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APPENDIX

A. Proof of Lemma 1

Proof: Define ()1, = %L:]) l[]o as partial dif-
ferential variables. Linearizing (35 around a trim point
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where, following the definition of terms in (4), the unknown
deviation terms are
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Bpju, = (J,z;)EOFlfzd and By, = (J,z;)eoFlZ‘zd. Without
loss of generality, we scale each input so that F;Z‘;d = 1.

In realistic application, only [eo, Bo,up]’ can be measured
accurately and therefore variables that depend on them can be

gain scheduled. [ég, €, Bo, Ao]¥ cannot be measured accurately
and therefore variables that depends on them are generally

unknown. As a result, Q, @2 and @3 are known but AQ;
and AQ)3 are unknown. Examination on (34) using (4) shows
that
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which is used to rewritten (33) as
(@1 + Q3@;1T) jfp = (@2 + Q?)@ZZT) Tp + Q3up~
Assume that Q;, (Q; + Qs0;T) and (I + @;Z@l_l@g) are

invertible around the equilibrium. Taking inverse on both sides,
and noting
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with A, = Q, @5, B, =@, Q3. C, asin y, = Cpz), is the
selection matrix that picks out measurable states from z,. W

B. Proof of Lemma 3

Proof: The proof will be performed in a transformed
coordinate. Similar to Bj, we part CT = [ ct of l
For a square plant model that has nonuniform input rel-
ative degree two, there exists an invertible transformation
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Tip = (@B‘J)t ¢ ,T;ll:[% E)J?],wherleT:
[ 02T ATCIQT Cl N B = [ BQ ABQ le N 9% and M
are chosen to satisfy 918 = 0, €t = 0 and I = [, that

transforms (10) into a new coordinate called “input normal
form” (See [21, Corollary 2.2.5] for proof). In this proof,
matrices in input normal form coordinate will be denoted
with the subscript (+)in, as in i, = Tjpz, Asy = Tin AT,
B in = TinBa (and therefore By, = Ti, B2 and By i =
TinBs1)s Buin = TinBi, Boin = TinB., Ciyp = CT,,',
Uit = wTT; ! and W3 = 37T, '. The input normal
form of the plant model (10) is
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Matrix Z € R(=7:)x(n=7s) \here ry = 27 r;, 1S the zero
dynamics matrix whose eigenvalues are transmission zeros of
the plant model (see [21, Section 2.3]). It is noted that B ;, =
[x x 0 0] and WTT;' =0 x x
Assumption 4 holds.

Define A}, = Ain+B1inVi% + By in V3T =T, AT
Examination of the elements of E;m and E;n, which are

x| since
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defined as Bgzn = TinBQ*, and B, ;,, = Tin B,, respectively,
shows that

all,, O
E;,m = B3in Bsiin | = a%olmilo , (43
00
and
a$l, +at3t 0
By = By Boin ] = |[— "m0
0 0
(44)
where By, = TinBj,,. Bsiin = TinBs and By, =
T;nB3*. It is noted that C’ME;m = C’mﬁéi—n =

[ aiCABy; CByg ] has full rank by Assumption 3 and
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Lemma 2. Examination on elements of B;m and B, ;,, shows
that

By = Bayy+ BainalWil,.. (45)
where

Cinon = [ V357 Omxm, | €R™ (46)
where 23T is a subset of the elements in W3, as shown in

(42). It is noted that (44) also holds for (A} — L;,C;y,) for

in
VL;, € R™™. Transformation back to the original coordinate
proves the Lemma. ]

C. Proof of Lemma 4

Proof: Tt has been proved that the Z{A* Bi* C}
is exactly the eigenvalues of W;TMA:”MM with
- [Im 0 0] 0
B 0 0 O ‘ I,
(ML M;,)~ "M, [Ifﬁé,m(anﬁim)*lan] (see [18]).
Some algebra shows that

M; } and N;m =

a0
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where Z is the zero dynamics matrix as in 42 whose eigen-
values are Z{A, By, C} (see [21, Section 2.3]). [ ]

D. Proof of Theorem 1
Proof: We propose a Lyapunov function candidate
V= eﬁxp*e'mw
+Tr [@fr;ﬁA*\i A} +Tr [@ﬁF;i \Tlm} (48)
where P* = P*T > O1 is the matrix that guarantees the SPR
properties of {A%., By, SC}, satisfying
P*A}. + AP =-Q" <0
P*By =CTST,

(49)

(50

for a Q* = Q*T > 0. Partition on both sides of (50) yields
P*[ByB|=C"[ ST ST ]. (51)

By appealing to (27)(28)(29)(49)(51), the derivative of V' has
the following bound

V=el, (AT P + P* A3 ] eme
—2¢l [P*BY — CTSTIA Uy
—2¢0 [P*By — CcTsTule,,

=—e} Q" ems < 0. (52)

Then €, (t), U (t) and U,,, (t) are bounded as ¢ — oo, which
proves i). Applying Barbalat’s Lemma (using the fact that
€me(t) is bounded) shows that e, (t) — 0 as t — oo, which
proves ii). From (28) and (16), the fact e,,.(t) — 0 implies
that e, (t) = 0, esy(t) — 0 and €, (t) — 0 as ¢ — oo, which
in turn implies that z,,, as well as =,, and Uy, is bounded.

Further, denote
€pz (t) = Z — Zcmdy €mez (t) = Zm — Zcmd- (53)

From (9), it is noted that [ e, (t)dt is an element of x. From
(14), it is noted that [(ey,.(t) — Lre,)dt is an element of z,,
where L are the rows of L corresponding to e,,, dynamics.
As a result, e,,,(t) = 0 as t — oo, which, together with the
definition of e,,, as

ema = €z + BQA*a}@TTxm + Bga} [\T/fl(t)ésy]
~ BoA"ajURY, (54)

implies e, (t) — [(Bs[])dt and therefore
/(epz — €mz + Lrey)dt — /(BQ,[['])dt =0

as t — oo (since By, the rows of By corresponding to w,
dynamics, is zero). Eq.(55), together with the fact that

(55)

e(t) =2—2zm = €pz — €mz (56)

/ez(t)dt — —/(Lley)dt

which has a bounded limit as t — oo (since ey(t) — 0).
Further, from (9) and (14), é.(¢) is bounded as t — oc.
Applying Barbalat’s Lemma shows that e, () — 0 as ¢t — oo,
which proves iii). u

implies

(57)



