.1

µ
D
 

+/-
σ
D



 1 

 2 

 3 

Figure 14. Relationships between width and depth of failure slope for a given β. 4 
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Figure 15. Stability number for slope and width of slope failure for a given β. 4 
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a) COVc = 0.2  4 
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b) COVc = 0.4  4 

0

0.2

0.4

0.6

0.8

1

0.9 1 1.1 1.2 1.3 1.4 1.5

Pr
ob

ab
ili

ty
 o

f s
lo

pe
 fa

ilu
re

  p
f

Safety factor by mean  cu, G

Θ = 4.0

β=30o

COV
γ
 = 0.1

COV
c
 = 0.4

FOSM

1.0
0.25

Random

0

0.2

0.4

0.6

0.8

1

0.9 1 1.1 1.2 1.3 1.4 1.5

Pr
ob

ab
ili

ty
 o

f s
lo

pe
 fa

ilu
re

  p
f

Safety factor by mean  cu, G

Θ = 4.0

β=45o

COV
γ
 = 0.1

COV
c
 = 0.4

FOSM

1.0
0.25

Random

0

0.2

0.4

0.6

0.8

1

0.9 1 1.1 1.2 1.3 1.4 1.5

Pr
ob

ab
ili

ty
 o

f s
lo

pe
 fa

ilu
re

  p
f

Safety factor by mean  cu, G

Θ = 4.0

β=60o

COV
γ
 = 0.1

COV
c
 = 0.4

FOSM

1.0 0.25

Random



 1 

 2 

 3 

c) COVc = 0.6  4 

Figure 16. Probability of slope failure compared with FOSM for a given β. 5 
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 1 

Table 1. Input parameters. 2 

Parameter Value 
Angle of slope 30o, 45o, 60o 

Mean undrained shear strength µc 100 kPa 
Coefficient of variability of 

undrained shear strength, COVc 
0.2, 0.4, 0.6, 0.8, 1.0 

Mean unit weight µγ 18 kN/m3 
Coefficient of variability of unit 

weight, COVγ 
0.1 

Ratio of vertical and horizontal 
correlation length 1.0 (Isotropic) 

Normalized correlation length 
Θ=θc/H=θγ/H 

Random, 0.25, 0.5, 
1.0, 2.0, 4.0 

Monte Carlo iterations 1000 
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