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Theoretical studies of process flexibility designs have mostly focused on expected sales. In this paper,

we take a different approach by studying process flexibility designs from the worst-case point of view. To

study the worst-case performances, we introduce the plant cover indices (PCIs), defined by bottlenecks in

flexibility designs containing a fixed number of products. We prove that given a flexibility design, a general

class of worst-case performance measures can be expressed as functions of the design’s PCIs and the given

uncertainty set. This result has several major implications. First, it suggests a method to compare the worst-

case performances of different flexibility designs without the need to know the specifics of the uncertainty

sets. Second, we prove that under symmetric uncertainty sets and a large class of worst-case performance

measures, the long-chain, a celebrated sparse design, is superior to a large class of sparse flexibility designs

including any design that has a degree of two on each of its product nodes. Third, we show that under

stochastic demand, the classical Jordan and Graves (JG) index can be expressed as a function of the PCIs.

Furthermore, the PCIs motivate a modified JG index that is shown to be more effective in our numerical

study. Finally, the PCIs lead to a heuristic for finding sparse flexibility designs that perform well under

expected sales and have lower risk measures in our computational study.

Key words : Process flexibility, flexible production, capacity planning, robust optimization, worst-case

analysis

1. Introduction

Fierce competitions in today’s global markets have led manufacturers to expand product portfolio in

order to maintain market shares. Unfortunately, the increase in product offerings increases demand

volatility and reduces forecast accuracy. This, coupled with a significant increase in volatility of

commodity prices, forces manufacturers to look for new operations strategies to better match

available supply with variable demand (Simchi-Levi (2010)). Consequently, many manufacturers
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have started to adopt an operations strategy known as process flexibility, which is defined as

the ability to “build different types of products in the same manufacturing plant or on the same

production line at the same time” (Jordan and Graves (1995)).

Process flexibility has been applied in various industries, from the automotive to the consumer

packaged goods industry (see Simchi-Levi (2010)), to better respond to market changes without

significantly increasing operational cost, inventory levels, or response time. While effective, process

flexibility does not come free. Indeed, in full (process) flexibility, each plant is capable of producing

all product families and as a result, such a strategy requires a significant investment. Therefore,

most firms are only willing to implement sparse or limited flexibility designs, that is, designs where

each plant can produce only a few different products. Interestingly, it has been observed by both

practitioners and academics that, in many situations, the effectiveness of certain sparse flexibility

designs is almost the same as that of the full flexibility design (see Chou et al. (2008)).

These observations have motivated recent analytical work, e.g., Chou et al. (2010), Simchi-Levi

and Wei (2012), in attempting to explain the effectiveness of a certain class of sparse flexibility

designs. The objective of these papers is to compare expected demand satisfied under sparse flexi-

bility design to that of full flexibility, under stochastic demand. In this paper, we take a different

approach by studying the worst-case, also referred to as robust, point of view. That is, we model the

unknown demand using an uncertainty set, and study the worst-case performance of a flexibility

design among all the demand instances in the given uncertainty set.

The rest of the paper is organized as follows. In the remainder of this section, we introduce

notation (Section 1.1) and a class of worst-case performance measures for flexibility designs (Section

1.2). This class includes the minimum demand satisfied by the design; the minimum ratio of

the demand satisfied by the design and the demand satisfied by full flexibility; and, the largest

absolute gap between the demand satisfied by full flexibility and that of the specific design under

consideration. In what follows, we refer to these measures as the robust measures associated with

a given design.

In Section 2, we provide a literature review. In Section 3, we introduce the plant cover index

(PCI) and establish the connection between the PCIs and worst-case performance measures of

flexibility designs. We apply the index to show that one flexibility design always performs better

in worst-case than another if and only if the PCIs of the latter design are dominated by the PCIs

of the former. In Section 4, we compare the worst-case performances of different sparse process

flexibility designs under symmetric uncertainty sets. In particular, we prove that an important

flexibility design called the long chain always has better worst-case performance than a class of

sparse flexibility designs that includes any design where each product is produced by exactly two

plants. In Section 5, we show that the classical Jordan and Graves (JG) index can be calculated
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as a function of the PCIs. Combining insights from the JG index and the PCIs, we propose a new

index for comparing flexibility designs that performs well in our computational study. Finally, in

Section 6, we propose a class of heuristics for identifying sparse flexibility designs that perform

well under expected sales and various risk measures.

1.1. Notation

Let Rn denote the n-dimensional vector space of reals. In the paper, bold letters are reserved for

vectors and matrices. For example, x∈Rn is a vector with entries x1, x2, ..., xn. Also, we let mini(x)

denote the i-th smallest element in the set {x1, x2, ..., xn}. Finally, we let [n] denote the set of

integers from 1 to n and Σ([n]) denote the set of all permutations of [n].

In this paper, we consider a system with m plants and n products for some arbitrarily fixed

positive integers m and n. We let A := {a1, a2, ..., am} represent the set of plant nodes, and B :=

{b1, b2, ..., bn} represent the set of product nodes. In our model, we assume plant i has a fixed

capacity of ci for 1≤ i≤m.

A flexibility design A is represented by a set of arcs that form a bipartite graph defined on

sets A and B. For example, the full flexibility design is denoted by F := {(ai, bj)|∀1≤ i≤m,1≤

j ≤ n}. For any u ∈A∪B, define N(u,A ) := {v|(u, v) or (v,u) ∈ A }, that is, N(u,A ) is the set

of neighbors of u in the bipartite graph defined by (A,B,A ). Moreover, for set S ⊆A or S ⊆B,

we let N(S,A ) :=∪u∈SN(u,A ). Throughout the paper, we will assume that |N(u,A )| ≥ 1 for all

u∈A∪B; that is, we assume no flexibility design A has isolated plant or product nodes. We say

A is connected if the undirected bipartite graph formed by A is connected, i.e., N(S,A )≥ 1, for

any S (A∪B, S ̸= ∅.

Given an instance of the demand vector d, the total demand satisfied by a flexibility design A ,

denoted by P (d,A ), is defined as the objective value of the following linear program (LP):

P (d,A ) :=max
∑

(ai,bj)∈A

fij (1)

s.t.
∑

ai∈N(bj ,A )

fij ≤ dj, ∀bj ∈B (2)

∑
bj∈N(ai,A )

fij ≤ ci, ∀ai ∈A (3)

fij ≥ 0,∀(ai, bj)∈A (4)

f ∈R|A |. (5)

We will refer to P (d,A ) as the sales of A given d. It is easy to see that P (d,F ) can be

expressed as follows:
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Remark 1. P (d,F ) =min{
∑m

i=1 ci,
∑n

i=1 di}.

Finally, a system is said to be balanced if m= n. In a balanced system, we define the long chain,

denoted by C , as C = {(a1, b1), (a2, b2), ..., (an, bn)} ∪ {(a1, b2), (a2, b3), ..., (an−1, bn), (an, b1)}; and
dedicated design, denoted by D , as D = {(ai, bi)|∀1≤ i≤ n} (see Figure 1). One can immediately

see that P (d,D) =
∑n

i=1min{ci, di}. Also, we say a design A is a 2-flexibility design if any plant

node and any product node is incident to exactly two arcs in A .

Plants Products Plants Products

Long Chain Dedicated

Figure 1 Designs for Balanced System with n= 6

1.2. Robust (Worst-case) Measures

A deterministic measure is a function that maps a demand instance d∈Rn and a flexibility design

A to a real number. One example of such a function is the sales of a flexibility design, P (·). Given

a deterministic measure function f , we use Rf (·) as the robust measure (or robust counterpart) of

f , which is defined as

Rf (A ,U) :=min
d∈U

f(d,A ).

In words, Rf (·) is a function that maps a flexibility design A and an uncertainty set U to a real

number, which measures the “robustness” of A under U . Because the product demand is never

negative, we will assume that any uncertainty set U considered in the paper lies in (R+)n.

In this paper, we assume that any deterministic measure function f is continuous in d. This

assumption ensures that its robust counterpart, Rf (·), is always well defined. Next, we introduce

three commonly used deterministic measure functions, denoted by fs, fr, and fd, where

fs(d,A ) := P (d,A ), ∀d∈Rn

fr(d,A ) :=
P (d,A )

P (d,F )
, ∀d∈Rn \ {0}, fr(0,A ) = 1,

fd(d,A ) := P (d,A )−P (d,F ), ∀d∈Rn.
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To keep the notation simple, we let Rs :=Rfs , Rr :=Rfr and Rd :=Rfd . Intuitively, Rs is the worst

possible sales of design A ; Rr is the worst possible ratio of the demand satisfied by A to that

of demand satisfied by full flexibility; and finally, Rd is the most negative gap between demand

satisfied by full flexibility and demand satisfied by A .

For any vector d ∈Rn, define dσ := [dσ(1), dσ(2), ..., dσ(n)]
T for any σ ∈Σ([n]). We define Σ(d) :=

{dσ|∀σ ∈Σ([n])}, that is, Σ(d) is the set of all vectors that are permutations of d. For any uncer-

tainty set U , we say that U is symmetric if for any d ∈ U , dσ ∈ U for any permutation σ. Note

that Σ(d) is always symmetric, and if U is symmetric, then Σ(d)⊆U for any d∈ S.

In worst-case analysis, symmetric uncertainty sets are used for modeling symmetric demand

variations. Some examples of symmetric uncertainty sets include

• triangle uncertainty, where U = {
∑n

i=1 di = t, di ≥ 0, ∀1≤ i≤ n} for some t∈R+;

• box uncertainty, where U = {l≤ di ≤ u, ∀1≤ i≤ n} for some l, u∈R+;

• ellipsoidal uncertainty, where U = {
∑n

i=1(di − z)2 ≤ t, ∀1≤ i≤ n} for some z, t∈R+;

or any intersection of the triangle, box or ellipsoidal uncertainty sets.

We note that the purpose of this paper is not to model demand uncertainties using an uncer-

tainty set. Instead, we develop tools that can be applied to general classes of uncertainty sets

(symmetric uncertainty sets in Section 3.2 and symmetric perturbation uncertainty sets in Section

3.3). Moreover, we develop results that identify flexibility designs performing well for not just one

uncertainty set, but an entire class of uncertainty sets, and these results lead to design heuristics

that are robust under a wide range of uncertainties.

We say that a deterministic measure function f(·) is monotonic in sales under fixed total demand

if there exists a function g such that

f(d,A ) = g(P (d,A ),
n∑

i=1

di), (6)

and g(x, y) is strictly increasing in x with any fixed real number y.

In fact, most of the commonly used deterministic measure functions are monotonic in sales

under fixed total demand. In particular, it is easy to check that fs(·), fr(·) and fd(·) all satisfy this

condition. Similarly, deterministic measure functions such as the capacity shortage, i.e., f(d,A ) =

P (d,A )−
∑n

i=1 di, and service rate, i.e., f(d,A ) = P (d,A )∑n
i=1 di

are also monotonic in sales under fixed

total demand. We define Γ to be the set of all robust (worst-case) measures with deterministic

measure functions that are monotonic in sales under fixed total demand.

2. Literature Review

Research on the effectiveness of sparse flexibility designs has first started with the seminal paper

of Jordan and Graves (1995). The authors analyze a balanced manufacturing system where the
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number of plants equals the number of products. They show, using empirical analysis, that a long

chain design, a design in which all plants and products are connected in one cycle, performs almost

as well as the full flexibility design from the average sales point of view. The authors then apply

a similar concept, referred to as the chaining strategy, to unbalanced systems and show that even

in this case, their design performs almost as well as full flexibility. Thus, their empirical work has

two important implications. First, it suggests that a properly designed sparse flexibility can often

capture all the benefits of full flexibility. Second, it provides a useful guideline on how to create

effective sparse flexibility designs.

Following the work of Jordan and Graves, researchers have attempted to explain analytically the

observed effectiveness of the long chain and other sparse flexibility designs. Aksin and Karaesmen

(2007) show that there is a decrease in marginal benefit associated with the increase in either the

degree of flexibility or the capacities of the manufacturing plants. Chou et al. (2010) develop a

method to compute the average demand satisfied by the long chain in asymptotic regime. Using

this method, they show that for some demand distributions, the average sales associated with the

long chain is very close to that of full flexibility when the system size approaches infinity. Finally,

the paper by Simchi-Levi and Wei (2012) identifies a decomposition for the expected demand

satisfied by the long chain and applies the decomposition to prove several properties of the long

chain for any finite system size. In particular, the paper proves that the long chain is optimal in

average sales among all 2-flexibility designs, i.e., the degree for every plant and degree product is

two, and derives a bound on the gap between the average sales of full flexibility and that of the

long chain. Much like Jordan and Graves (1995), these research papers study flexibility designs

under stochastic demand and focus on their average-case performances.

By contrast, very little research has focused on worst-case performance measures for flexibility

designs. A rare exception is the work of Chou et al. (2011), which proves in a n plants and n

products system, when the demand for each product is bounded by λ times the capacity of each

plant, then an (α,λ,∆)-expander always performs within (1−αλ)-optimality of the full flexibility

design. Chou et al. (2011) also generalize the result to unbalanced systems, i.e., systems where

the number of products is not equal to the number of plants, with non-homogenous plants and

products. The main difference between Chou et al. (2011) and the current paper is that Chou et al.

(2011) establishes conditions to identify sparse flexibility designs that are guaranteed to be within

(1− ϵ)-optimality of the full flexibility, whereas this paper establishes conditions and flexibility

indices to compare the worst-case performances of different (sparse) flexibility designs.

An interesting question is whether one can compare the effectiveness of different flexibility designs

without resorting to a detailed simulation study. To answer this question, the academic community

started to develop flexibility design indices, following the original index developed in Jordan and
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Graves (1995), which we will refer to as the JG index. Other well-known indices include the

Structural Flexibility index in Iravani et al. (2005), WS-APL index in Iravani et al. (2007), g-

Measure in Graves and Tomlin (2003), and the Expansion index in Chou et al. (2008). We refer

the readers to Deng (2013), for a complete description of these indices.

Finally, following on the chaining strategy of Jordan and Graves (1995), different heuristics have

also been proposed to generate effective sparse flexibility designs. Examples include the randomized

sampling method of Chou et al. (2010), the node expansion method of Chou et al. (2011) and the

unbalanced design guideline of Deng and Shen (2013).

3. Plant Cover Indices and Robust Measures

In order to develop some intuition, we start off the section (in Section 3.1 and 3.2) by assuming the

uncertainty sets are symmetric. This assumption is relaxed in Section 3.3. For flexibility designs A1

and A2, we say that A1 ismore symmetrically robust than A2 if for any R ∈ Γ and any symmetric

set U , we have R(A1,U)≥ R(A2,U). Moreover, we say A1 is strictly more symmetrically robust

than A2 if A1 is more symmetrically robust than A2, and there exists some symmetric set U and

R ∈ Γ that R(A1,U) > R(A2,U). One can think of A1 being strictly more symmetrically robust

than A2 similar to A2 being “Pareto dominated” by A1 in worst-case metrics.

3.1. Definition of the Plant Cover Indices

For any k, 0 ≤ k ≤ n, we define the plant cover index (PCI) at k for flexibility design A as the

minimum plant capacities required to create a vertex cover on A , given that the vertex cover

contains exactly k products. The PCI at k, denoted by δk(A ), is defined as the objective value of

the following integer program:

δk(A ) :=min
m∑
i=1

cipi

s.t.
n∑

j=1

qj = k,

pi + qj ≥ 1,∀(ai, bj)∈A

p∈ {0,1}m,q∈ {0,1}n.

It is straightforward to check that δ0(A ) =
∑m

i=1 ci and δn(A ) = 0 for any A . Therefore, different

designs can only differ in δk(·) for 1≤ k < n. Note that for any subset of products S ⊆B, to create

a vertex cover with S ⊆ B and S′ ⊆ A, one would need S′ to cover all arcs that are incident to

N(B \S,A ). Therefore, δk(A ) can be expressed as follows.
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Remark 2.

δk(A ) = min
S⊆B,|S|=k

∑
ai∈N(B\S,A )

ci.

One can think of Remark 2 as a combinatorial interpretation of δk(A ). To develop more intuition

for the PCI, recall that for any flexibility design A and a fixed demand vector d, P (d,A ) is defined

by the LP under Equations (1-5). The LP is actually a max-flow problem and from the classical

max-flow min-cut theorem, we have

P (d,A ) =min
m∑
i=1

cipi +
n∑

j=1

qjdj (7)

s.t. pi + qj ≥ 1,∀(ai, bj)∈A (8)

p∈ {0,1}m,q∈ {0,1}n. (9)

For any S ⊆B, let pi = 1,∀ai ∈N(B \S,A ), and qj = 1,∀bj ∈ S, define

B(S) :=
∑

ai∈N(B\S,A )

ci +
∑
bj∈S

dj.

Then, p,q are feasible for Equations (8) and (9), with objective value B(S). Therefore, B(S) is

an upper bound on P (d,A ). If B(S)<
∑m

i=1 ci, then S and N(B \ S,A ) form a bottleneck that

blocks A from utilizing all of the plant capacities. Note that B(S) is the sum of two quantities,∑
ai∈N(B\S,A ) ci, the total capacities of the bottleneck, and

∑
bj∈S dj, the total demands of the bottle-

neck. Hence, by Remark 2, one can think of δk(A ) as the minimum total capacities for a bottleneck

containing exactly k products.

When demand is uncertain, there are exponentially many bottlenecks that may affect the sales

of A . However, in Section 3.2, we show that surprisingly, the capacities of the n+ 1 bottlenecks

corresponding to (δ0(A ), δ1(A ), ..., δn(A )), form a sufficient statistic for determining the worst-

case performance of A under any fixed symmetric uncertainty set.

The PCIs defined in this section are related to two concepts in the process flexibility literature:

the JG index in Jordan and Graves (1995), and the graph expanders in Chou et al. (2011). Here,

we discuss the connection between the PCIs and the expanders. The connection between the PCIs

and the JG index will be discussed later in Section 5.

In Chou et al. (2011), the authors stated that a design A is an (α,λ,∆)-expander if (i) for every

u ∈B, |N(u,A )| ≤∆; and (ii) for any small subsets S ⊆B where |S| ≤ αn, we have |N(S,A )| ≥

λ|S|. Therefore, under the assumption that all plants have unit capacity, a design A is an (α,λ,∆)-

expander if and only if

min
1≤k≤αn

δn−k(A )

k
≥ λ, and |N(u,A )| ≤∆,∀u∈B.
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This connection illustrates that under the setting where all plants have unit capacity, one can use

the PCIs to check if A is an (α,λ,∆)-expander. Moreover, we note that while both the expander

property and the PCIs (in Section 3.3) extend to more general demand uncertainties, a direct

connection between the extensions does not exist.

3.2. Worst-case Measures with Symmetric Uncertainty Sets

To study the robust measures of A under symmetric uncertainty sets, we first start with a lemma

regarding Rs(A ,U). Recall that Rs is the worst possible sales of A under U , i.e., Rs(A ,U) :=

mind∈U P (d,A ).

Lemma 1. For any fixed d∈U and any integer 0≤ k≤ n,

Rs(A ,U)≤ δk(A )+
k∑

i=1

mini(d).

Proof. By definition of δk(A ), we can find vectors p′ ∈ {0,1}m, q′ ∈ {0,1}n such that∑m

i=1 cip
′
i = δk(A ),

∑n

j=1 q
′
j = k and p′, q′ are feasible for the optimization problem defined by

Equation (7-9). Let σ be a permutation in Σ([n]) such that q′j = 1 if and only if dσ(j) ∈ {mini(d)|1≤

i≤ k}. Then, we have that

m∑
i=1

cip
′
i +

n∑
j=1

q′jdσ(j) = δk(A )+
k∑

i=1

mini(d).

Therefore, P (dσ,A ) ≤ δk(A ) +
∑k

i=1mini(d). Because U is symmetric, dσ ∈ S, which implies

Rs(A ,U)≤ P (dσ,A )≤ δk(A )+
∑k

i=1mini(d). �
Next, we show that there always exists some integer k and vector d such that the inequality in

Lemma 1 is tight.

Proposition 1. Let τ = argmind∈S P (d,A ). Then,

Rs(A ,U) = δk(A )+
k∑

i=1

mini(τ )

for some nonnegative integer 0≤ k≤ n.

Proof. By the max-flow min-cut theorem, we have

P (τ ,A ) =min
m∑
i=1

cipi +
n∑

j=1

qjτj

s.t. pi + qj ≥ 1,∀(ai, bj)∈A

p∈ {0,1}m,q∈ {0,1}n.
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Let p∗, q∗ be the optimal solution to the optimization problem above, and let k :=
∑n

j=1 q
∗
j .

Then, we must have
∑n

j=1 q
∗
j τj ≥

∑k

j=1minj(τ ) and
∑m

i=1 cip
∗
i ≥ δk(A ). Hence, we have that

Rs(A ,U) = P (τ ,A ) =
m∑
i=1

cip
∗
i +

n∑
j=1

q∗j τj ≥ δk(A )+
k∑

i=1

mini(τ )

But by Lemma 1, Rs(A ,U) ≤ δk(A ) +
∑k

i=1mini(τ ), and hence, we have Rs(A ,U) = δk(A ) +∑k

i=1mini(τ ). �
From Lemma 1 and Proposition 1, we get

Rs(A ,U) = min
0≤k≤n

{δk(A )+min
d∈U

k∑
i=1

mini(d)}.

The symmetric property of U implies that mind∈U

∑k

i=1mini(d) =mind∈U

∑k

i=1 di. Thus,

Rs(A ,U) = min
0≤k≤n,d∈U

{δk(A )+
k∑

i=1

di)}. (10)

Equation (10) provides an explicit representation of Rs(A ,U). Next, we generalize Equation

(10) to any robust measure R that lies in Γ.

Theorem 1. Let f be a deterministic measure function that is monotonic in sales under fixed total

demand. And let g(·) be the function such that g(x, y) is strictly increasing in x for fixed y, and

f(d,A ) = g(P (d,A ),
∑n

i=1 di). Then,

Rf(A ,U) = min
0≤k≤n,d∈U

{g(δk(A )+
k∑

i=1

di,
n∑

i=1

di)}. (11)

Proof. For any T ∈ R+, let UT := {d|
∑n

i=1 di = T}. Note that both UT and UT ∩U are sym-

metric. Now we have

Rf(A ,U) =min
d∈U

{g(P (d,A ),
n∑

i=1

di)}

= min
T∈R+

{
min

d∈U∩UT

{g(P (d,A ),
n∑

i=1

di)}

}

= min
T∈R+

{
min

d∈U∩UT

{g(P (d,A ), T )}
}

By property of g(·), = min
T∈R+

{
g( min

d∈U∩UT

P (d,A ), T )

}
By Proposition 1, = min

T∈R+

{
g( min

0≤k≤n,d∈U∩UT

{δk(A )+
k∑

i=1

di}, T )

}

= min
T∈R+,0≤k≤n,d∈U∩UT

{g(δk(A )+
k∑

i=1

di,
n∑

i=1

di)}

= min
0≤k≤n,d∈U

{g(δk(A )+
k∑

i=1

di,
n∑

i=1

di)}.

�



Simchi-Levi and Wei: Worst-case Analysis of Process Flexibility Designs
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 11

Theorem 1 thus shows that for any R ∈ Γ and any symmetric uncertainty set U , there exists

some function H(·) such that

R(A ,U) =H(δ0(A ), δ1(A ), ..., δn(A ),U). (12)

Therefore, Equation (12) implies that if the values of δk(A ) are given for all 0≤ k ≤ n, then one

can evaluate R(A ,U), without any additional information on A .

Theorem 1 provides a potentially practical algorithm for computing Rf(A ,U) when δk(A )

is given for 1 ≤ k ≤ n. For example, suppose U is a symmetric polytope, and f(d,A ) =

P (d,A )−P (d,F ), i.e. Rf =Rd. Then, let g(x, y) = x−min{
∑m

i=1 ci, y}, and we have f(d,A ) =

g(P (d,A ),
∑n

i=1 di). Applying Theorem 1, we obtain

Rd(A ,U) = min
0≤k≤n,d∈U

{δk(A )+
k∑

i=1

di −min{
m∑
i=1

ci,
n∑

i=1

di}} (13)

= min
0≤k≤n

{
δk(A )+min

d∈U
{max{

k∑
i=1

di −
m∑
i=1

ci,−
n∑

i=k+1

di}}

}
, (14)

where mind∈U{max{
∑k

i=1 di−
∑m

i=1 ci,−
∑n

i=k+1 di}} for each k can be computed by solving a LP.

Therefore, Rf(A ,U) can be computed by computing n+1 LPs. Of course, δk(A ) for 1≤ k≤ n is

not always given, and determining them may not be an easy task. In Section 3.4, we will discuss in

detail the computational complexity of determining δk(A ), as well as our experience in computing

δk(A ) from numerical studies.

Another implication of Theorem 1 is a partial order of A1 and A2 under any worst-case measure

in Γ. In particular, we have the following results.

Theorem 2. Fix a robust measure R ∈ Γ, then,

R(A1,U)≥R(A2,U), for any symmetric set U,

if and only if δk(A1)≥ δk(A2) for 0≤ k≤ n. 1

Proof. Let f be the deterministic measure function of R, and g(·) be the function such that

g(x, y) is strictly increasing in x for fixed y, and f(d,At) = g(P (d,At),
∑n

i=1 di), for t = 1,2. By

Theorem 1, we have

R(At,U) = min
0≤k≤n,d∈U

{g(δk(At)+
k∑

i=1

di,
n∑

i=1

di)}, ∀t= 1,2. (15)

If δk(A1) ≥ δk(A2) for all k, 0 ≤ k ≤ n, by Equation (15), we immediately obtain R(A1,U) ≥

R(A2,U).
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Conversely, if δk
∗
(A1) < δk

∗
(A2) for some k∗, let C :=

∑m

i=1 ci and d∗ be the vector such that

d∗i = 0 for 1≤ i≤ k∗, and d∗i = C for k∗ < i≤ n. Let U∗ := Σ(d∗), for any A , because C ≥ δk(A )

and δk(A )≥ δk+1(A ) for any 0≤ k < n, we have

R(A ,U∗) = g(δk
∗
(A ), (n− k∗)C}.

Thus, we get R(A1,U
∗)<R(A2,U

∗) as g(x, y) is strictly increasing in x for fixed y. �
An interesting question is whether better worst-case performance implies better average-case

performance. Specifically, when A1 is strictly more symmetrically robust than A2, we know that the

worst-case performance of A1 is always better (and sometimes strictly better) than the worst-case

performance of A2. Would this imply that the expected sales of A1 is greater than or equal to the

expected sales of A2 under any independent and identically distributed (IID) product demands?

While our computational experiments suggest that a strictly more symmetrically robust flexibility

design has higher expected sales in almost all of the randomly generated instances, the claim is

not correct in general. This is proved by a counterexample in Appendix B.1.

3.3. PCI with Symmetric Perturbation Uncertainty Sets

The results in this section so far assume the symmetry of the uncertainty sets. In this subsection,

we generalize our results to the following class of asymmetric uncertainty sets.

Definition 1. A set U is symmetric around µ if E := {x−µ|x ∈ U} is symmetric. In this case,

U is called a symmetric perturbation uncertainty set.

When U is the uncertainty set of the demand, one can interpret Definition 1 as having the

demand for products estimated to be µ, while the perturbation (or error) of the estimation has

the same fluctuation across products. An analogous scenario under stochastic demand is when the

stochastic product demand vector is D, µ=E[D], and D−µ is an exchangeable (or IID) random

vector. In that case, the set of samples of D would appear like a symmetric set around µ, provided

that the sample size is large. Also, note that U is symmetric if and only if U is symmetric around

some µ, with µi = µj for all 1≤ i, j ≤ n.

For the rest of this subsection, we restrict our attention to symmetric perturbation uncertainty

sets that are symmetric around some fixed µ, and let E := {d− µ|d ∈ U}. For the fixed µ, the

PCIs are defined as

δkµ(A ) :=min
m∑
i=1

cipi +
n∑

j=1

µjqj

s.t.
n∑

j=1

qj = k,

pi + qj ≥ 1,∀(ai, bj)∈A

p∈ {0,1}m,q∈ {0,1}n.
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Similar to Remark 2, δkµ(A ) has the following combinatorial interpretation:

Remark 3.

δkµ(A ) = min
S⊆B,|S|=k

∑
ai∈N(B\S,A )

ci +
∑
bj∈S

µj.

In the rest of the paper, we will use Sk ⊂B to denote the set such that

δkµ(A ) =
∑

ai∈N(B\Sk,A )

ci +
∑
bj∈Sk

µj, and |Sk|= k.

One can interpret δkµ(A ) as the tightness of the (potential) bottleneck containing exactly k

products, where a smaller δkµ(A ) implies a tighter bottleneck. To see this, assume δkµ(A ) is much

greater than
∑m

i=1 ci, and the uncertainty in the estimated demand is low, then intuitively, the

bottleneck containing k products will not prevent A from utilizing all of its plant capacities.

Next, we state two theorems analogous to Theorems 1 and 2. The proof for Theorem 3 is omitted

due to its similarities with the proof for Theorem 1.

Theorem 3. Let f be the deterministic measure function that is monotonic in sales under fixed

total demand. Let g(·) be the function such that g(x,y) is strictly increasing in x for fixed y, and

f(A ,d) = g(P (A ,d),
∑n

i=1 di). Then for U that is symmetric around µ,

Rf (A ,U) = min
0≤k≤n,ϵ∈E

{g(δkµ(A )+
k∑

i=1

ϵi,
n∑

i=1

(µi + ϵi))}, (16)

where E := {d−µ|d∈U}.

Theorem 4. Fix a robust measure R ∈ Γ, then,

R(A1,U)≥R(A2,U), for any U that is symmetric around µ,

if and only if δkµ(A1)≥ δkµ(A2) for 0≤ k≤ n.

Proof. Let g(·) be the function such that g(x,y) is strictly increasing in x for fixed y, and

R(A ,U) =mind∈U{g(P (d,A ),
∑n

i=1 di)}. By Theorem 3, we have

R(A ,U) = min
0≤k≤n,ϵ∈E

{g(δkµ(A )+
k∑

i=1

ϵi,
n∑

i=1

(µi + ϵi))}.

If δkµ(A1)≥ δkµ(A2) for all k, 0≤ k≤ n, we immediately get that R(A1,U)≥R(A2,U).

Conversely, if δk
∗

µ (A1)< δk
∗

µ (A2) for some k∗, let K be a constant such that |δk1µ (A2)−δk2µ (A2)|<
K for any 0≤ k1 ̸= k2 ≤ n. Also let e∗ be the vector such that e∗i =−K for 1≤ i≤ k∗, and e∗i =K

for k∗ < i≤ n. Let U∗ :=µ+Σ(e∗), and because of our choice of U∗, we have

R(A2,U
∗) = g(δk

∗

µ (A2)− k∗K,
n∑

i=1

µi +(n− 2k∗)K}
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> g(δk
∗

µ (A1)− k∗K,
n∑

i=1

µi +(n− 2k∗)K}

≥R(A1,U
∗).

�
We note that the notion of the PCIs can be extended even further, to a setting with linear pro-

duction constraints. This extension is presented in Appendix C. Finally, we remark that computing

δk(A ) requires only the structure of A and plant capacities, while computing δkµ(A ) requires the

structure of A , plant capacities and the estimation of the product demands. Thus, the variations

of the PCIs we proposed can adapt to different levels of demand information, to either the setting

with no demand information, or the setting when demand has an estimated mean.

3.4. Hardness Result

In this subsection, we apply the connection we established between δkµ(A ) and R(A ,U), to prove

a hardness result on computing R(A ,U). In particular, we prove that for any R ∈ Γ, computing

R(A ,U) is an NP-hard problem.

To establish the hardness result, we begin with a lemma, which applies a result obtained by

Kuo and Fuchs (1987), where the authors studied the problem of optimally reconfiguring processer

arrays with faulty cells.

Lemma 2. Given non-negative integers k, t and some flexibility design A , determining whether

δk(A )≤ t is NP-hard.

Proof. Consider the case ci = 1 for all 1≤ i≤m. In this case, note that δk(A )≤ t if and only

if there is a vertex cover VA ∪ VB, where VA ⊆ A, |VA| ≤ t and VB ⊆ B, |VB| ≤ k. Kuo and Fuchs

(1987) proved that it is NP-hard to determine if there exists such a vertex cover. Thus, we have

that determining whether δk(A )≤ t is NP-hard. �
We note that the problem of determining the existence of a vertex cover VA ∪ VB, such that

VA ⊆A, |VA| ≤ t and VB ⊆B, |VB| ≤ k is known in the computer science literature as the “constraint

bipartite vertex cover” problem. Despite the problem being NP-hard, researchers have developed

(exponential) algorithms to compute the constraint bipartite vertex cover (and hence δk(A )) that

work quite well in practice (see Fernau and Niedermeier (2001), Bai and Fernau (2008)).

Having established Lemma 2, we now prove that computing Rf(A ,U) for any Rf ∈ Γ is NP-hard.

Corollary 1. Fix any robust measure Rf ∈ Γ, determining whether Rf (A ,U)≤ t for symmetric

U is NP-hard.
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Proof. We prove this result by showing that for ci = 1 for all 1 ≤ i ≤ m, the problem of

determining if δk(A ) ≤ t for some integer t can be reduced to the problem of determining if

Rf(A ,U)≤ t′ for some t′ ∈R and U ⊆Rn.

We can assume t <m, as δk(A )≤m. Because Rf ∈ Γ, we can find some function g(x, y) that is

strictly increasing in x for any fixed y, where f(A ,d) = g(P (A ,d),
∑n

i=1 di).

Let d∗ be the vector such that d∗j = 0 for 1≤ j ≤ k and d∗j =m for k+1≤ j ≤ n. Let U =Σ(d∗),

because
∑n

i=1 di = (n− k)m for any d∈U , we have that

Rf (A ,U) =min
d∈S

g(P (A ,d),
n∑

i=1

di) = g(min
d∈S

P (A ,d), (n− k)m).

By the construction of U and Proposition 1, we have mind∈U P (d,A ) = δk(A ). Thus,

Rf(A ,U) = g(δk(A ), (n− k)m)≤ t′ := g(t, (n− k)m) if and only if δk(A )≤ t. Therefore, we have

that determining whether R(A ,U)≤ t′ is at least as hard as determining whether δk(A )≤ t. �
We would like to point out that while Lemma 2 shows that computing δk(A ) (and hence δkµ(A ))

is NP-hard, off-the-shelf solvers such as CPLEX are capable of determining δkµ(A ) very quickly.

In our computational experience, the binary program solver in CPLEX has consistently solved

δkµ(A ) for systems with 30 plant notes and 100 products within a second on a standard T430

Lenovo laptop. As a result, instead of studying theoretically efficient approximation algorithms

for computing δkµ(A ), we focus on applying the concept of δkµ(A ) to identify effective flexibility

designs.

4. Worst-case Performance of the Long Chain

In this section, we apply the results from the previous section to analyze the worst-case effectiveness

of sparse flexibility designs. In particular, we are interested in the long chain design, C , which has

been studied extensively in the literature from the average-case point of view. As is typical in the

analysis of the long chain, see for example Simchi-Levi and Wei (2012), we consider a balanced

system, i.e. m= n, and use n to denote the number of plants and products. Also, we assume that

the demand uncertainty set is symmetric and capacities are equal across the plants. Under this

assumption, without loss of generality, we let ci = 1,∀1≤ i≤ n.

Consider the class of all flexibility designs in which each product is produced by exactly two

plants. The theorem below shows that the long chain is more symmetrically robust than any other

flexibility design in this class.

Theorem 5. Let A be a design such that for any u ∈ B, |N(u,A )| = 2. Then, the long chain

flexibility design, C , is more symmetrically robust than A . That is, for any symmetric set U and

any R ∈ Γ, R(C ,U)≥R(A ,U).
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Proof. It is easy to check that δk(C ) = n− k+1 for 1≤ k≤ n− 1, and δn(C ) = 0= δn(A ). To

prove Theorem 5, it is sufficient to show that for all 1≤ k < n, we can find some S ⊂B, |S|= k,

such that |N(B \S,A )| ≤ n− k+1, as δk(A )≤ |N(B \S,A )|.

Suppose the graph formed by A consists of c connected bipartite components. For 1≤ i≤ c, let

Ai ⊂ A, Bi ⊂ B be the set of vertices of the i-th component. Without loss of generality, we also

assume that |Ai| − |Bi| is non-decreasing with i. Because
∑c

i=1(|Ai| − |Bi|) = 0, this assumption

implies that
∑t

i=1 |Ai| ≤
∑t

i=1 |Bi| for any t≤ c.

We now show that for any i, and any 1≤ l ≤ |Bi|, there exists some T ⊆ Bi, |T |= l such that

|N(T,A )| ≤ l+ 1. This is done by induction on l. For l = 1, take any u ∈ Bi, take T = {u} and

|N(T,A )|= 2. Suppose the statement is true for some l < |Bi|, then we can find set T l ⊆Bi, |T l|= l

and |N(T l,A )| ≤ l+ 1. Since the vertices in Ai ∪Bi form a connected component, and T l ( Bi,

there exists some u∈N(T l,A ) such that (u, v) is an arc for some v /∈ T l. Since |N(v,A )|= 2 and

u ∈N(T l,A ), we must have that |N(T l ∪ {v},A )| ≤ l+ 2. Thus, by induction, we have that for

any 1≤ l≤ |Bi|, there exists some T ⊆Bi, |T |= l such that |N(T,A )| ≤ l+1.

For any 1 ≤ k < n, let tk the largest possible t such that
∑t

i=1 |Bi| < n− k. By our choice of

tk, we have tk < c and n − k −
∑tk

i=1 |Bi| ≤ |Btk+1|. Thus, we can find some set T where |T | =

n−k−
∑tk

i=1 |Bi|, T ⊆Btk+1 and |N(T,A )| ≤ n−k−
∑tk

i=1 |Bi|+1. Finally, let S := (Btk+1∪Btk+2∪

...∪Bc) \T , and we have

|N(B \S,A )|= |N(T,A )|+
tk∑
i=1

|Ai| ≤ n− k−
tk∑
i=1

|Bi|+1+

tk∑
i=1

|Bi| ≤ n− k+1.

Since S ⊂B and |S|= n−
∑tk

i=1 |Bi| − (n− k−
∑tk

i=1 |Bi|) = k, the proof is complete. �
The result stated by Theorem 5 strongly favors the long chain, as it proves that under any

robust measure R ∈ Γ and any symmetric uncertainty set, long chain is always guaranteed to be

optimal among all designs in which each product is produced by exactly two plants. Interestingly,

Simchi-Levi and Wei (2012) prove that long chain is at least as good as any 2-flexibility designs

under stochastic exchangeable demand.

Next, we present another result on the robustness of the long chain relative to that of a connected

sparse flexibility design.

Theorem 6. The long chain flexibility design, C , is more symmetrically robust than A , if |A |=

2n, and the bipartite graph with vertex sets A, B and arc set A is connected.

Proof. For n= 1, it is simple to check that Theorem 6 holds. Suppose A ∗ is a counterexample

to Theorem 6 in the smallest system (the smallest n∗ where there is a counterexample). Because

A must be the same as C for n= 2, we must have n∗ > 2. Since A ∗ is a counterexample, there
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exists some 1≤ k∗ <n∗ such that δk
∗
(A ∗)>n∗−k∗+1. By Theorem 5, we know there must exists

some u ∈B, with |N(u,A ∗)|= 1. Let v =N(u,A ∗), and let G be the bipartite graph with vertex

sets A, B, and arc set A ∗. Because G is connected, we must have |N(v,A ∗)| ≥ 2.

Let A ′ = {(v′, u′)|(v′, u′) ∈ A ∗, u′ ̸= u, v′ ̸= v}. Consider the bipartite graph G′ with vertex sets

A \ v, B \u, and arc set A ′. Suppose G′ has z components; then we must have |N(v,A ∗)| ≥ z+1.

In this case, we can add z− 1 arcs to G′ so that G′ is a connected bipartite graph. Let A ′′ be the

arc set that contains A ′ and the z− 1 added arcs. Note that |A ′′| ≤ 2(n∗ − 1).

By construction, the bipartite graph with vertex sets A \ u, B \ v and arc set A ′′ is connected.

Because 1≤ k∗ <n∗, the minimality assumption on A ∗ and Remark 2, there exists some S ⊂B \v,
with |S|= n∗−k∗−1 and |N(S,A ′′)| ≤ n∗−k∗. But this implies that S∪{v} ⊆B, |S∪{u}|= n∗−k∗

and |N(S ∪ {u},A ′′)| ≤ n∗ − k∗ + 1. By Remark 2, |N(S ∪ {u},A ′′)| ≤ n∗ − k∗ + 1 implies that

δk
∗
(A ∗)≤ n∗ − k∗ +1. This contradicts our assumption that δk

∗
(A ∗)>n∗ − k∗ +1 and therefore,

we have that Theorem 6 must be true. �
A natural generalization to Theorems 5 and 6 is to compare the long chain to all other flexibility

designs with 2n arcs. To our surprise, there exists a counterexample (see Appendix B.2) where for

some worst-case performance measure, the long chain is inferior to another design with 2n arcs.

We believe that not only is the counterexample important from the theoretical point of view, but

that it also provides the following interesting intuition. In particular, in large systems, the long

chain becomes less robust because the bottlenecks containing k products become very tight for

some integer k. Moreover, these bottlenecks can be relaxed by just adding a few links to the long

chain. Indeed, our counterexample leverages this fact by first creating a large chain with several

isolated arcs, and then adding the last few remaining arcs to the large chain (see Appendix B.2).

In this case, the design A we construct has δk(A )> δk(C ) for some 1≤ k≤ n− 1.

Observe that by Theorem 5, if a design A with 2n arcs has δk(A )> δk(C ) for some k, then there

is some node u∈B where |N(u,A )|= 1. But this implies that δn−1(A ) = 1< 2 = δn−1(C ). Hence,

there is no design with 2n arcs that is strictly more symmetrically robust than C . That is, C is

in some sense a “Pareto optimal” design among all flexibility designs with 2n arcs in worst-case

performances.

Finally, we prove that δk(A )≤ δk(C ), when k is close to 0 or close to n. This result is formally

stated as Proposition 2. We relegate the proof to Appendix A, due to its technical nature and

relatively limited scope.

Proposition 2. In a balanced system with equal plant capacities, for any integer 0 ≤ k ≤ α
√
n,

where α= 2− 2√
n
we have

δn−k(C )≥ δn−k(A ) and δk(C )≥ δk(A ),

for any A such that |A |= 2n.
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Proposition 2 indicates that under some uncertainty sets the long chain has better worst-case

performance than any design A with 2n arcs. For example, if the uncertainty set U ⊆L, where

L := {d|the total number of indices i such that di < 1 is less than 2
√
n− 2},

then we have R(A ,U)≤R(C ,U), for any R ∈ Γ. Intuitively, when U ⊆ L, we have that most of

the product demands are greater or equal to the plant capacities (which is equal to 1), except for

just a few products.

5. Evaluating Different Flexibilities Designs

In Section 3, we showed that for any R ∈ Γ and any uncertainty set U that is symmetric with µ,

we can always find some function H(·) such that

R(A ,U) =H(δ0µ(A ), δ1µ(A ), ..., δnµ(A ),U).

Motivated by this observation, in this section, we attempt to use the PCIs as statistics to

quickly evaluate flexibility designs. In particular, we want to find a function I(·), such that

I(δ0µ(A ), δ1µ(A ), ..., δnµ(A )) allows us to estimate the effectiveness of A under a given stochas-

tic demand D. Throughout the section, we assume that µ is the expectation of D. Also, we let

c :=
∑m

i=1 ci, and µ :=
∑n

j=1 µj.

5.1. JG Index

In this subsection, we prove that the classical JG index from Jordan and Graves (1995) can be

viewed as a function of the PCIs. First, we introduce the formal definition of the JG index.

Definition 2. The JG index of a flexibility design A , denoted by JG(A ), is defined as

JG(A ) :=max
S(B

{Π(A , S)},

where

Π(A , S) : = P[
∑
bj∈S

Dj −
∑

ai∈N(S,A )

ci >max(0,
n∑

j=1

Dj −
m∑
i=1

ci)]

= P[
∑

ai∈N(S,A )

ci <
∑
bj∈S

Dj,
∑

bj∈B\S

Dj <
∑

ai∈A\N(S,A )

ci]

= P[
∑

bj∈B\S

Dj +
∑

ai∈N(S,A )

ci <
n∑

j=1

Dj,
∑

bj∈B\S

Dj +
∑

ai∈N(S,A )

ci <
m∑
i=1

ci].
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In words, Π(A , S) can be interpreted as the probability that the bottleneck formed by products

in B \ S and plants in N(S,A ) blocks A from both utilizing all of the plant capacities, and

satisfying all of the customer demands. Because the fully flexible system always either utilizes

all plant capacities or satisfies all customer demands, Π(A , S) is also the probability that the

bottleneck formed by B \S and N(S,A ) blocks A from achieving the same sales as full flexibility.

For convenience, Π(A , S) will sometimes be referred to as the blocking probability of the bottleneck

formed by products in B \S and plants in N(S,A ), and therefore, JG(A ) is equal to the largest

blocking probability achieved by a bottleneck. In Jordan and Graves (1995), the authors argue

that if JG(A ) is low, then A does not have any tight bottleneck, thus implying that A is almost

as effective as full flexibility.

The definition of the JG(A ) is similar to the combinatorial interpretation of δkµ(A ). Indeed, it

turns out that when demands are independent normals and the standard deviations of demands

are equal across products, the JG index can be expressed as a function of δkµ(A ), for 0< k < n,

where µ is the mean of the product demands. This is stated formally in the next proposition.

Proposition 3. Suppose D is an independent normal vector with mean µ, and there exists some

σ such that E[(Dj −µ)2] = σ2 for any 1≤ j ≤ n. Let c :=
∑m

i=1 ci and µ :=
∑n

j=1 µj; then

JG(A ) = max
1≤k<n

(1−Φ(
δkµ(A )− c

√
kσ

))(1−Φ(
δkµ(A )−µ
√
n− kσ

)),

where Φ is the cumulative distribution function (CDF) of the standard normal distribution.

Proof. For each S (B, rearranging the expression for Π(A , S), we get

Π(A , S) = P[
∑
bj∈S

Dj −
∑

ai∈N(S,A )

ci > 0,
∑

bj∈B\S

Dj −
∑

ai∈A\N(S,A )

ci < 0].

And because D is independent, we have

Π(A , S) = P[
∑
bj∈S

Dj −
∑

ai∈N(S,A )

ci > 0]P[
∑

bj∈B\S

Dj − c+
∑

ai∈N(S,A )

ci < 0].

Note that for any S (B, we have
∑

ai∈N(S,A ) ci +
∑

bj∈B\S µj ≥ δn−|S|
µ (A ), and hence,

Π(A , S) = P[
∑
bj∈S

Dj −
∑

ai∈N(S,A )

ci > 0]P[
∑

bj∈B\S

Dj − c+
∑

ai∈N(S,A )

ci < 0]

= P[
∑
bj∈S

(Dj −µj)>
∑

bj∈B\S

µj +
∑

ai∈N(S,A )

ci −µ]P[
∑

bj∈B\S

(Dj −µj)< c−
∑

ai∈N(S,A )

ci −
∑

bj∈B\S

µj]

≤ P[
∑
bj∈S

(Dj −µj)> δn−|S|
µ (A )−µ]P[

∑
bj∈B\S

(Dj −µj)<−(δn−|S|
µ (A )− c)]

= (1−Φ(
δn−|S|
µ (A )−µ√

|S|σ
))(1−Φ(

δn−|S|
µ (A )− c√

n− |S|σ
))
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Therefore, maxS⊆B{Π(A , S)} ≤max1≤k<n(1−Φ(
δkµ(A )−µ
√
n−kσ

))(1−Φ(
δkµ(A )−c

√
kσ

)). Note that for any 1≤

k < n, there exists Sk ⊂B, |Sk|= k and δkµ(A ) =
∑

ai∈N(B\Sk,A ) ci +
∑

bj∈Sk µj. Let S̄k =B \ Sk,

and we have

Π(A , S̄k) = P[
∑
bj∈S̄k

Dj −
∑

ai∈N(S̄k,A )

ci > 0]P[
∑
bj∈Sk

Dj − c+
∑

ai∈N(S̄k,A )

ci < 0]

= P[
∑
bj∈S̄k

(Dj −µj)>
∑

ai∈N(S̄k,A )

ci +
∑
bj∈Sk

µj −µ]P[
∑
bj∈Sk

(Dj −µj)< c−
∑

ai∈N(S̄k,A )

ci −
∑
bj∈Sk

µj]

= (1−Φ(
δkµ(A )−µ
√
n− kσ

))(1−Φ(
δkµ(A )− c

√
kσ

))

and thus, we also have maxS⊆B{Π(A , S)} ≥max1≤k<n(1− Φ(
δkµ(A )−µ
√
n−kσ

))(1− Φ(
δkµ(A )−c

√
kσ

)) and the

proof is complete. �
Proposition 3 demonstrates that the PCIs not only have worst-case implications, but are also

connected to the JG index, an index proposed under stochastic setting for average-case analysis.

The result in Proposition 3 can be similarly extended to other demand distributions where {Dj −

µj}1≤j≤n is IID. In that case, let Xj =Dj − µj for 1 ≤ j ≤ n, and the JG index for a flexibility

design A can be expressed as

JG(A ) = max
1≤k<n

P[
n−k∑
j=1

Xj > δkµ(A )−µ] ·P[
k∑

j=1

Xj <−(δkµ(A )− c)].

Proposition 3 also leads to an immediate corollary for comparing the JG indices of flexibility

designs. Note that the design with the lower JG index is expected to be more effective than the

design with the higher JG index.

Corollary 2. Suppose D is a random vector with mean µ, and {Dj −µj}1≤j≤n is IID, then for

any two flexibility designs A1 and A2, if δ
k
µ(A1)≥ δkµ(A2) for 1≤ k≤ n−1, then JG(A1)≤ JG(A2).

Because the JG index can be determined from the PCIs, it implies that the PCIs carry more

information than the JG index. In the next subsection, we will present a flexibility index that incor-

porates this extra amount of information provided by the PCIs and demonstrate its effectiveness

through numerical studies.

5.2. The JG-Sum Index and Computational Results

Motivated by the JG index and Proposition 3, we propose the JG-Sum (or JGS) index as follows.

Definition 3. The JGk index of a flexibility design A , denoted by JGk(A ), is defined as

JGk(A ) = (1−Φ(
δkµ(A )− c

√
kσ

))(1−Φ(
δkµ(A )−µ
√
n− kσ

).
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And the JGS index of A is defined as

JGS(A ) :=
n−1∑
k=1

JGk(A ).

From the definition, it is clear that the JGS index can also be expressed as a function of

{δkµ(A ); 1≤ k < n}. The quantity JGk(A ) can be interpreted as the largest blocking probability

achieved by a bottleneck that contains exactly k products. Note that JGk is also closely related to

the JG index, as JG(A ) =max1≤k<n JG
k(A ).

Intuitively, for two designs A1 and A2, if JG(A1) is significantly less than JG(A2), then one

would expect JGS(A1) to be less than JGS(A2). However, when JG(A1) ≈ JG(A2), then just

comparing the blocking probability of the strongest bottleneck may not be enough to predict the

better design. By contrast, the JGS index takes into account n− 1 bottlenecks, and therefore may

serve as a better alternative.

In the rest of this subsection, we perform computational experiments to test the effectiveness

of the PCIs, JG index and JGS index. In our computational tests, the samples of the product

demands are generated from independent normal distributions, with demand for the ith product

having mean µi, and standard deviation 1
2
. Because demand should never be negative, whenever

a sample has a product with negative demand, we change the demand for that product to be

zero. This modification would slightly change the actual mean and standard deviation, but the

change would not have any significant effect on the numerical analysis. We always start with an

initial design that is analogous to the dedicated design, where each product is produced by exactly

one plant. We assume that in the initial design, the capacity in each plant is equal to the total

expected demand for all the products the plant produces. That is, if A is the initial design, then∑
bj∈N(ai,A ) µj = ci,∀1≤ i≤m. We then randomly generate 50 designs by adding 2 arcs randomly

at every plant to the initial design.

In the first test, we have a balanced system with m= n= 10, ci = µi = 1 for i= 1,2, ...,10. In

the second test, we have an unbalanced system with m= 7, n= 14, c1 = c2 = 3, c3 = c4 = c5 = 2,

c6 = c7 = 1; and µi = 1 for i= 1,2, ...,14. In the third test, we again have m= 7, n= 14, with µi

being chosen uniformly randomly from 0.5 to 1.5, and c1 =
∑3

i=1 µi, c2 =
∑6

i=4 µi, c3 =
∑8

i=7 µi,

c4 =
∑10

i=9 µi, c5 =
∑12

i=11 µi, c6 = µ13, c7 = µ14.
2 In the first test, the initial design is simply the

dedicated design with n= 10, while the initial design for the second and the third test is illustrated

in Figure 2.

To test the accuracy of flexibility indices, we perform the following procedure. We first generate

500n demand instances, di, i= 1, ...,500n, where each di is drawn from the demand distribution

previously described. For each pair of flexibility designs A1 and A2, we consider

M =

∑500n

i=1 (P (di,A1)−P (di,A2))

500n
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Figure 2 Initial Design for Test 2 and 3

and SE =

√∑500n

i=1 (P (di,A1)−P (di,A2)−M)2

(500n− 1)(500n)

where M and SE are the sampled mean and standard error of the mean of P (di,A1)−P (di,A2).

If M > 2 · SE (or M < −2 · SE), then we have statistically significant evidence that A1 (or A2)

has higher expected sales. In this case, we would use A1 and A2 as one pair of designs to test the

accuracy of our indices. We do not use A1 and A2 to test the accuracy of our indices if we do not

have statistically significant evidence that identifies which design has higher expected sales. In the

first, second, and the third tests, we had 682, 1124, and 1138 (out of
(
50
2

)
= 1225 possible) pairs of

designs with statistically significant evidence that one design has higher expected sales than the

other.

For each pair of A1 and A2 where we test the accuracy of the indices, we say that the index is

“correct” about A1 and A2 if it correctly identifies the design with the higher expected sales; we

say the index is “incorrect” about A1 and A2 if it incorrectly predicts the design with the higher

expected sales, and finally, we say the index is “indecisive” between A1 and A2, if it does not

suggest which design is better.

The results of our computational tests are presented in Table 1. T1, T2 and T3 represent the

three test settings. The column under “Indices” represents the flexibility indices in our test; the

columns “Correct”, “Incorrect”, and “Indecisive” represent the number of the design pairs where

the flexibility index is correct, incorrect, and indecisive, respectively; and finally the columns “Cor-

rect %”, “Incorrect %”, and “Indecisive %” represent the percentages of the instances where the

index is correct, incorrect, and indecisive.

For the indices in our computational test, “PCI” compares all of the PCIs of A1 and A2, and

predicts a winner if and only if one of A1 and A2 is strictly more robust than another; “PCI-Sum”

compares the sum of all the PCIs of A1 and A2, while “JG” and “JG-Sum” compare the JG and

JGS indices of A1 and A2 previously described. Under “PCI-Sum”, “JG” and “JG-Sum”, the index

is indecisive if and only if the index of A1 is equal to the index of A2.
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Indices Correct Incorrect Indecisive Correct % Incorrect % Indecisive %

T1

PCI 553 0 129 81.09% 0% 18.91%
PCI-Sum 580 0 102 85.04% 0% 14.96%

JG 520 5 157 76.25% 0.73% 23.02%
JG-Sum 599 1 82 87.83% 0.15% 12.02%

T2

PCI 517 0 607 46.00% 0% 54.00%
PCI-Sum 937 71 116 83.36% 6.32% 10.32%

JG 840 3 281 74.73% 0.27% 25.00%
JG-Sum 1108 14 2 98.58% 1.25% 0.18%

T3

PCI 63 0 1075 5.54% 0% 94.46%
PCI-Sum 978 160 0 85.94% 14.06% 0 %

JG 850 70 218 74.69% 6.15% 19.60%
JG-Sum 1105 33 0 97.10% 2.90% 0 %

Table 1 Prediction of Different Flexibility Indices

We note a few important observations from the computational test. First, Table 1 indicates that

while the PCI never incorrectly predicts the better design, it is too indecisive, especially in T3,

where we have an unbalanced, non-IID demand system. The PCI-Sum is a good alternative when

the PCI is indecisive, but it does incorrectly predict the better design in a significant portion of

the instances.

Second, while the accuracy of the JG index is very good, like the PCI, it also tends to be

indecisive at times. Interestingly, the JGS index is rarely indecisive, yet it rarely makes a mistake.

In fact, the JGS predicts more winners than any other indices, yet its error percentages (shown

as Incorrect %) are always comparable to that of JG, and much lower than that of PCI-Sum.

This observation outlines the advantage of looking at all of the bottlenecks generated by the PCIs,

instead of just one bottleneck.

Notice that

JGS(A ) =
n−1∑
i=1

fk(δkµ(A )),where fk(t) = (1−Φ(
t− c√
kσ

))(1−Φ(
t−µ√
n− kσ

)).

Thus, JGS(A ) can be thought of as a non-linear weighted sum of the PCIs, where the weight

functions, fk for 1 ≤ k < n, are motivated by the intuition of the JG index. To get a better

understanding of why JGS outperforms PCI-Sum, consider a case where the values of δkµ(A ) are

much larger than c or µ for some 1≤ k < n. Intuitively, this implies that the bottlenecks containing

k products at A are not tight, and thus should have little effects on the expected sales. The JGS

index correctly integrates this intuition, as fk(t) decreases exponentially quickly with t. However,

for the PCI-Sum index, it does nothing to incorporate the fact that the bottlenecks containing k

products at A are not tight.

We also perform two additional numerical studies (Test 4 and Test 5) to investigate the robustness

of the JG and JGS indices when the demands have different standard deviations. In this case, the
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JG and JGS indices are computed using a constant and incorrect standard deviation. For both

numerical studies, we set the number of plants and products, plant capacities, and the means of

product demands to be the same as those in Test 3. In Test 4, we let
√

E[(Dj −µj)2] =
1
2
µj for

all 1 ≤ j ≤ 14; in Test 5, we let
√

E[(Dj −µj)2] = Rjµj for all 1 ≤ j ≤ 14, where Ri is randomly

generated from 0.2 to 0.6. The JG and JGS indices are computed assuming that the standard

deviations of all demands are 1
2
, which is significantly different from the actual standard deviations.

Our tests suggest that the JGS is still a fairly accurate index when (i) the demands have dif-

ferent standard deviations and (ii) when the standard deviation used for computing the index is

significantly off from the true value. The detailed computational results of Test 4 and Test 5 are

presented in Table 2.

Finally, we briefly comment on applying the JG and JGS indices when the demand does not

have normal distribution and {Xj =Dj −µj}1≤j≤n is IID. In this case, one can still define the JG

and JGS index as

JG(A ) := max
1≤k<n

JGk(A ), JGS(A ) :=
n−1∑
k=1

JGk(A ),

where JGk(A ) = P[
n−k∑
j=1

Xj > δkµ(A )−µ] ·P[
k∑

j=1

Xj <−(δkµ(A )− c)].

Of course, the exact value of JGk(A ) may be difficult to compute, and when that is the case, one

may consider the approximate JG and JGS indices by assuming {Xj}1≤j≤n is normal. Intuitively,

the approximated JGS should work reasonably well especially compared to the PCI-Sum index, as

the approximated JGS puts less weights on the bottlenecks that are not tight. Moreover, we expect

the approximated JGS index to perform especially well if the tail of each Xj is reasonably similar

to that of the normal distribution.

Indices Correct Incorrect Indecisive Correct % Incorrect % Indecisive %

T4

PCI 63 0 1075 5.54% 0% 94.46%
PCI-Sum 981 157 0 86.20% 13.80% 0 %

JG 831 84 223 73.02% 7.38% 19.60%
JG-Sum 1085 53 0 95.34% 4.66% 0 %

T5

PCI 63 0 1064 5.59% 0% 94.41%
PCI-Sum 954 173 0 84.65% 15.35% 0 %

JG 821 92 214 72.85% 8.16% 18.99%
JG-Sum 1140 87 0 92.28% 7.72% 0 %

Table 2 Robustness of Incorrect Standard Deviation
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6. Generating Effective Flexibility Design

In this section, we propose a class of heuristics for finding effective flexibility designs. The heuristics

we propose start with a flexibility design A , and iteratively add arcs to improve A . First, we

describe the general framework of a single iteration in our heuristics.

We compute δkµ(A ) for all 1≤ k ≤ n− 1 and identify sets Sk (B, where δkµ(A ) =
∑

bj∈Sk µj +∑
ai∈N(B\Sk,A ) ci. As discussed earlier, Sk and N(B \Sk,A ) correspond to the tightest bottleneck

of A containing k products. Then for each 1 ≤ k < n, we select weight function fk(·), and for

the tightest bottleneck of A containing k products, we assign the bottleneck with a weight of

fk(δkµ(A )). In the heuristic, we add the next arc that relaxes a subset of the bottlenecks in

{Sk,N(B \Sk,A ); 1≤ k < n},

where the subset has the largest possible total weight. Note that to relax the bottleneck defined

by Sk and N(B \ Sk,A ), one needs to add an arc (ai, bj) to A , where ai ∈ A \N(B \ Sk) and

bj ∈B \Sk.

The intuition of our heuristic is similar to an idea of Jordan and Graves (1995), where the

authors propose adding an arc to relax the bottleneck corresponding to Sk∗ , for some k∗ such that

Π(A , Sk∗) = JG(A ). A challenge with this approach proposed by Jordan and Graves is that there

are almost always multiple arcs that can relax the bottleneck corresponding to Sk∗ , and it is unclear

how to choose the best arc among them. By contrast, our heuristic considers simultaneously n− 1

bottlenecks, and hence uses more information to choose the next arc.

Next, we formally describe this class of heuristics.

Algorithm 1 The Plant Cover Heuristics

1: Given: A in a m plants n products system, and a budget of K arcs.

2: Select a set of weight functions, fk(·), for 1≤ k≤ n− 1.

3: for t= 1,2, . . . ,K do

4: Find δ1µ(A ), δ2µ(A ), ..., δn−1
µ (A ), and their corresponding optimal solutions (p1,q1),

(p2,q2), ..., (pn,qn).

5: Let Ψ(x,y) = 1 if x = y = 0 and Ψ(x, y) = 0 otherwise. For each 1 ≤ i ≤ m, 1 ≤ j ≤ n,

compute W (i, j) =
∑n−1

k=1 f
k(δkµ(A )) ·Ψ(pki , q

k
j ).

6: Find arc (ai∗ , bj∗) such that W (i∗, j∗) =max{W (i, j)|1≤ i≤m,1≤ j ≤ n} (when there is a

tie, we uniformly randomly select an arc with the maximum W (i, j)).

7: Add (ai∗ , bj∗) to A .

8: end for

9: Return A .
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The plant cover heuristics described in Algorithm 1 defines a class of heuristics because one can

choose different sets of weight functions fk(·). One natural set of weight functions is fk(t) = 1 for

any t ∈ R and 1 ≤ k < n. For this set of weight functions, the heuristic will always add the arc

that can relax the largest number of bottlenecks defined by Sk for 1≤ k < n. Another natural set

of weight functions is fk(t) = (1−Φ( t−c√
kσ
))(1− Φ( t−µ√

n−kσ
)), and in this case, the weights are the

probabilities that the bottleneck corresponding to Sk blocks A from achieving the same sales as

full flexibility. To avoid round-off errors factoring into our algorithm, we make a small modification

on this set of weight functions by letting

fk(t) = (1−Φ(
t− c√
kσ

))(1−Φ(
t−µ√
n− kσ

))+ 10−4,∀1≤ k < n

in our computational experiments. This modification also has the advantage of guaranteeing some

weights to all of Sk, which may improve the robustness of the algorithm when σ is significantly off

from the true standard deviations.

We note that another similar heuristic proposed in the literature is the expander heuristic

proposed by Chou et al. (2011). In particular, given a design A , the expander heuristic finds

bottlenecks A \ ai∗ and N(ai∗ ,A ) and B \ bj∗ and N(bj∗ ,A ), where

i∗ = arg min
1≤i≤m

∑
bj∈N(ai,A ) µj

Ci

, j∗ = arg min
1≤j≤n

∑
ai∈N(bj ,A ) ci

µj

,

and adds arc (ai∗ , bj∗) to A . Note that (A \ ai∗ ,N(ai∗ ,A )) is the tightest bottleneck containing

m−1 plants, (B \ bj∗ ,N(bj∗ ,A )) is the tightest bottleneck containing n−1 products, and (ai∗ , bj∗)

is the arc that relaxes both bottlenecks. In the interest of space, we leave out the details of the

heuristic when (ai∗ , bj∗) is already in A , and refer the interested readers to Algorithm 1 presented

in Chou et al. (2011).

Table 3 presents numerical results comparing the designs generated by the plant cover heuristics

and other heuristics in the literature. Other than the plant cover heuristics, the heuristics presented

in Table 3 include (i) the design with the highest expected sales among 50 randomly generated

designs; (ii) incomplete 3-chain, which attempts to construct a 3-chain design described in Hopp

et al. (2004) using K available arcs (see Figure 4a and 4b); and (iii) the design generated by the

expander heuristic in Chou et al. (2011). Finally, the performance of the full flexibility design is

also computed as a reference.

Similar to Tests 1, 2, and 3 in Section 5.2, we consider three sets of tests, where we have m=

n= 10 in Test 1 and m= 7, n= 14 in Tests 2 and 3. The capacities of the plants and the demand

distribution of the products are chosen exactly as in Tests 1, 2, and 3 in Section 5.2. Also, we start

with an initial design that is analogous to the dedicated design, where each product is produced
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by exactly one plant, and the capacity of each plant is equal to the total expected demand of all

of its product. We add 15 arcs in Test 1 and 10 arcs in Tests 2 and 3.

In Table 3, we present the average sales of each design produced by different heuristics, under

500n randomly generated demand instances. UW-PCI represents Algorithm 1 with fk(t) = 1 for

1≤ k≤ n− 1 (think of UW-PCI as the heuristic that has a uniform weight on each of the minimal

bottlenecks containing k = 1,2, ..., n products), and W-PCI represents Algorithm 1 with fk(t) =

(1−Φ( t−c√
kσ
))(1−Φ( t−µ√

n−kσ
)) for 1≤ k ≤ n− 1 (think of W-PCI as the heuristic that has different

weight on each of the each of the minimal bottlenecks containing k= 1,2, ..., n products).

One possible risk measure when studying the robustness of a design A under stochastic demand

is the threshold value x such that the likelihood that the sales is lower than x is equal to p%. This

metric is also known as the p-th percentile of the sales of A . To compare the different designs

using different percentiles, we plot in Figure 3 the empirical CDF for each of these designs. The

empirical CDFs of UW-PCI and W-PCI are highlighted with dashed lines.

Figure 3 suggests, that under each of the three tests, the empirical distribution of the sales of

full flexibility (stochastically) dominates every other design as expected. More interestingly, the

distributions of the sales of the designs generated from UW-PCI and W-PCI almost (or completely)

coincide with each other, and these two PCI-related designs dominate the designs generated by

all other heuristics under the three tests. This implies that the designs generated by UW-PCI

and W-PCI perform better not only in expected sales, but also in every empirical percentile. In

particular, the 25th percentile of all designs are presented in Table 3. Finally, Table 3 also presents

the worst ratio of the sales of a design to that of full flexibility under all demand instances.

The PCI concept motivates another heuristic in which we add the arc that makes the biggest

improvement in the PCIs. More specifically, given a flexibility design A , the heuristic searches over

all possible arcs and adds the arc (ai∗ , bj∗) that provides the biggest increase in

n−1∑
k=1

fk(δkµ(A ∪{(ai∗ , bj∗)}))−
n−1∑
k=1

fk(δkµ(A )),

where fk(.) is defined either as the UW-PCI or the W-PCI. It turns out that this heuristic does

not perform as well as either UW-PCI or the W-PCI. The reason is that at some iterations of the

heuristic, we have design A , where there does not exist an arc that improves any of its PCIs, for

example, δkµ(A ) = δkµ(A ∪{(ai, bj)}) for any 1≤ k < n and any arc (ai, bj). In those instances, the

heuristic end up adding a random arc, which degrades its performance. This heuristic is also much

slower than Algorithm 1, as it has to compute
∑n−1

k=1 f
k(δkµ(A ∪{(ai, bj)})) for every arc (ai, bj) /∈A

at each iteration.

While the expander heuristic performed worse than other heuristics under IID demand (test

settings 1 and 2), it performed better under asymmetric demand (test setting 3). More importantly,
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System Heuristic Avg. Sales 25th Pct. Worst Ratio

Test Setting 1, add 15 arcs

UW-PCI 9.36 8.95 84.8%
W-PCI 9.36 8.98 85.5%
Random 9.26 8.77 80.8%
3-Chain 9.30 8.84 81.1%
Expander 8.88 8.35 72.7%

Full Flexibility 9.41 9.01 -

Test Setting 2, add 10 arcs

UW-PCI 13.22 12.70 83.7%
W-PCI 13.23 12.73 87.5%
Random 13.09 12.58 79.8%
3-Chain 13.17 12.61 81.9%
Expander 13.07 12.40 76.0%

Full Flexibility 13.29 12.79 -

Test Setting 3, add 10 arcs

UW-PCI 11.63 11.19 85.5%
W-PCI 11.63 11.19 85.5%
Random 11.50 11.04 81.8%
3-Chain 11.54 11.00 79.4%
Expander 11.54 10.96 78.0%

Full Flexibility 11.70 11.27 -
Table 3 Comparison between the plant cover heuristics and others heuristics

the expander heuristic is very flexible and similar to the general framework provided by Algorithm

1. For these reasons, we plot in Figure 5 the performances of UW-PCI and the expander heuristic

as a function of the number of arcs added. The performances are measured by the expected sales

of the designs generated by both heuristics (normalized by the expected sales of full flexibility).

The plot of W-PCI is omitted because while it is slightly better than UW-PCI numerically, one

cannot really differentiate W-PCI from UW-PCI on the plot.

The computational results in Figure 5 again demonstrate the effectiveness of the plant cover

heuristics. Moreover, because the expander heuristic only uses two bottlenecks in adding arcs to

the existing flexibility design, it demonstrates the advantage of looking at all of the bottlenecks

generated by the PCIs.

Note that the W-PCI heuristic attempts to maximize the JGS index while the UW-PCI heuristic

attempts to maximize the PCI-Sum during every iteration. Because the JGS index significantly

outperformed the PCI-Sum index in the numerical studies in Section 5.2, it may seem surprising

that the W-PCI heuristic only outperforms UW-PCI by an extremely small margin. We think

there are two reasons for this. First, because both W-PCI and UW-PCI heuristics add one arc at

each iteration, both heuristics often end up adding the same arc, although they seek to maximize

different objectives. Second, in the numerical tests, the designs identified by the UW-PCI heuristic

are already very close to optimal, and therefore, the W-PCI heuristic has very little room to make

further improvements.

We also present our computational studies when product demands are correlated to verify the

robustness of Algorithm 1. Intuitively, because Theorem 3 holds for any uncertainty set with
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(c) Test Setting 3

Figure 3 Empirical Cumulative Distribution Functions (CDF) of the Sales

symmetric uncertainties, the plant cover heuristics should still perform favorably compared to

heuristics such as the expander heuristic when the product demand correlations are symmetric.

This is illustrated in Figure 6, where the product demands have the same marginal distributions as

test setting 3, while having the same pairwise positive and negative correlations. The correlation

coefficients were chosen to be ±0.03. Again, we plot the ratios between the expected sales of the

designs generated by both heuristics to that of full flexibility. Note that the performances of both

heuristics are slightly lower under the negative correlation setting. This is because the full flexibility
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Plants Products

(a) m= n= 10, K = 15

Plants Products

(b) m= 7, n= 14, K = 10

Figure 4 Incomplete 3-Chains

design does extremely well under the negative correlation setting, which makes the ratio of the

expected sales of the designs generated by heuristics to that of full flexibility smaller.

A limitation of the plant cover heuristics is that when systems have strong positive or negative

correlations in a small subset of products, there are no straightforward methods to take the corre-

lations into account. However, strong correlations in a small subset of products typically make the

problem of finding effective designs easy, as one can resort to intuitions such as “chaining” together

all the products with strong negative correlation (see Jordan and Graves (1995)). Indeed, the most

difficult instances in designing flexibility are when there is no correlation, or the correlations are

equally spread across products. Those are the instances where the plant cover heuristics excel.

7. Discussion and Conclusion

The objective of this paper is to provide insights from analyzing the worst-case performances of

process flexibility designs. For this purpose, we first introduce the plant cover indices (PCIs), where

the plant cover index (PCI) at k can be thought of as the tightest bottleneck containing k products.

We prove that a general class of worst-case performance measures can be expressed as functions

of the PCIs. This immediately leads to two important observations under this general class of

worst-case performance measures: first, the set of all PCIs is a sufficient statistic for computing the

worst-case performances of any flexibility design, and second, the PCIs induce a partial ordering
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Figure 5 Plant Cover Heuristic vs Expander Heuristic
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Figure 6 Plant Cover Heuristic vs Expander Heuristic under Demand Correlations

for comparing flexibility designs. The second observation is then applied to prove that under a

balanced system with homogenous plants and products, the long chain flexibility design has a

better worst-case performance than any design where the degree of each product node is two, or

any connected design with 2n arcs. This result can be seen as a worst-case counterpart to an

average-case result established in Simchi-Levi and Wei (2012).
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Motivated by the theoretical results, we try to identify whether one can use the PCIs to quickly

estimate and evaluate different designs from the average-case (i.e., expected sales) point of view.

For this purpose, we prove that the classical Jordan and Graves (JG) index, developed to compare

flexibility designs from the average-case point of view, can be determined as a function of the

PCIs when product demands are independent and have the same variance. Furthermore, combining

the JG index and PCIs, we propose a new index, the JGS index, which is significantly more

accurate than the classical JG index under our numerical study. Finally, using the bottlenecks

identified by the PCIs, we propose a class of (sequential) heuristics for generating flexibility designs.

Computational study suggests that designs generated by our heuristics perform better than designs

generated by other heuristics not only from the expected sales point of view, but also in terms of

various risk measures.

Our study suggests several intriguing advantages of using the PCIs to evaluate and generate flex-

ibility designs. First, it is very general. It can be applied to study unbalanced systems with unequal

plant capacities, non-homogenous product demands, and even additional linear production con-

straints. Second, it requires little demand information, which is practically appealing in industries

where demand is difficult to predict. In fact, the PCIs can be adapted to different levels of demand

information; one can either study δk(·), which does not use any product demand information, or

study δkµ(·), which uses only information about the expectations of product demands. Finally, the

PCIs capture important characteristics of a flexibility design with just a few numerical values. In

particular, for a design A with n products, the PCIs correspond to n+1 bottlenecks of A , which

is a significant reduction from the 2n bottlenecks of A . Despite this reduction, our result shows

that the set of all PCIs is a sufficient statistic for determining the worst-case performances of A .

It is appropriate to end the paper with some possible directions for future research. Theorem

4 shows that δkµ(A1)≥ δkµ(A2) for all 1≤ k < n, if and only if R(A1,U)≥R(A2,U), for all R ∈ Γ

and any U that is symmetric around µ. An important open question is whether we can relax the

condition δkµ(A1)≥ δkµ(A2) for all 1≤ k < n under a more restrictive class of worst-case performance

measures. Moreover, numerical results from Section 5.2 suggest that the PCIs can be aggregated

into a unique index, i.e.,
∑n

k=1 f
k(δkµ(·)) for some set of weight functions fk(·), that is very effective

in simulation. It would be interesting if one can generate a unique index that either has novel

theoretical guarantees or consistently outperforms the JGS index in numerical experiments.

Another direction is to develop methods for computing δkµ(A ) for large systems. Our compu-

tational results suggest that when the number of plants or products is less than 100, off-the-shelf

optimization solvers such as CPLEX can compute the PCIs within seconds. While this is sufficient

in studying manufacturing systems, there are other networks (e.g., call centers and data networks)

with a larger number of nodes. For example, in data networks, servers and tasks are analogous to
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plants and products in a manufacturing system. Although researchers in computer science have

designed exponential algorithms for computing the constraint bipartite vertex cover problems, i.e.

δk(A ), that work well in practice (see Fernau and Niedermeier (2001), Bai and Fernau (2008)), not

much is known for computing δkµ(A ). Therefore, if the PCIs are applicable to large size systems,

it is important to identify methods for efficiently computing δkµ(A ).
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Endnotes
1Alternatively, Theorem 2 in this paper conditioned on f(·) being monotonic in sales under fixed total demand

also holds under a slightly more general condition under symmetric demand uncertainty sets. In particular, the same

results hold for any f such that for any d1,d2 ∈Σ(d), and for any designs A1, A2, we have f(d
1,A1)> f(d2,A2) ⇐⇒

P (d1,A1)>P (d2,A2).
2The randomly generated µ turned out to be µ1 = 0.9170, µ2 = 1.2203, µ3 = 0.5001, µ4 = 0.8023, µ5 = 0.6468, µ6 =

0.5923, µ7 = 0.6863, µ8 = 0.8456, µ9 = 0.8968, µ10 = 1.0388, µ11 = 0.9192, µ12 = 1.1852, µ13 = 0.7045, µ14 = 1.3781.
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Appendix

A. Proof for Proposition 2

We only provide the proof for δn−k(C ) ≥ δn−k(A ) for 0 ≤ k ≤ α
√
n. It is easy to check that

δk(C )≥ δk(A ) for 0≤ k≤ α
√
n from symmetrical arguments.

First, we note that δn−k(C ) = k+1 for any k < n. Because by Remark 2, δn−k(A )≤ |N(S,A )|,
it is sufficient to prove that for any |A | ≤ 2n, and for any integer 1≤ k≤ α

√
n, there always exists

some S ⊆B, with |S|= k and |N(S,A )| ≤ k+1.

Suppose there exists a counterexample A ∗ in a balanced system of size n. That is, there exists

some k, 1 ≤ k ≤ α
√
n, for which we cannot find S ⊆ B with |S| = k and |N(S,A ∗)| ≤ k + 1.

Without loss of generality, assume A ∗ is such a design in the smallest balanced system (with the

minimum n). Let 1≤ k∗ ≤ α
√
n be the integer for which we cannot find any S ⊆B with |S|= k∗

and |N(S,A ∗)| ≤ k∗ +1. Also, let B1 = {u|u ∈B, |N(u,A ∗)|= 1}, B2 = {u|u ∈B, |N(u,A ∗)|= 2}
and B3 = {u|u∈B, |N(u,A ∗)| ≥ 3}.
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Suppose we have some u, u∈B1 with (v,u)∈A ∗ and |N(v,A ∗)| ≥ 2. Let A ′ = {(v′, u′)|(v′, u′)∈

A ∗, u′ ̸= u, v′ ̸= v}. Then A ′ is a design in a balanced system of size n− 1, and |A ′| ≤ 2n− 2.

By our assumption on the minimality of n, we can find some S ⊆ B \ u such that |S| = k∗ − 1

and |N(S,A ′)| ≤ k∗. But this implies that |N(S ∪{u},A ∗)| ≤ k∗+1, and we have a contradiction.

Thus, for any u∈B1 with (v,u)∈A ∗ we have N(v,A ∗) = 1. That is, any plant v that is a neighbor

of some u∈B1in A ∗ has a degree one.

Suppose there exists BC ⊂B2 such that all arcs incident to BC form a single cycle. Then clearly,

|N(BC ,A ∗)|= |BC |. If |BC | ≥ k∗, then it is easy to check that we can find S ⊆BC with |S|= k∗ and

|N(S,A ∗)| ≤ k∗ + 1, which leads to a contradiction. If |BC |< k∗, then let A ′ = {(v′, u′)|(v′, u′) ∈

A ∗, u′ /∈BC , v
′ /∈N(BC ,A ∗)}. In this case, |A ′|= |A ∗|−2|BC | ≤ 2(n−|BC |), and A ′ is a flexibility

design defined for a system with n− |BC | plants and n− |BC | products. By the minimality of n,

we can find some S ⊆B \ |BC | such that |S|= k∗−|BC | and N(S,A ′)≤ k∗−|BC |+1. This implies

that N(S ∪BC ,A ′)≤ k∗+1, which is again a contradiction. Hence, there is no BC ⊂B2 such that

all arcs incident to nodes BC form a cycle.

Let G2 be the bipartite graph with node sets A2 = N(B2,A ∗), B2 and arc set A2 =

{(v′, u′)|(v′, u′)∈A ∗, u′ ∈B2}. Because there does not exist any BC ⊂B2 such that all arcs incident

to nodes BC form one cycle, G2 contains no cycles. This implies that G2 contains a number of com-

ponents, T1, T2, ..., Tz, and |Ti∩B2|= |Ti∩A2|−1 for all 1≤ i≤ z. Because any v that is a neighbor

of u∈B1 is not in Ti for all 1≤ i≤ z, z =
∑z

i=1 |A∩Ti|− |B∪Ti| ≤ (n−|B1|)−|B2| ≤ |B3|. Because

|A ∗| = 2n, the average degree of nodes in B is 2. This implies that |B3| ≤ |B1|, and therefore,

z ≤ |B1|. Now, if z ≤ 2, we have

z(k∗ − |B1|)+ |B1|+ |B3| ≤ z(k∗ − |B1|)+ 2|B1| ≤ k∗ ≤ n

and if z > 2, we have

z(k∗ − |B1|)+ |B1|+ |B3| ≤ z(k∗ − |B1|)+ 2|B1|

≤ z(k∗ − z+2)

≤ z(α
√
n− z+2)

≤ (
α
√
n

2
+1)2 ≤ n.

Hence, we always have z(k∗ − |B1|) + |B1| + |B3| ≤ n =⇒ (k∗ − |B1|) ≤ |B2|
z
. This implies that∑z

i=1 |Ti ∩A2|/z is at least k∗ − |B1|, and hence, there exists 1≤ i∗ ≤ z such that Ti∗ has k∗ − |B1|

plant nodes. Therefore, we can find a set S ⊆ Ti∗ ∩B such that |N(S,A ∗)| ≤ k∗ − |B1|+1, which

implies that |N(S ∩B1)| ≤ k∗+1. This leads to a contradiction. Hence, we must have that for any

0≤ k≤ α
√
n, we can find some S ⊆B, |S|= k with δn−k(A ∗)≤ |N(S,A ∗)| ≤ k+1. �
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B. Counterexamples

B.1. Robustness and Expected Sales

This subsection presents an example to show that given two flexibility designs, the strictly more

symmetrically robust design does not always have higher expected sales under IID demand. In

this case, consider n=m= 4, ci = 1 for i= 1,2,3,4 and flexibility designs A1 and A2 in Figure 7.

Because A1 is a long chain with 4 plants and 4 products, δk(A1) = 4− k+1 for each 1≤ k≤ 3.

To find δk(A2) for 1 ≤ k ≤ 3, we can either solve the three corresponding binary programs or

enumerate over all possible subsets of B and apply Remark 2. Applying either method, we find

δ1(A2) = 4, δ3(A2) = 2, and δ2(A2) = 2. In particular, δ2(A2) is achieved by set S = {b3, b4}; that

is,

δ2(A2) =
∑

ai∈N(B\S,A2)

ci =
∑

ai∈{a1,a2}

ci = 2.

Thus, δk(A1) = δk(A2) for k = 0,1,3,4 and δ2(A1) > δ2(A2), which implies that A1 is strictly

more symmetrically robust than A2. However, it is not always true that A1 has higher expected

sales than A2 even under IID demand. In particular, when product demand is IID and the demand

for each product is equal to 0 or 2 with an equal probability of 0.5, the expected sales of A1 is equal

to 3, but the expected sales of A2 is equal to 3.125. The expected sales of A1 by A2 are computed

by enumerating over all of the possible demand instances.

Plants Products

(a) A1

Plants Products

(b) A2

Figure 7 Designs A1 and A2

B.2. Robustness of the Long Chain and Designs with 2n Arcs

In Figure 8, we provide design A with n = 15 nodes and 30 arcs, ci = 1 for 1 ≤ i ≤ n, where

δk(A ) > δk(C ) for some 1 ≤ k ≤ n− 1 (in this case, k = 8). To observe this, recall that δ8(C ) =

15− 8+1= 8. δ8(A ) is computed to equal to 9. While δ8(A ) can be computed by a case-by-case

analysis, the easiest (and probably the most reliable) way to compute δ8(A ) is to use a computer

program that either enumerates over all of the subset S ⊆ B with |S| = 8 or solves the binary

program corresponding to δ8(A ).
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Because δ8(A ) = 9> δ8(C ) = 8, Theorem 2 immediately implies that there exists some symmetric

uncertainty set U where C under the 15 plants and products system is strictly worse than A under

some worst-case measures.

Plants Products

Figure 8 A with 15 plants/products and 30 arcs

C. Additional Production Constraints

The concept of the PCIs introduced in Section 3 can be also extended to a model with an additional

class of linear production constraints. In this case, P (d,A ) is defined as the objective value of the

following LP.

P (d,A ) =max
∑

(ai,bj)∈A

θijfij

s.t.
∑

ai∈N(bj ,A )

fij ≤ dj, ∀bj ∈B
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bj∈N(ai,A )

fij ≤ ci, ∀ai ∈A

∑
(ai,bj)∈A

Φhijfij ≤ ϕh,∀h= 1,2, ...,H

0≤ fij,∀(ai, bj)∈A

f ∈R|A |.

For example, in some applications, an added flexibility arc (ai, bj) can be only utilized for p

(p < 1) fraction of the capacity at plant i. In that case, we would have the additional constraint

fij ≤ p · ci.
Under this setting, we define the plant cover index, δkµ(A ), for 0≤ k≤ n, as follows.

δkµ(A ) =min
m∑
i=1

cipi +
n∑

j=1

µjqj +
H∑

h=1

ϕhzh

s.t.
n∑

j=1

qj = k,

pi + qj +
H∑

h=1

Φhijzh ≥ 1,∀(ai, bj)∈A

zh ≥ 0,∀1≤ h≤H,

p∈ [0,1]m,q∈ {0,1}n,z∈Rh.

Note that the dual of the LP defining P (d,A ) can be written as follows:

P (d,A ) =max
m∑
i=1

cipi +
n∑

j=1

djqj +
H∑

h=1

ϕhzh

s.t. pi + qj +
H∑

h=1

Φhijzh ≥ 1,∀(ai, bj)∈A

zh ≥ 0,∀1≤ h≤H,

p∈ [0,1]m,q∈ [0,1]n,z∈Rh.

Consider the case where the dual problem has optimal integral solution(s). In this case, we can

apply the same proof techniques as in Section 3, and develop the same result as Theorems 3 and

4 under this more general setting.

The dual problem has an optimal integral solution(s), when the system of inequalities,∑
ai∈N(bj ,A )

fij ≤ dj, ∀bj ∈B (17)

∑
bj∈N(ai,A )

fij ≤ ci, ∀ai ∈A (18)

∑
(ai,bj)∈A

Φhijfij ≤ ϕh,∀h= 1,2, ...,H, (19)
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is totally dual integral (see Section 8.6 of Bertsimas and Weismantel (2008) for a more detailed

discussion of this topic). For example, the set of inequalities in (17-19) is totally dual integral when

all inequalities in (19) are of the form fij ≤ rij.

Using the PCIs defined under this more general setting, we can define heuristics under the

general framework outlined in Algorithm 1. When the dual of the LP defining P (d,A ) has optimal

integral solution(s), we expect the effectiveness of the heuristics under this more general setting to

be comparable with the effectiveness of UW-PCI and W-PCI heuristics discussed in Section 6.


