SUPPLEMENTARY MATERIALS TO "ADAPTIVE OUTPUT-FEEDBACK CONTROL FOR A CLASS OF MULTI-INPUT-MULTI-OUTPUT PLANTS WITH APPLICATIONS TO VERY FLEXIBLE AIRCRAFT"¹

Zheng Qu², Anuradha M. Annaswamy² and Eugene Lavretsky³

Appendix

A. Proof of Lemma 1

Proof: Define $(\cdot)_{/[\cdot]_0} = \frac{\partial(\cdot)}{\partial[\cdot]}|_{[\cdot]_0}$ as partial differential variables. Linearizing (3) around a trim point $[\ddot{e}_0, \dot{e}_0, \dot{e}_0, \beta_0, \beta_0, \lambda_0, u_0]^T$ yields

where, following the definition of terms in (4), the unknown deviation terms are

$$\begin{split} \Delta M_{FF} &= -(J_{h\epsilon}^{T})\epsilon_{0}F_{\ell_{0}}^{Icad} \qquad \Delta M_{FB} = -(J_{h\epsilon}^{T})\epsilon_{0}F_{\ell_{0}}^{Icad} \\ \Delta M_{BF} &= -(J_{hb}^{T})\epsilon_{0}F_{\ell_{0}}^{Icad} \qquad \Delta M_{BB} = -(J_{hb}^{T})\epsilon_{0}F_{\ell_{0}}^{Icad} \\ \Delta B_{BF} &= -(J_{hc}^{T})\epsilon_{0}F_{\ell_{0}}^{Icad} \qquad \Delta B_{B/\lambda_{0}} = (J_{hb}^{T})\epsilon_{0}F_{\ell_{0}}^{Icad} \\ \Delta B_{F/\lambda_{0}} &= (J_{h\epsilon}^{T})\epsilon_{0}F_{\ell_{0}}^{Icad} \qquad \Delta B_{B/\lambda_{0}} = (J_{hb}^{T})\epsilon_{0}F_{\ell_{0}}^{Icad} \\ \Delta K_{FF} &= M_{FF/\epsilon_{0}}\epsilon_{0} + M_{BB/\epsilon_{0}}\dot{\beta}_{0} \qquad (34) \\ \Delta C_{FF} &= -(C_{FF})x_{0} - C_{FF/\epsilon_{0}}\epsilon_{0} - C_{FB/\epsilon_{0}}\beta_{0} + (J_{h\epsilon}^{T})\epsilon_{0}F_{\ell_{0}}^{Icad} \\ \Delta C_{BF} &= -(C_{BF})x_{0} - C_{FF/\epsilon_{0}}\dot{\epsilon}_{0} - C_{FB/\delta_{0}}\beta_{0} + (J_{hb}^{T})\epsilon_{0}F_{\ell_{0}}^{Icad} \\ \Delta C_{BB} &= -(C_{BB})x_{0} - C_{FF/\delta_{0}}\dot{\epsilon}_{0} - C_{BB/\delta_{0}}\beta_{0} \end{split}$$

 $B_{F/u_0} = (J_{h\epsilon}^T)_{\epsilon_0} F_{/u_0}^{load}$ and $B_{B/u_0} = (J_{hb}^T)_{\epsilon_0} F_{/u_0}^{load}$. Without loss of generality, we scale each input so that $F_{/u_0}^{load} = I$. In realistic application, only $[\epsilon_0, \beta_0, u_0]^T$ can be measured accurately and therefore variables that depend on them can be gain scheduled. $[\dot{\epsilon}_0, \ddot{\epsilon}_0, \dot{\beta}_0, \lambda_0]^T$ cannot be measured accurately and therefore variables that depends on them are generally unknown. As a result, $\overline{Q}_1, \overline{Q}_2$ and Q_3 are known but ΔQ_1^* and ΔQ_2^* are unknown. Examination on (34) using (4) shows that

and

$$\Delta Q_{2}^{*} = \begin{bmatrix} 0\\ J_{he}^{T}\\ J_{hb}^{T} \end{bmatrix}_{\epsilon_{0}} \underbrace{\begin{bmatrix} M_{e} \left(\frac{\partial J_{he}}{\partial \epsilon}\ddot{\epsilon} + \frac{\partial J_{hb}}{\partial \epsilon}\beta\right) & M_{e} \left(j_{he} + \frac{\partial J_{he}}{\partial \dot{\epsilon}}\dot{\epsilon} + \frac{\partial J_{hb}}{\partial \dot{\epsilon}}\beta\right) \\ & M_{e} \left(j_{hb} + \frac{\partial J_{he}}{\partial \beta}\dot{\epsilon} + \frac{\partial J_{hb}}{\partial \beta}\beta\right) \end{bmatrix}_{x_{0}} \\ = Q_{3} \Theta_{q2}^{*T}$$

$$(36)$$

¹Accepted by 2016 American Control Conference, Boston, MA. This work is supported by Boeing Strategic University Initiative.

²Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. IEEE fellow.

³The Boeing Company, Huntington Beach, CA, 92647, USA. IEEE fellow.

which is used to rewritten (33) as

$$\left(\overline{Q}_1 + Q_3 \Theta_{q_1}^{*T}\right) \dot{x}_p = \left(\overline{Q}_2 + Q_3 \Theta_{q_2}^{*T}\right) x_p + Q_3 u_p.$$
(37)

Assume that \overline{Q}_1 , $(\overline{Q}_1 + Q_3 \Theta_{q_1}^{*T})$ and $(I + \Theta_{q_2}^{*T} \overline{Q}_1^{-1} Q_3)$ are invertible around the equilibrium. Taking inverse on both sides, and noting

$$(\overline{Q}_{1} + Q_{3}\Theta_{q_{1}}^{*T})^{-1} = \overline{Q}_{1}^{-1} - \overline{Q}_{1}^{-1}Q_{3}\underbrace{(I + \Theta_{q_{1}}^{*T}\overline{Q}_{1}^{-1}Q_{3})^{-1}\Theta_{q_{1}}^{*T}\overline{Q}_{1}^{-1}}_{\overline{\Theta}_{q_{1}}^{*T}} \underbrace{\overline{Q}_{1}^{-1}}_{\overline{\Theta}_{q_{1}}^{*T}} (38)$$

yields

$$\dot{x}_p = \left(\overline{Q}_1^{-1} - \overline{Q}_1^{-1}Q_3\overline{\Theta}_{q_1}^{*T}\overline{Q}_1^{-1}\right)\left(\overline{Q}_2 + Q_3\Theta_{q_2}^{*T}\right)x_p$$

$$+ \left(\overline{Q}_1^{-1} - \overline{Q}_1^{-1}Q_3\overline{\Theta}_{q_1}^{*T}\overline{Q}_1^{-1}\right)Q_3u_p$$

$$(39)$$

$$= \left[\overline{Q}_1^{-1}\overline{Q}_2 + \overline{Q}_1^{-1}Q_3\left(\Theta_{q_2}^{*T} - \overline{\Theta}_{q_1}^{*T}\overline{Q}_1^{-1}\overline{Q}_2 - \overline{\Theta}_{q_1}^{*T}\overline{Q}_1^{-1}Q_3\Theta_{q_2}^{*T}\right)\right]x_p \qquad (40)$$

+ $\overline{Q}_1^{-1}Q_3\left(I - \overline{\Theta}_{q_1}^{*T}\overline{Q}_1^{-1}Q_3\right)u_p$

$$= \left[A_p + B_p \underbrace{\left(\Theta_{q_2}^{*T} - \overline{\Theta}_{q_1}^{*T} A_p - \overline{\Theta}_{q_1}^{*T} B_p \Theta_{q_2}^{*T}\right)}_{\Theta_p^{*T}}\right] x_p + B_p \underbrace{\left(I - \overline{\Theta}_{q_1}^{*T} B_p\right)}_{\Lambda_p^*} u_p \quad (41)$$

with $A_p = \overline{Q}_1^{-1}\overline{Q}_2$, $B_p = \overline{Q}_1^{-1}Q_3$. C_p as in $y_p = C_p x_p$ is the selection matrix that picks out measurable states from x_p .

B. Proof of Lemma 3

Proof: The proof will be performed in a transformed coordinate. Similar to \overline{B}_2 , we part $C^T = \begin{bmatrix} C_2^T & C_1^T \end{bmatrix}$. For a square plant model that has nonuniform input relative degree two, there exists an invertible transformation $T_{in} = \begin{bmatrix} (\mathfrak{CB})^{-1}\mathfrak{C} \\ \mathfrak{N} \end{bmatrix}$, $T_{in}^{-1} = \begin{bmatrix} \mathfrak{B} & \mathfrak{M} \end{bmatrix}$, where $\mathfrak{C}^T = \begin{bmatrix} C_2^T & A^T C_2^T & C_1 \end{bmatrix}$, $\mathfrak{B} = \begin{bmatrix} B_2 & AB_2 & B_{s1} \end{bmatrix}$, \mathfrak{N} and \mathfrak{M} are chosen to satisfy $\mathfrak{MB} = 0$, $\mathfrak{CM} = 0$ and $\mathfrak{MM} = I$, that transforms (10) into a new coordinate called "input normal form" (See [21, Corollary 2.2.5] for proof). In this proof, matrices in input normal form coordinate will be denoted with the subscript $(\cdot)_{in}$, as in $x_{in} = T_{in} B_2$ and $B_{s1,in} = T_{in} B_{s1}$, $B_{1,in} = T_{in} B_1$, $B_{2,in} = T_{in} B_2$, $C_{in} = CT_{in}^{-1}$, $\Psi_{1,in}^{*T} = \Psi_1^{*T} T_{in}^{-1}$ and $\Psi_{2,in}^{*T} = \Psi_2^{*T} T_{in}^{-1}$. The input normal form of the plant model (10) is

$$\begin{split} \frac{\xi_{2}^{2}}{\xi_{1}^{2}} \\ \frac{\xi_{1}^{2}}{\eta} \end{bmatrix} &= \underbrace{\begin{bmatrix} 0 & R_{2,1}^{2} & R_{1,1}^{2} & V_{2} \\ I & R_{2,2}^{2} & R_{2,2}^{2} & 0 \\ \hline 0 & R_{1,1}^{2} & R_{1,1}^{1} & V_{1} \\ \hline 0 & U_{2} & V_{1} & Z \\ \hline & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\$$

→ Matrix $Z \in \mathbb{R}^{(n-r_s)\times(n-r_s)}$, where $r_s = \sum_i r_i$, is the zero dynamics matrix whose eigenvalues are transmission zeros of the plant model (see [21, Section 2.3]). It is noted that $B_{1,in} = \begin{bmatrix} \times & \times & 0 & 0 \end{bmatrix}^T$ and $\Psi_1^{*T}T_{in}^{-1} = \begin{bmatrix} 0 & \times & \times & \times \end{bmatrix}$ since Assumption 4 holds.

Define $A_{in}^* = A_{in} + B_{1,in} \Psi_{1,in}^{*T} + B_{2,in} \Psi_{2,in}^{*T} = T_{in} A^* T_{in}^{-1}$. Examination of the elements of $\overline{B}_{2,in}^1$ and $\overline{B}_{2,in}^{1*}$, which are defined as $\overline{B}_{2,in}^{1*} = T_{in}\overline{B}_2^{1*}$, and $\overline{B}_{2,in}^1 = T_{in}\overline{B}_2^1$, respectively, shows that

$$\overline{B}_{2,in}^{1} = \begin{bmatrix} B_{2,in}^{1} & B_{s1,in} \end{bmatrix} = \begin{bmatrix} a_{1}^{*}I_{m} & 0\\ a_{1}^{1}I_{m} & 0\\ \hline 0 & I_{m_{s}}\\ \hline 0 & 0 \end{bmatrix}, \quad (43)$$

and

$$\overline{B}_{2,in}^{1*} = \begin{bmatrix} B_{2,in}^{1*} & B_{s1,in} \end{bmatrix} = \begin{bmatrix} a_1^0 I_m + a_1^1 \psi_{20}^{2*1} & 0\\ a_1^1 I_m & 0\\ \hline 0 & I_{m_s}\\ \hline 0 & 0 \end{bmatrix}.$$
(44)

where $B_{2,in}^1 = T_{in}B_{2,in}^1$, $B_{s1,in} = T_{in}B_{s1}$ and $B_{2,in}^{1*} = T_{in}B_{2}^{1*}$. It is noted that $C_{in}\overline{B}_{2,in}^1 = C_{in}\overline{B}_{2,in}^{1*} = \begin{bmatrix} a_1^1CAB_2 & CB_{s1} \end{bmatrix}$ has full rank by Assumption 3 and Lemma 2. Examination on elements of $\overline{B}_{2,in}^{1*}$ and $\overline{B}_{2,in}^1$ shows that

$$\overline{B}_{2,in}^{1*} = \overline{B}_{2,in}^1 + B_{2,in} a_1^1 \Psi_{in,m}^{*T}.$$
(45)

where

$$\Psi_{in,m}^{*T} = \begin{bmatrix} \psi_{20}^{2*T} & 0_{m \times m_s} \end{bmatrix} \in \mathbb{R}^{m \times p}$$
(46)

where ψ_{20}^{2*T} is a subset of the elements in $\Psi_{2,in}^*$ as shown in (42). It is noted that (44) also holds for $(A_{in}^* - L_{in}C_{in})$ for $\forall L_{in} \in \mathbb{R}^{n \times m}$. Transformation back to the original coordinate proves the Lemma.

C. Proof of Lemma 4

Proof: It has been proved that the $\mathcal{Z}\{A^*, B_2^{1*}, C\}$ is exactly the eigenvalues of $\overline{N}_{2,in}^{1*} A_{in}^* M_{in}$ with $M_{in} = \begin{bmatrix} I_m & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & I_{n-r_s} \end{bmatrix}^T$ and $\overline{N}_{2,in}^1 = (M_{in}^T M_{in})^{-1} M_{in}^T \begin{bmatrix} I - \overline{B}_{2,in}^1 (\overline{C}_{in} \overline{B}_{2,in}^1)^{-1} \overline{C}_{in} \end{bmatrix}$ (see [18]). Some algebra shows that

$$\overline{N}_{2,in}^{1*} A_{in}^* M_{in} = \begin{bmatrix} -\frac{a_1^0}{a_1^1} & \times \\ 0 & Z \end{bmatrix}$$
(47)

where Z is the zero dynamics matrix as in 42 whose eigenvalues are $\mathcal{Z}{A, B_2, C}$ (see [21, Section 2.3]).

D. Proof of Theorem 1

Proof: We propose a Lyapunov function candidate

$$V = e_{mx}^{T} P^{*} e_{mx} + Tr \left[\widetilde{\Psi}_{\Lambda}^{T} \Gamma_{\psi_{\lambda}}^{-1} \Lambda^{*} \widetilde{\Psi}_{\Lambda} \right] + Tr \left[\widetilde{\Psi}_{m}^{T} \Gamma_{\psi_{m}}^{-1} \widetilde{\Psi}_{m} \right]$$
(48)

where $P^* = P^{*T} > 0$ is the matrix that guarantees the SPR properties of $\{A_{L^*}^*, \overline{B}_2^{1*}, SC\}$, satisfying

$$P^*A_{L^*}^* + A_{L^*}^*P^* = -Q^* < 0 \tag{49}$$

$$P^*\overline{B}_2^{1*} = C^T S^T, (50)$$

for a $Q^* = Q^{*T} > 0$. Partition on both sides of (50) yields

$$P^* \begin{bmatrix} B_2^{1*} B_1 \end{bmatrix} = C^T \begin{bmatrix} S_2^T & S_1^T \end{bmatrix}.$$
 (51)

By appealing to (27)(28)(29)(49)(51), the derivative of V has the following bound

$$\dot{V} = e_{mx}^{T} \left[A_{L^{*}}^{*T} P^{*} + P^{*} A_{L^{*}}^{*} \right] e_{mx} - 2e_{mx}^{T} \left[P^{*} B_{2}^{1*} - C^{T} S_{2}^{T} \right] \Lambda^{*} \widetilde{\Psi}_{\Lambda}^{T} \overline{\chi} - 2e_{mx}^{T} \left[P^{*} B_{2}^{1*} - C^{T} S_{2}^{T} \right] \widetilde{\Psi}_{m}^{T} \overline{e}_{sy} = -e_{mx}^{T} Q^{*} e_{mx} \leq 0.$$
(52)

Then $e_{mx}(t)$, $\widetilde{\Psi}_{\Lambda}(t)$ and $\widetilde{\Psi}_{m}(t)$ are bounded as $t \to \infty$, which proves i). Applying Barbalat's Lemma (using the fact that $\dot{e}_{mx}(t)$ is bounded) shows that $e_{mx}(t) \to 0$ as $t \to \infty$, which proves ii). From (28) and (16), the fact $e_{mx}(t) \to 0$ implies that $e_y(t) \to 0$, $e_{sy}(t) \to 0$ and $\overline{e}_{sy}(t) \to 0$ as $t \to \infty$, which in turn implies that x_m , as well as \overline{x}_m and \overline{u}_{bl} , is bounded. Further, denote

$$e_{pz}(t) = z - z_{cmd}, \ e_{mz}(t) = z_m - z_{cmd}.$$
 (53)

From (9), it is noted that $\int e_{pz}(t)dt$ is an element of x. From (14), it is noted that $\int (e_{mz}(t) - L_I e_y)dt$ is an element of x_m where L_I are the rows of L corresponding to e_{mz} dynamics. As a result, $e_{mx}(t) \to 0$ as $t \to \infty$, which, together with the definition of e_{mx} as

$$e_{mx} = e_x + B_2 \Lambda^* a_1^1 \overline{\Psi}_1^{*T} x_m + B_2 a_1^1 \left[\widetilde{\Psi}_m^T(t) \overline{e}_{sy} \right] - B_2 \Lambda^* a_1^1 \widetilde{\Psi}_\Lambda^T \overline{\chi}, \quad (54)$$

implies $e_x(t) \to \int (B_2[\cdot]) dt$ and therefore

$$\int (e_{pz} - e_{mz} + L_I e_y) dt \to \int (B_{2,I}[\cdot]) dt = 0$$
 (55)

as $t \to \infty$ (since $B_{2,I}$, the rows of B_2 corresponding to w_z dynamics, is zero). Eq.(55), together with the fact that

$$e_z(t) = z - z_m = e_{pz} - e_{mz}$$
 (56)

implies

$$\int e_z(t)dt \to -\int (L_I e_y)dt \tag{57}$$

which has a bounded limit as $t \to \infty$ (since $e_y(t) \to 0$). Further, from (9) and (14), $\dot{e}_z(t)$ is bounded as $t \to \infty$. Applying Barbalat's Lemma shows that $e_z(t) \to 0$ as $t \to \infty$, which proves iii).