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Abstract

An exergetic efficiency is defined in order to compare brine concentration
processes including forward osmosis (FO) across a wide range of salinities.
We find that existing FO pilot plants have lower efficiency than reverse os-
mosis plants in the brackish and seawater salinity ranges. High salinity FO,
in its current form, is still less efficient than mechanical vapor compression.
We show that efficiency is the product of FO exchanger and draw regen-
erator efficiencies, and therefore FO system energy efficiency benefits from
improvements to both. The mass flow rate ratio (between draw and feed flow
rates) is identified as a crucial parameter in the design of efficient FO sys-
tems because of its effect on exchanger efficiency. We demonstrate a method
of thermodynamically balancing an FO system by choosing flow rates that
lead to equal osmotic pressure differences at both ends of the exchanger, and
show the method’s potential to increase efficiency by 3-21% based on current
system designs.

Keywords: FO, energy consumption, energy efficiency, brine
concentration, thermodynamic balancing, high salinity
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J Water flux [m/s]

K Solute resistivity [s/m]

T Absolute temperature [K]

Q̇ Heat transfer rate [W]

Ẇ Work transfer rate [W]

ṁ Mass flow rate [kg/s]

g Specific Gibbs energy [J/kg]

s Salinity or solute mass fraction [kg solute/kg solution]

MR Mass flow rate ratio [-]

MR∗ Analytical optimum mass flow rate ratio [-]

RR Recovery ratio [-]

SR Salt consumption ratio [-]

Greek

Ξ̇ Exergy flow rate [W]

η Exergetic efficiency [-]

π Osmotic pressure [Pa]

ξ Specific exergy [J/kg]

Subscripts

0 Environment

act Actual

c Concentrated brine

D Osmotic dilution

d Draw stream
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dc Concentrated draw

dd Diluted draw

F Fuel

f Feed

h Heating fluid

i In

least Thermodynamic minimum

o Out

p Permeate

p′ Fictitious permeate

R Regenerator

S Salt

s Saline stream being concentrated

T Terminal

X FO exchanger

1. Introduction

Forward osmosis (FO) is a promising technology for oil and gas (O&G)

wastewater treatment [1, 2] because it can concentrate wastewater to high

salinities that are currently unattainable with reverse osmosis (RO). In FO,

a stream is concentrated as water is drawn from it through a semi-permeable

membrane by the high osmotic pressure of a draw solution. Zhao et al. [3] pro-

vide a review of the FO process and its applications. FO desalination plants
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take FO from a pretreatment process to a desalination system by integrat-

ing draw regeneration by thermal or membrane processes. In this paper, we

consider FO systems with regeneration except where noted. The efficacy of

FO in O&G wastewater desalination has been demonstrated by several pilot

plants with varying regeneration systems [2], but energy consumption has

yet to be optimized. We will show that reductions in energy consumption

may arise from improvements to the FO exchangers, regeneration systems,

and system flow rate balance.

Balancing is a method of reducing entropy generation within exchange de-

vices and improving system efficiency through the careful choice of flow rates.

Balancing improves gained output ratio (GOR) in humidification dehumidi-

fication desalination systems [4, 5, 6, 7, 8] and generally improves efficiency

in other applications involving heat and/or mass exchange [9]. Thermody-

namically balancing RO, for example, leads to an efficiency improvement of

4.3 percentage points at fixed membrane size and productivity [9]. In the

case of FO brine concentration, balancing involves optimizing the ratio of

feed and draw flow rates to match osmotic pressure differences on feed and

concentrate sides to raise the FO exchanger efficiency, which in turn raises

the efficiency of the system.

In this paper, we first evaluate the exergetic efficiency of FO systems and

compare them to conventional technologies operating at similar salinities. We

then outline an approach to thermodynamically balance the FO exchanger

and show the potential of balancing to improve the efficiency of existing FO
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pilot plants.

2. Exergetic efficiency of brine concentration

Exergetic efficiency quantifies how much room still exists for reduction of

energy consumption in a given process. In this section we define exergetic

efficiency for brine concentration processes, and in Sec. 2.1 we assess the

efficiency of various processses including FO.

As shown in Fig. 1, a generic FO brine concentration system consists of an

FO exchanger, in which brine is concentrated by osmosis as a draw solution is

diluted, and a regeneration system, which takes in diluted draw and produces

permeate and concentrated draw solution. Although the forward osmosis

exchanger consumes minimal energy (in the form of low pressure pump work),

the regeneration step is energetically costly.

Exergetic brine concentration efficiency compares the least exergy of sep-

arating the saline waste stream into concentrate and permeate (which is a

purely thermodynamic quantity) to the actual exergy consumed in the pro-

cess, which is larger due to irreversibilities in the system. Equation 1 gives

the exergetic efficiency, η, of brine concentration:

η =
least exergy of separation

actual exergy consumption
=

Ξ̇least

Ξ̇act

. (1)

In contrast to the desalination efficiency defined by Mistry and Lienhard [10],
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Figure 1: Schematic diagram of an FO desalination system consisting of an FO exchanger
and a regeneration system (e.g., RO or distillation). Pre- and post-treatment may also be
necessary, but are not considered in this analysis.

which uses the minimum1 least exergy of separating fresh water from a saline

stream, the definition employed here uses the least work for a given recovery

ratio because in many FO applications (including O&G wastewater treat-

ment) there is value in not only in producing permeate but also in reducing

the volume of the feed stream. The exergetic efficiency of brine concentration

processes is discussed further in [11]. The least work of separation, Ξ̇least, in

Eq. 1 is given by Eq. 2 [12] for a system where all streams enter and leave at

atmospheric temperature and pressure:

Ξ̇least = ṁpgp + ṁcgc − ṁfgf , (2)

1Corresponding to an infinitesimal recovery ratio, which is defined in Eq. 11.
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where ṁ and g are mass flow rate and specific Gibbs energy, respectively.

Draw regeneration systems take in exergy in the form of work, heat trans-

fers (HT), and fuel combustion. The actual exergy consumed, Ξ̇act, is ex-

panded in Eq. 3:

Ξ̇act = Q̇
(

1− T0

T

)
︸ ︷︷ ︸
isothermal HT

+ ṁh(ξh,i − ξh,o)︸ ︷︷ ︸
non-isothermal HT

+ ṁF ξF︸ ︷︷ ︸
fuel

+ Ẇ︸︷︷︸
work

. (3)

Q̇ is the isothermal heat transfer rate at temperature T (e.g., by condensation

of steam), and T0 is the temperature of the environment. ṁh, ξh,i, and ξh,o

are the mass flow rate, specific exergy in and specific exergy out, respectively,

of any non-isothermal heating fluid streams. ṁF and ξF are the mass flow

rate and exergetic value of any fuels used. Exergetic values of fuels are given

in [13]. Ẇ is the total work transfer rate (e.g., electrical power).

Substituting Eqs. 2 and 3 into Eq. 1, we can compute the efficiency of

any brine concentration system, including FO:

η =
ṁpgp + ṁcgc − ṁfgf

Q̇
(

1− T0

T

)
+ ṁh(ξh,i − ξh,o) + ṁF ξF + Ẇ

. (4)

Equation 4 is used to evaluate the exergetic efficiencies of FO brine con-

centration systems and conventional desalination methods in the following

section.
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2.1. Assessment of technologies

The efficiency of brine concentration is visualized in this section with

an efficiency-salinity map, Fig. 2. The need for a two-dimensional rating of

efficiency stems from the optimization of different processes for particular

salinity ranges (e.g., EDR for low-salinity brackish applications) and the

effect of salinity on least work of separation.

The values of FO efficiency that appear in the efficiency-salinity map

are calculated using the limited FO pilot plant energy consumption data

available in the open literature. McGinnis et al. [14] describe the operation

of an FO pilot plant that uses an ammonia-carbon dioxide draw solution

and thermal draw regeneration to concentrate high-salinity O&G wastewa-

ter from the Marcellus and Permian Basin shale regions. This thermal FO

pilot uses a distillation column to regenerate the draw, but other thermal

draw regeneration types have been proposed or investigated at the lab scale,

including mechanical vapor compression (MVC) [14], membrane distillation

(MD) [15], and multi-stage flash (MSF) [16]. Thermally-regenerated FO has

also been modeled by Semiat et al. [17]. An FO pilot system with RO re-

generation (FO-RO) was used to concentrate low-salinity O&G wastewater

[2, 18]. FO-RO has also been suggested to be more efficient than RO for

seawater desalination [19, 20], but other studies have shown that this is un-

likely [21, 22]. Another FO pilot plant forgoes draw regeneration in favor of

“osmotic dilution” [2, 18]: the dilution of a pure sodium chloride solution

powers the concentration of O&G wastewater. Osmotic dilution is also used
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in emergency hydration [23], fertigation [24], and other applications described

in [25].

In addition to three existing FO brine concentration pilots, plant efficiency

data for seawater RO (SWRO), brackish water RO (BWRO), electrodialysis

(EDR), MSF, and high-salinity MVC are included for comparison. Models

of seawater FO-RO and high-salinity MVC as well as typical efficiencies of

MVC and multi-effect distillation with thermal vapor compression (TVC-

MED) are also given. The assumptions made in constructing Fig. 2 are

discussed in Appendix A. In Fig. 2, arrows are drawn from the feed salinity

to the concentrate salinity at the efficiency of the process.

The efficiency-salinity map (Fig. 2) can be used to choose energy-efficient

desalination technologies for specific applications by first locating the desired

salinity range on the horizontal axis and then moving up until reaching the

most efficient technology.

Figure 2 shows that FO, in its current state, is not the most efficient

technology at any salinity. At brackish and seawater salinities, RO is more

efficient than FO. Due to irreversible water transport in the FO exchanger,

this will probably always be the case [21]. At high salinities, the efficiency

of FO with thermal draw regeneration is currently lower that of MVC [11]

because of that pilot plant’s use of simple distillation for draw regeneration.

However, several advanced thermal draw regeneration processes have been

proposed [14, 15, 16] that may contribute to raising thermal FO efficiency.

Due to the absence of a regeneration step, the osmotic dilution process has
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Figure 2: Efficiency-salinity map of desalination processes including FO. Efficiency is
calculated with Eqs. 4 and A.1 using data reported in Refs. [2, 11, 14, 18, 20, 26, 27, 28].
Processes are represented with arrows that begin and end at the feed and concentrate
salinities, respectively.

11



a relatively high exergetic efficiency (as defined in Appendix A). However,

in the Hutchings et al. pilot [18], at least 75 kg of NaCl must be consumed

per cubic meter of water removed from the feed (see Appendix B), and the

process produces saline water rather than fresh water. Draw solutes other

than NaCl may be used, but in each case the cost of sourcing the solute

and the cost of disposing (or value of producing) the dilute draw must be

considered. This process might be a good choice for wastewater volume

reduction when clean brine production is also desired.

In some cases, the advantages of FO may outweigh its low efficiency. For

example, FO is reported to be more resistant to fouling than RO [2, 29, 30],

and it has been shown that membrane fouling is more easily reversible in FO

than in RO operated under similar conditions [31].

3. FO exchanger efficiency

As it is for most systems, the overall efficiency of an FO brine concentra-

tion system is related to the efficiencies of its components. A basic FO system

such as that depicted in Fig. 1 consists of two components: an FO exchanger

and a draw regenerator. Both components require external exergy inputs: a

substantial exergy input in the regenerator, Ξ̇R, and the much smaller power

consumption of the FO exchanger, ẆX . The total exergy consumption of

the system is Ξ̇act, Eq. 3.

The regenerator carries out a separation of the dilute draw solution into

permeate and concentrated draw. Here, the least exergy is that of separating

12



the dilute draw stream (equivalent to the mixing work of combining pure and

concentrated draw streams), Ξ̇least,R:

Ξ̇least,R = ṁpgp + ṁdcgdc − ṁddgdd, (5)

and the actual exergy is Ξ̇R = Ξ̇act−ẆX . Substituting these expressions into

Eq. 1 results in the regeneration system efficiency, ηR:

ηR =
ṁpgp + ṁdcgdc − ṁddgdd

Ξ̇act − ẆX

. (6)

In systems with regeneration, an FO exchanger efficiency2 can be defined.

Forward osmosis is a spontaneous process, and the transfer of water down a

chemical potential gradient is inherently lossy. An exchanger efficiency re-

flects the exergy destruction in the FO exchanger by comparing the minimum

exergy needed to remove water from the feed to the exergy needed to remove

the same water from the draw plus the work required by the FO exchanger.

The exergetic efficiency of the exchanger can then be expressed as a ratio of

the least work of desalinating the feed (Eq. 2) to the least work of separat-

ing the draw (Eq. 5) plus the parasitic power consumption associated with

2The exchanger efficiency should not be confused with the exchanger effectiveness [32],
which quantifies the achieved fraction of water recovery.
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overcoming hydraulic losses within the FO exchanger:

ηX =
ṁpgp + ṁcgc − ṁfgf

ṁpgp + ṁdcgdc − ṁddgdd + ẆX

. (7)

The exergetic efficiency of the FO unit varies between 0 for no transfer of

water and 1 for an ideal exchanger with zero osmotic pressure difference ev-

erywhere and no parasitic work consumption. Current pilot plant exchanger

efficiencies are in the range of 8-45% (see Sec. 4.2).

The numerator of regenerator efficiency and the denominator of exchanger

efficiency are identical (neglecting the parasitic exchanger power consump-

tion) because the draw streams do not cross the system boundary, but only

move between components. By relating the component efficiencies to the

system efficiency, we can see how changes to each component affect system

performance. Using Eqs. 6 and 7, the efficiency a brine concentration system

as defined by Eqs. 1 and 2 may be written as a function of the component

efficiencies:

η = ηXηR

( ṁpgp + ṁdcgdc − ṁddgdd + ẆX

ṁpgp + ṁdcgdc − ṁddgdd + ẆXηR

)
. (8)

In the case that the hydraulic pressure drop through the FO channels

(e.g., 2.8 bar in [14]) is much less than the osmotic pressure of the draw, as

would typically occur in FO, ẆX � ṁpgp + ṁdcgdc− ṁddgdd and the system

efficiency reduces to Eq. 9:

η ≈ ηXηR. (9)
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Equation 9 shows that the efficiencies of the FO exchanger and the re-

generation step are equally important in determining the system efficiency.

Regeneration efficiency improvements tend to require increased complexity

(e.g., through multistage designs) and/or increased exchanger area (e.g., of

RO membrane), both of which add capital cost. Therefore, in the follow-

ing section we focus on improving the exchanger efficiency inexpensively by

optimizing flow rates through the FO exchanger.

4. FO exchanger balancing

FO system efficiency can potentially be raised by improving regeneration,

improving the FO exchanger (e.g., through innovation in membranes [33] or

draw solutions [34]), or by balancing flow rates throughout the system. Im-

provements to components can be expensive, but balancing has been shown

to raise efficiency at a fixed exchanger area [9]. Therefore, in this section,

we will describe thermodynamic balancing as it applies to FO exchangers

and quantify its potential to improve FO system efficiency. Parallel-flow ex-

changers are inherently unbalanced, so only counterflow FO exchangers are

considered in this analysis.

Balancing aims to improve the system efficiency at a fixed exchanger area

by optimizing the ratio of the mass flow rates entering the exchanger on the

draw and feed sides, MR:

MR ≡ ṁdc

ṁf

. (10)

Rather than numerically modeling particular systems,we approach bal-
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ancing analytically in this section, using fixed terminal osmotic pressure dif-

ference as a proxy for fixed exchanger area. The terminal osmotic pressure

difference, ∆πT , is the minimum difference between feed and draw stream

osmotic pressures at either end of the FO exchanger.3 As the mass flow rate

ratio is varied, ∆πT is kept constant to minimize the effect on exchanger size

and cost.

Recovery ratio defines the mass fraction of the feed that is removed as

permeate:

RR ≡ ṁp

ṁf

= 1− sf
sc
. (11)

Because of its limited effect on exergetic efficiency, salt permeation through

the FO membrane is neglected in this analysis.

Exchanger efficiency (Eq. 7) may be written as a function of MR for a fixed

feed salinity, recovery ratio, and terminal osmotic pressure difference. Mass

flow rates in Eq. 7 can be normalized by ṁf : ṁp/ṁf = RR, ṁc/ṁf = 1−RR,

ṁdc/ṁf = MR and ṁdd/ṁf = MR+RR. The Gibbs energy of each stream

depends on its salinity (or osmotic pressure). When the minimum osmotic

pressure difference occurs at the feed inlet,

sdd,f = sd|πf+∆πT , (12)

3Contrary to the German proverb, alles hat ein Ende nur die Wurst hat zwei, a coun-
terflow FO exchanger also has two ends with corresponding osmotic pressure differences.
The minimum of the two is considered the terminal osmotic pressure difference, ∆πT .
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and concentrated draw salinity can be computed with Eq. C.3:

sdc,f =
MR+RR

MR
sd|πf+∆πT . (13)

Similarly, when ∆πT is at the concentrate side,

sdc,c = sd|πc+∆πT , (14)

and

sdd,c =
MR

MR+RR
sd|πc+∆πT . (15)

To enforce a minimum terminal osmotic pressure difference of ∆πT , we

use a piecewise expression for exchanger efficiency that is the minimum of

the efficiencies that would be calculated for minimum osmotic pressure differ-

ences occurring at the feed and concentrate sides at a given MR. Therefore,

the denominator contains the maximum of the expressions for draw stream

mixing work that correspond to the two possible terminal locations of the

minimum osmotic pressure difference. Substituting the above relationships

into Eq. 7, we arrive at an expression for exchanger efficiency as a function

17



of MR:

ηX = [RR gp + (1− RR) gc − gf ]

×
(

RR gp + max
{

[MR gd|sdc,f − (MR + RR) gd|sdd,f ],

[MR gd|[sdc,c − (MR + RR) gd|sdd,c ]
}

+
ẆX

ṁf

)−1

. (16)

In Eq. 16, sdc,f , sdd,f , sdc,c, and sdd,c (Eqs. 12 through 15) are themselves

functions of MR.

Exchanger efficiency (Eq. 16) is evaluated in Fig. 3 over a range of mass

flow rate ratios to demonstrate the importance of balancing. In Fig. 3, both

streams are NaCl solutions, the feed salinity is 8% by mass, the recovery ratio

is 50%, and parasitic power consumption is neglected. As the mass flow rate

ratio approaches the optimal mass flow rate ratio, the exchanger efficiency

rises. Because system efficiency is the product of FO exchanger and regener-

ator efficiencies (see Eq. 9), any improvement in exchanger efficiency due to

balancing results in a roughly proportional improvement in system efficiency

for systems with relatively salinity-independent regeneration efficiency.

The sharp peak in efficiency seen in Fig. 3 results from fixing the terminal

osmotic pressure difference (which causes the maximum in the denominator

of Eq. 16); if instead a fixed exchanger length were imposed, the curves would

be smoother.

Conceptually, balancing works by maintaining a relatively uniform os-
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Figure 3: Importance of balancing: FO exchanger efficiency depends on mass flow rate
ratio
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motic pressure difference throughout the exchanger to minimize entropy gen-

eration and maximize efficiency while maintaining sufficient mass flux every-

where. Figure 4 demonstrates the effect of balancing at a fixed terminal

osmotic pressure difference (35 bar, based on the low-salinity FO-RO pilot

[2, 18]) using salinity profiles derived in Appendix C. As the mass flow rate

ratio is varied, the slope of the draw salinity profile changes. Larger mass

flow rate ratios lead to a smaller change in draw salinity but require that a

larger mass flow rate goes through the regeneration device. Smaller mass flow

rate ratios minimize the mass flow rate through the regenerator, but require

a larger change in draw salinity. Somewhere in the middle, an optimal mass

flow ratio exists that maximizes the exchanger efficiency.

The optimal mass flow rate ratio can be found numerically (as in Fig.

3) or analytically. In general, the mass flow rate ratio is a function of the

recovery ratio and the draw salinities at the two ends of the FO exchanger:

MR = RR
sdd

sdc − sdd
. (17)

When MR=MR∗,

MR∗ =
RR sd|πf+∆πT

sd|πc+∆πT − sd|πf+∆πT

, (18)

the osmotic pressure difference is equal on feed and concentrate sides.

To find the optimal mass flow rate ratio analytically, we examine the

effect of MR on ηX , Eq. 7. When the hydraulic pressure drop in the FO

exchanger is very small compared to the feed osmotic pressure, as it is in
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Fig. 5, the change in the parasitic work term in exchanger efficiency (ẆX/ṁf )

with changes in MR is small compared to the change in the mixing work

(Eq. 5) of the draw per unit mass of feed, [Ξ̇least,R/ṁf = RR gp + MR gdc −

(MR+RR) gdd]. As shown in Fig. 5, when MR is such that the minimum

osmotic pressure difference occurs on the feed side (MR ≤ MR∗), this mixing

work decreases with increasing MR, and when ∆πT is on the concentrate side

(MR ≥ MR∗), the mixing work increases with increasing MR. Therefore, the

minimum mixing work occurs when the terminal osmotic pressure difference

is the same at both ends (MR = MR∗). Mixing work is in the denominator

of exchanger efficiency, and when the parasitic work can be neglected, the

expression for MR∗ (Eq. 18) is the mass flow rate ratio that maximizes FO

exchanger efficiency.

4.1. Limitations

The analytical expression for optimal mass flow rate ratio is based on

fixing the terminal osmotic pressure difference and the approximations of low

parasitic power consumption and salinity-independent regenerator efficiency.

Therefore, Eq. 18 has some limitations.

In low-salinity FO brine concentration, MR∗ (Eq. 18) does not predict the

optimal mass flow rate ratio, as shown in Fig. 6. Here, the hydraulic pressure

loss is significant relative to the feed osmotic pressure, and the variation of

the parasitic work term with varying MR cannot be neglected. Numerical

optimization, rather than Eq. 18, must be used in low-salinity applications
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such as wastewater treatment with FO membrane bioreactors [35].

Numerical modeling can also be employed to account for internal con-

centration polarization (ICP), which affects the required membrane area in

FO. Assuming operation in FO mode (membrane active layer facing the feed

to minimize fouling [36]), and neglecting external concentration polarization,

the flux at any point in an FO exchanger is given by Eq. 19 [36]:

J = A[πd exp(−JK)− πs], (19)
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where J is the water flux into the draw side, A is the membrane active

layer permeability, πd and πs are the local osmotic pressures of the draw

and feed streams, respectively, and K is the solute resistivity of the FO

membrane support layer. Eq. 19 shows that the nearly-uniform osmotic

pressure difference enforced by Eq. 18 would cause flux to vary throughout

the exchanger, which may not be optimal.

Changing the mass flow rate ratio at a fixed terminal osmotic pressure

difference requires some change in exchanger area and cost. However, nu-

merically optimizing the mass flow rate ratio at a fixed exchanger area would

still improve efficiency according the the theory described in [9]. Analytically

balancing the FO exchanger alone also neglects the change in regenerator ef-

ficiency with draw salinity, which may be most pronounced with thermal

regeneration methods. Future work on numerical modeling of balancing in

FO systems could quantify the effect of balancing at a fixed exchanger length

including the effects of ICP, parasitic power consumption, and regeneration

system efficiency.

4.2. Applications

Optimizing the mass flow rate ratio can improve the efficiency of real

systems. In Fig. 7, mass flow rate ratio is varied for the FO exchangers used

in the low-salinity FO-RO pilot [2, 18] and the thermal FO pilot [14] as well

as the seawater FO-RO model by Nicoll [20]. The osmotic dilution pilot

[18] is not included in Fig. 7 because it is more practical to minimize salt
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use (see Appendix B) than to maximize exchanger efficiency in the osmotic

dilution case. Theoretical exchanger efficiency curves were plotted with the

same terminal osmotic pressure difference, feed salinity, and recovery ratio as

each pilot plant using Eq. 16. The parasitic electrical consumption of all FO

exchangers was estimated based on a 2 bar hydraulic pressure drop in both

feed and draw streams. The minimum mass flow rate ratios for the osmotic

dilution and thermal FO pilots correspond to a saturated draw solution.4

The minimum mass flow rate ratios for the low salinity FO-RO pilot and

the Nicoll FO-RO model correspond to 7% NaCl draw because they use RO

regeneration.

Figure 7 shows the potential of balancing to raise exchanger efficiency

in existing systems. The exchanger efficiency varies with mass flow rate

ratio (as well as minimum osmotic pressure difference, feed salinity, and

recovery ratio, as in Eq. 16), reaching a maximum at MR∗ (Eq. 18) in all

cases except the low-salinity FO-RO pilot, where the low feed salinity (0.35%)

leads to a hydraulic pressure drop comparable to the feed osmotic pressure, as

discussed in Sec. 4.1. By choosing the optimal mass flow rate ratio, efficiency

improvements of 3% in Nicoll’s FO-RO model [20] to 21% in the thermal FO

pilot [14] could be realized.

For systems with regeneration processes such as RO whose efficiency is

4Properties of the ammonia-carbon dioxide draw solution in [14] were estimated using
the extended UNIQUAC model for electrolyte solutions as in [37] with additional data
from [38].
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Figure 7: Potential improvements in the FO exchanger efficiency of pilot plants. Mass
flow rate ratio is varied for the same terminal osmotic pressure difference, feed salinity,
and recovery ratio as each pilot plant using data from [2, 14, 20]. The performance of each
plant at its reported mass flow rate ratio as well as at the analytical optimum (MR∗) are
also plotted.
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relatively independent of feed salinity [11], Eq. 9 shows that the increases

in exchanger efficiency due to balancing will be translated into proportional

increases in system efficiency. However, the efficiency of thermal regenera-

tion processes may vary more with draw stream salinity, and therefore such

systems should be optimized by varying the mass flow rate ratio within a

numerical model of the entire system. Either way, the efficiency gain attain-

able by balancing alone is small, and will not change the trends seen in the

salinity-efficiency map (Fig. 2).

5. Conclusion

FO brine concentration processes were compared to established technolo-

gies to demonstrate that improvements in exergetic efficiency are needed for

FO to become more energetically competitive. We showed that FO system

exergetic efficiency is approximately the product of FO exchanger efficiency,

which we defined in Eq. 7, and regenerator efficiency. This expression demon-

strates that the exchanger and regenerator efficiencies are equally important,

and improvements to either will affect the system efficiency proportionally.

The mass flow rate ratio was identified as a crucial parameter in high-

efficiency FO system design, and we showed that thermodynamically bal-

ancing systems by optimizing the mass flow rate ratio leads to modest im-

provements in efficiency. We offered a simple expression (Eq. 18) for the

optimal mass flow rate ratio that maximizes the FO exchanger efficiency for

high salinity FO at a fixed terminal osmotic pressure difference. In the pi-
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lot systems considered, balancing by flow rate optimization would improve

the exergetic efficiency of FO brine concentration by around 3-21%. In FO

desalination system design, the balancing method is best applied by numeri-

cally optimizing the mass flow rate ratio for maximum system efficiency at a

fixed FO exchanger size, using the analytical expression to provide an initial

estimate, and setting the mass flow rates and concentrated draw salinity of

the FO system according to the results of the optimization.
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Appendix A. Efficiency assessment methods

Constructing Fig. 2 with data from the open literature required several

approximations. In all cases, the permeate was approximated as pure water

in the calculation of least work. Also, although water composition varies by
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application, the feed was assumed to be a sodium chloride solution in the

calculation of least exergy and density. Mistry and Lienhard [10] show that

only a small error is introduced when calculating the least work of separation

of brackish water and seawater as if they were NaCl solutions. Thiel et al.

[11] find that NaCl is a reasonable approximation for the osmotic pressure of

high-salinity produced water from the Permian Basin, Marcellus, and Nova

Scotia shale plays.

Approximations were also made in calculating exergy consumption. The

temperature of heat input in the McGinnis et al. [14] system was assumed to

be 100 ◦C (consistent with the use of atmospheric pressure steam for heating)

as in [10], and energy and salinity data was taken from the results of the

energy consumption trial in [14]. The recovery ratio of the Shuweihat MSF

plant is not reported, so a typical value of 33% [16] was used. 33% recovery

was also assumed for seawater TVC-MED and MVC, which are evaluated at

3.5% feed salinity. The RO regeneration step in the low-salinity FO-RO pilot

was assumed to be 35% efficient (typical of SWRO systems) because of the

4.5% salinity of the diluted draw. The flow rate through the RO unit was

calculated based on conservation of salt and water for the stream salinities

given in [2]. The Nicoll seawater FO-RO model [20] assumed a terminal

osmotic pressure difference of 1.6 bar, which would require an extraordinarily

large membrane area (see Eq. 19).

Evaluating the efficiency of the non-regenerating (“osmotic dilution”) FO

brine concentration system described by Hutchings et al. [18] in such a way
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that it could be compared to regenerating systems was not straightforward

because the plant did not produce pure water. To make this comparison, we

borrowed the FO exchanger efficiency defined in Sec. 3 (Eq. 7) for exchangers

within regenerating systems, which relates the least work of separating the

feed, as given by Eq. 2, to the least exergy required to regenerate the draw

(Eq. 5) plus the work required to overcome hydraulic losses in the exchanger,

ẆX . The osmotic dilution FO efficiency used to compare the Hutchings et

al. plant [18] to processes that produce permeate in Fig. 2 is given in Eq. A.1:

ηD =
ṁp′gp′ + ṁcgc − ṁfgf

ṁp′gp′ + ṁcdgcd − ṁddgdd + ẆX

. (A.1)

Subscripts dc and dd refer to the concentrated and dilute draw solutions,

respectively. The subscript p′ refers to the water that moves from the stream

being concentrated to the draw stream. Under the assumption of no salt

permeation, ṁp′ = ṁf − ṁc and gp′ is the pure water Gibbs energy.

Appendix B. Salt consumption in osmotic dilution

In osmotic dilution systems, reasonably high efficiency is balanced by

high salt consumption. Therefore, predicting and minimizing the salt con-

sumption is critical. Although the aforementioned pilot plant consumed a

saturated salt solution [2, 18], salt use could be minimized in the osmotic

dilution system shown in Fig. B.8, which takes in only solid salt. In a con-

tinuous, counterflow system of this type, part of the dilute draw is internally
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Figure B.8: Osmotic dilution brine concentration system that consumes solid salt

recycled to make the concentrated draw.

We can define a dimensionless performance parameter, the salt ratio SR,

which gives the mass of salt consumed per unit mass of water removed from

the feed:

SR ≡ ṁS

ṁp′
. (B.1)

Taking conservation of water and salt on the draw side of the system in Fig.

B.8, we find that the salt ratio is:

SR =
sdd

1− sdd
, (B.2)

where sdd is the salinity of the dilute draw stream.

By Eq. B.1, the salt ratio of the osmotic dilution pilot [2] would be 0.075

(75 g NaCl per kg water removed from the feed) based on its dilute draw
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Figure C.9: Schematic diagram of counterflow FO exchanger for balancing analysis

salinity of 7% [2]. This differs from the system described by Mistry and

Lienhard [10] which used the energy of solvation for a salt to power the

separation of pure water from saline water. The osmotic dilution system

described here consumes less salt per unit water removed from the feed, but

it does not produce pure water. Because the salt ratio (Eq. B.2) is only a

function of dilute draw salinity, an osmotic dilution system of this type does

not benefit from balancing, and only requires that the minimum osmotic

pressure difference occurs at the feed side (MR ≤ MR∗).

Appendix C. Salinity profile analysis

Figure C.9 illustrates a control volume analysis of an FO exchanger with

a saline stream to be concentrated (subscript s) and a draw stream (sub-

script d). Mass flow rates and salinities at the feed and concentrated draw

inlets are known. Salinities and mass flow rates inside the exchanger are

determined as functions of the saline stream mass flow rate, ṁs, at any point

in the exchanger, neglecting concentration polarization. These profiles are

illustrated in Fig. 4.

Making a control volume of the saline side of the FO exchanger in Fig. C.9,
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conservation of salt determines the salinity as a function of mass flow rate,

assuming no salt permeation:

ss|ṁs =
sfṁf

ṁs

. (C.1)

Conservation of salt in the draw-side of the FO exchanger, ṁd|ṁs sd|ṁs =

ṁdcsdc, along with conservation of mass in the control volume with a dashed

outline in Fig. C.9, ṁs + ṁdc = ṁc + ṁd|ṁs , leads to the salinity in the draw

side as a function of saline stream mass flow rate, Eq. C.2:

sd|ṁs =
sdcṁdc

ṁdc + ṁs − ṁc

. (C.2)

Evaluating Eq. C.2 at the dilute draw outlet (feed inlet), we find the

relationship between dilute and concentrated draw salinities as function of

RR and MR, which are defined in Sec. 4:

sdd
sdc

=
ṁdc

ṁdd

=
MR

MR + RR
(C.3)
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