Supplementary Materials to "Adaptive Output-Feedback Control for A Class of
 Multi-Input-Multi-Output Plants with
 Applications to Very Flexible Aircraft" ${ }^{1}$

Zheng Qu^{2}, Anuradha M. Annaswamy ${ }^{2}$ and Eugene Lavretsky ${ }^{3}$

ApPENDIX

A. Proof of Lemma 1

Proof: Define $(\cdot)_{/[\cdot]_{0}}=\left.\frac{\partial(\cdot)}{\partial[\cdot]}\right|_{[\cdot]_{0}}$ as partial differential variables. Linearizing (3) around a trim point $\left[\ddot{\epsilon}_{0}, \dot{\epsilon}_{0}, \epsilon_{0}, \dot{\beta}_{0}, \beta_{0}, \lambda_{0}, u_{0}\right]^{T}$ yields

$$
\begin{aligned}
& (\underbrace{\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & \left(M_{F} F\right) \epsilon_{0} & \left(M_{F B}\right) \epsilon_{0} \\
0 & \left(M_{B F)} \epsilon_{0}\right. & \left(M_{B B}\right) \epsilon_{0}
\end{array}\right]}_{\bar{Q}_{1}\left(0,0, \epsilon_{0}, 0, \beta_{0}\right)}+\underbrace{\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \Delta M_{F F} & \Delta M_{F B} \\
0 & \Delta M_{B F} & \Delta M_{B B}
\end{array}\right]}_{\Delta Q_{1}^{*}\left(\ddot{\epsilon}_{0}, \dot{\epsilon}_{0}, \dot{\beta}_{0}\right)})\left[\begin{array}{c}
\dot{\epsilon} \\
\ddot{\epsilon} \\
\dot{\beta}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& +\underbrace{\left[\begin{array}{ccc}
Q_{2}\left(0,0, \epsilon_{0}, 0, \beta_{0}\right) \\
\Delta K_{F F} & \Delta C_{F} & \Delta C_{F} B \\
\Delta K_{B F} & \Delta C_{B F} & \Delta C_{B B}
\end{array}\right]}_{\Delta Q_{2}^{*}\left(\ddot{\epsilon}_{0}, \dot{\epsilon}_{0}, \dot{\beta}_{0}\right)}) \underbrace{\left[\begin{array}{c}
\epsilon \\
\dot{\epsilon} \\
\beta
\end{array}\right]}_{x_{p}}+\underbrace{\left[\begin{array}{c}
0 \\
B_{F} / u_{0} \\
B_{B /}
\end{array}\right]}_{Q_{3}} u_{p}
\end{aligned}
$$

where, following the definition of terms in (4), the unknown deviation terms are

$$
\begin{aligned}
& \begin{array}{ll}
\Delta M_{F F}=-\left(J_{h \epsilon}^{T}\right) \epsilon_{0} F^{\text {load }} / \ddot{\epsilon}_{0} & \Delta M_{F B}=-\left(J_{h \epsilon}^{T}\right) \epsilon_{0} F^{\text {load }} / \dot{\beta}_{0} \\
\Delta M_{B F}=-\left(J_{h}^{T}\right) \epsilon_{0} F^{\text {load }} & \Delta M_{B B}=-\left(J_{h b}^{T}\right) \epsilon_{0} F^{\text {load }}
\end{array} \\
& \Delta M_{B F}=-\left(J_{h b}^{T}\right) \epsilon_{0} F^{l}{ }^{l o a a d} \epsilon_{0} \quad \Delta M_{B B}=-\left(J_{h b}^{T}\right) \epsilon_{0} F^{l} / \dot{\beta}_{0} \dot{\beta}_{0} \\
& \Delta B_{F / \lambda_{0}}=\left(J_{h \epsilon}^{T}\right) \epsilon_{0} F^{l / \epsilon_{0}} \lambda_{0} \quad \Delta B_{B / \lambda_{0}}=\left(J_{h b}^{T}\right)_{\epsilon_{0}} F_{/ \lambda_{0}^{l o a d}}^{l} \\
& \Delta K_{F F}=M_{F F / \epsilon_{0}} \ddot{\epsilon}_{0}+M_{F B / \epsilon_{0}} \dot{\beta}_{0} \\
& \Delta K_{B F}=M_{B F / \epsilon_{0}} \ddot{\epsilon}_{0}+M_{B B / \epsilon_{0}} \dot{\beta}_{0} \\
& \Delta C_{F F}=-\left(C_{F F}\right)_{x_{0}}-C_{F F / \dot{\epsilon}_{0}} \dot{\epsilon}_{0}-C_{F B / \dot{\epsilon}_{0} \beta_{0}+\left(J_{h \epsilon}^{T}\right) \epsilon_{0} F_{/ \dot{\epsilon}_{0}}^{l o a d} .} \\
& \Delta C_{B F}=-\left(C_{B F}\right) x_{0}-C_{B F / \dot{\epsilon}_{0}} \dot{\epsilon}_{0}-C_{B B / \dot{\epsilon}_{0} \beta_{0}+\left(J_{h b}^{T}\right) \epsilon_{0} F_{/ \dot{\epsilon}_{0}}^{l o a d}, ~}^{\text {l }} \\
& \Delta C_{F B}=-\left(C_{F B}\right) x_{0}-C_{F F / \beta_{0}} \dot{\epsilon}_{0}-C_{F B / \beta_{0}} \beta_{0} \\
& \Delta C_{B B}=-\left(C_{B B}\right)_{x_{0}}-C_{B F / \beta_{0}} \dot{\epsilon}_{0}-C_{B B / \beta_{0}} \beta_{0} \\
& B_{F / u_{0}}=\left(J_{h \epsilon}^{T}\right)_{\epsilon_{0}} F_{/ u_{0}}^{l o o d} \text { and } B_{B / u_{0}}=\left(J_{h b}^{T}\right)_{\epsilon_{0}} F_{/ u_{0}}^{l o a d} \text {. Without }
\end{aligned}
$$ loss of generality, we scale each input so that $F_{/ u_{0}}^{l o a d}=I$. In realistic application, only $\left[\epsilon_{0}, \beta_{0}, u_{0}\right]^{T}$ can be measured accurately and therefore variables that depend on them can be gain scheduled. $\left[\dot{\epsilon}_{0}, \ddot{\epsilon}_{0}, \dot{\beta}_{0}, \lambda_{0}\right]^{T}$ cannot be measured accurately and therefore variables that depends on them are generally unknown. As a result, \bar{Q}_{1}, \bar{Q}_{2} and Q_{3} are known but ΔQ_{1}^{*} and ΔQ_{2}^{*} are unknown. Examination on (34) using (4) shows that

$$
\Delta Q_{1}^{*}=\left[\begin{array}{c}
0 \tag{35}\\
J_{h_{\epsilon}}^{T} \\
J_{h b}^{T} \\
0
\end{array}\right]_{\epsilon_{0}} \underbrace{\left[\begin{array}{cccc}
0 & F_{/ \epsilon_{0}}^{l o a d} & F_{/ \dot{\beta}_{0}}^{l o a_{0}} & 0
\end{array}\right]}_{\Theta_{q_{1}}^{* T}}=Q_{3} \Theta_{q_{1}}^{* T}
$$

and

$$
\begin{aligned}
\Delta Q_{2}^{*} & =\left[\begin{array}{c}
0 \\
J_{h \epsilon}^{T} \\
J_{h b}^{T}
\end{array}\right]_{\epsilon_{0}} \underbrace{\left.M_{e}\left(\dot{J}_{h b}+\frac{\partial \dot{J}_{h \epsilon}}{\partial \beta} \dot{\epsilon}+\frac{\partial \dot{J}_{h b}}{\partial \beta} \beta\right)\right]_{x_{0}}}_{\Theta_{q_{2}^{* T}}^{\left[M_{e}\left(\frac{\partial J_{h \epsilon}}{\partial \epsilon} \ddot{\epsilon}+\frac{\partial J_{h b}}{\partial \epsilon} \beta\right) \quad M_{e}\left(\dot{J}_{h \epsilon}+\frac{\partial \dot{J}_{h \epsilon}}{\partial \dot{\epsilon}} \dot{\epsilon}+\frac{\partial \dot{J}_{h b}}{\partial \dot{\epsilon}} \beta\right)\right.}} \begin{aligned}
{\left[\begin{array}{c}
{[\text { (36) }}
\end{array}\right.}
\end{aligned} \\
& =Q_{3} \Theta_{q_{2}}^{* T}
\end{aligned}
$$

[^0]which is used to rewritten (33) as
\[

$$
\begin{equation*}
\left(\bar{Q}_{1}+Q_{3} \Theta_{q_{1}}^{* T}\right) \dot{x}_{p}=\left(\bar{Q}_{2}+Q_{3} \Theta_{q_{2}}^{* T}\right) x_{p}+Q_{3} u_{p} . \tag{37}
\end{equation*}
$$

\]

Assume that $\bar{Q}_{1},\left(\bar{Q}_{1}+Q_{3} \Theta_{q_{1}}^{* T}\right)$ and $\left(I+\Theta_{q_{2}}^{* T} \bar{Q}_{1}^{-1} Q_{3}\right)$ are invertible around the equilibrium. Taking inverse on both sides, and noting

$$
\begin{equation*}
\left(\bar{Q}_{1}+Q_{3} \Theta_{q_{1}}^{* T}\right)^{-1}=\bar{Q}_{1}^{-1}-\bar{Q}_{1}^{-1} Q_{3} \underbrace{\left(I+\Theta_{q_{1}}^{* T} \bar{Q}_{1}^{-1} Q_{3}\right)^{-1} \Theta_{q_{1}}^{* T}}_{\bar{\Theta}_{q_{1}}^{* T}} \bar{Q}_{1}^{-1} \tag{38}
\end{equation*}
$$

yields

$$
\begin{align*}
\dot{x}_{p}= & \left(\bar{Q}_{1}^{-1}-\bar{Q}_{1}^{-1} Q_{3} \bar{\Theta}_{q_{1}^{*}}^{* T} \bar{Q}_{1}^{-1}\right)\left(\bar{Q}_{2}+Q_{3} \Theta_{q_{2}}^{* T}\right) x_{p} \tag{39}\\
& +\left(\bar{Q}_{1}^{-1}-\bar{Q}_{1}^{-1} Q_{3} \bar{\Theta}_{q_{1}}^{* T} \bar{Q}_{1}^{-1}\right) Q_{3} u_{p} \\
= & {\left[\bar{Q}_{1}^{-1} \bar{Q}_{2}+\bar{Q}_{1}^{-1} Q_{3}\left(\Theta_{q_{2}^{*}}^{* T}-\bar{\Theta}_{q_{1}}^{* T} \bar{Q}_{1}^{-1} \bar{Q}_{2}-\bar{\Theta}_{q_{1}}^{* T} \bar{Q}_{1}^{-1} Q_{3} \Theta_{q_{2}}^{* T}\right)\right] x_{p} } \tag{40}\\
& +\bar{Q}_{1}^{-1} Q_{3}\left(I-\bar{\Theta}_{q_{1}}^{* T} \bar{Q}_{1}^{-1} Q_{3}\right) u_{p} \\
= & {[A_{\Theta_{p}+B_{p}(\underbrace{}_{\left.\Theta_{q_{2}}^{* T}-\bar{\Theta}_{q_{1}}^{* T} A_{p}-\bar{\Theta}_{q_{1}}^{* T} B_{p} \Theta_{q_{2}}^{* T}\right)}] x_{p}+\underbrace{\left(I-\bar{\Theta}_{q_{1}}^{* T} B_{p}\right)}_{\Lambda_{p}^{*}} u_{p}}{ }^{(41)}}
\end{align*}
$$

with $A_{p}=\bar{Q}_{1}^{-1} \bar{Q}_{2}, B_{p}=\bar{Q}_{1}^{-1} Q_{3} . C_{p}$ as in $y_{p}=C_{p} x_{p}$ is the selection matrix that picks out measurable states from x_{p}.

B. Proof of Lemma 3

Proof: The proof will be performed in a transformed coordinate. Similar to \bar{B}_{2}, we part $C^{T}=\left[\begin{array}{cc}C_{2}^{T} & C_{1}^{T}\end{array}\right]$. For a square plant model that has nonuniform input relative degree two, there exists an invertible transformation $T_{\text {in }}=\left[\begin{array}{c}\left(\mathfrak{C}^{\mathfrak{B}}\right)^{-1} \mathfrak{C} \\ \mathfrak{N}\end{array}\right], T_{\text {in }}^{-1}=\left[\begin{array}{ll}\mathfrak{B} & \mathfrak{M}\end{array}\right]$, where $\mathfrak{C}^{T}=$ $\left[\begin{array}{ccc}C_{2}^{T} & A^{T} C_{2}^{T} & C_{1}\end{array}\right], \mathfrak{B}=\left[\begin{array}{lll}B_{2} & A B_{2} & B_{s 1}\end{array}\right], \mathfrak{N}$ and \mathfrak{M} are chosen to satisfy $\mathfrak{N B}=0, \mathfrak{C M}=0$ and $\mathfrak{N M}=I$, that transforms (10) into a new coordinate called "input normal form" (See [21, Corollary 2.2.5] for proof). In this proof, matrices in input normal form coordinate will be denoted with the subscript $(\cdot)_{i n}$, as in $x_{i n}=T_{i n} x, A_{i n}=T_{i n} A T_{i n}^{-1}$, $\bar{B}_{2, i n}=T_{i n} \bar{B}_{2}$ (and therefore $B_{2, i n}=T_{i n} B_{2}$ and $B_{s 1, i n}=$ $\left.T_{i n} B_{s 1}\right), B_{1, i n}=T_{i n} B_{1}, B_{z, i n}=T_{i n} B_{z}, C_{i n}=C T_{i n}^{-1}$, $\Psi_{1, i n}^{* T}=\Psi_{1}^{* T} T_{i n}^{-1}$ and $\Psi_{2, i n}^{* T}=\Psi_{2}^{* T} T_{i n}^{-1}$. The input normal form of the plant model (10) is

Matrix $Z \in \mathbb{R}^{\left(n-r_{s}\right) \times\left(n-r_{s}\right)}$, where $r_{s}=\sum_{i} r_{i}$, is the zero dynamics matrix whose eigenvalues are transmission zeros of the plant model (see [21, Section 2.3]). It is noted that $B_{1, \text { in }}=$ $\left[\begin{array}{llll}\times & \times & 0 & 0\end{array}\right]^{T}$ and $\Psi_{1}^{* T} T_{i n}^{-1}=\left[\begin{array}{llll}0 & \times & \times & \times\end{array}\right]$ since Assumption 4 holds.

Define $A_{i n}^{*}=A_{i n}+B_{1, i n} \Psi_{1, i n}^{* T}+B_{2, i n} \Psi_{2, i n}^{* T}=T_{i n} A^{*} T_{i n}^{-1}$. Examination of the elements of $\bar{B}_{2, i n}^{1}$ and $\bar{B}_{2, i n}^{1 *}$, which are
defined as $\bar{B}_{2, i n}^{1 *}=T_{i n} \bar{B}_{2}^{1 *}$, and $\bar{B}_{2, \text { in }}^{1}=T_{i n} \bar{B}_{2}^{1}$, respectively, shows that

$$
\bar{B}_{2, \text { in }}^{1}=\left[\begin{array}{ll}
B_{2, i n}^{1} & B_{s 1, i n}
\end{array}\right]=\left[\begin{array}{cc}
a_{1}^{0} I_{m} & 0 \tag{43}\\
a_{1}^{1} I_{m} & 0 \\
\hline 0 & I_{m_{s}} \\
\hline 0 & 0
\end{array}\right],
$$

and

$$
\bar{B}_{2, \text { in }}^{1 *}=\left[\begin{array}{ll}
B_{2, \text { in }}^{1 *} & B_{s 1, i n}
\end{array}\right]=\left[\begin{array}{cc}
a_{1}^{0} I_{m}+a_{1}^{1} \psi_{20}^{2 * T} & 0 \\
a_{1}^{1} I_{m} & 0 \\
\hline 0 & I_{m_{s}} \\
\hline 0 & 0
\end{array}\right]_{(44)}
$$

where $B_{2, i n}^{1}=T_{i n} B_{2, i n}^{1}, B_{s 1, i n}=T_{i n} B_{s 1}$ and $B_{2, i n}^{1 *}=$ $T_{i n} B_{2}^{1 *}$. It is noted that $C_{i n} \bar{B}_{2, i n}^{1}=C_{i n} \bar{B}_{2, i n}^{1 *}=$ $\left[\begin{array}{ll}a_{1}^{1} C A B_{2} & C B_{s 1}\end{array}\right]$ has full rank by Assumption 3 and Lemma 2. Examination on elements of $\bar{B}_{2, i n}^{1 *}$ and $\bar{B}_{2, i n}^{1}$ shows that

$$
\begin{equation*}
\bar{B}_{2, i n}^{1 *}=\bar{B}_{2, i n}^{1}+B_{2, i n} a_{1}^{1} \Psi_{i n, m}^{* T} \tag{45}
\end{equation*}
$$

where

$$
\Psi_{i n, m}^{* T}=\left[\begin{array}{ll}
\psi_{20}^{2 * T} & 0_{m \times m_{s}} \tag{46}
\end{array}\right] \in \mathbb{R}^{m \times p}
$$

where $\psi_{20}^{2 * T}$ is a subset of the elements in $\Psi_{2, i n}^{*}$ as shown in (42). It is noted that (44) also holds for $\left(A_{i n}^{*}-L_{i n} C_{i n}\right)$ for $\forall L_{i n} \in \mathbb{R}^{n \times m}$. Transformation back to the original coordinate proves the Lemma.

C. Proof of Lemma 4

Proof: It has been proved that the $\mathcal{Z}\left\{A^{*}, B_{2}^{1 *}, C\right\}$ is exactly the eigenvalues of $\bar{N}_{2, i n}^{1 *} A_{i n}^{*} M_{i n}$ with $M_{i n}=\left[\begin{array}{ccc|c}I_{m} & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & I_{n-r_{s}}\end{array}\right]^{T}$ and $\bar{N}_{2, i n}^{1}=$ $\left(M_{i n}^{T} M_{i n}\right)^{-1} M_{i n}^{T}\left[I-\bar{B}_{2, i n}^{1}\left(\bar{C}_{i n} \bar{B}_{2, i n}^{1}\right)^{-1} \bar{C}_{i n}\right]$ (see [18]). Some algebra shows that

$$
\bar{N}_{2, i n}^{1 *} A_{i n}^{*} M_{i n}=\left[\begin{array}{cc}
-\frac{a_{1}^{0}}{a_{1}^{1}} & \times \tag{47}\\
0 & Z
\end{array}\right]
$$

where Z is the zero dynamics matrix as in 42 whose eigenvalues are $\mathcal{Z}\left\{A, B_{2}, C\right\}$ (see [21, Section 2.3]).

D. Proof of Theorem 1

Proof: We propose a Lyapunov function candidate

$$
\begin{align*}
V= & e_{m x}^{T} P^{*} e_{m x} \\
& +\operatorname{Tr}\left[\widetilde{\Psi}_{\Lambda}^{T} \Gamma_{\psi_{\lambda}}^{-1} \Lambda^{*} \widetilde{\Psi}_{\Lambda}\right]+\operatorname{Tr}\left[\widetilde{\Psi}_{m}^{T} \Gamma_{\psi_{m}}^{-1} \widetilde{\Psi}_{m}\right] \tag{48}
\end{align*}
$$

where $P^{*}=P^{* T}>0$ is the matrix that guarantees the SPR properties of $\left\{A_{L^{*}}^{*}, \bar{B}_{2}^{1 *}, S C\right\}$, satisfying

$$
\begin{align*}
P^{*} A_{L^{*}}^{*}+A_{L^{*}}^{*} P^{*} & =-Q^{*}<0 \tag{49}\\
P^{*} \bar{B}_{2}^{1 *} & =C^{T} S^{T} \tag{50}
\end{align*}
$$

for a $Q^{*}=Q^{* T}>0$. Partition on both sides of (50) yields

$$
P^{*}\left[B_{2}^{1 *} B_{1}\right]=C^{T}\left[\begin{array}{ll}
S_{2}^{T} & S_{1}^{T} \tag{51}
\end{array}\right]
$$

By appealing to (27)(28)(29)(49)(51), the derivative of V has the following bound

$$
\begin{align*}
\dot{V}= & e_{m x}^{T}\left[A_{L^{*}}^{* T} P^{*}+P^{*} A_{L^{*}}^{*}\right] e_{m x} \\
& -2 e_{m x}^{T}\left[P^{*} B_{2}^{1 *}-C^{T} S_{2}^{T}\right] \Lambda^{*} \widetilde{\Psi}_{\Lambda}^{T} \bar{\chi} \\
& -2 e_{m x}^{T}\left[P^{*} B_{2}^{1 *}-C^{T} S_{2}^{T}\right] \widetilde{\Psi}_{m}^{T} \bar{e}_{s y} \\
= & -e_{m x}^{T} Q^{*} e_{m x} \leq 0 . \tag{52}
\end{align*}
$$

Then $e_{m x}(t), \widetilde{\Psi}_{\Lambda}(t)$ and $\widetilde{\Psi}_{m}(t)$ are bounded as $t \rightarrow \infty$, which proves i). Applying Barbalat's Lemma (using the fact that $\dot{e}_{m x}(t)$ is bounded) shows that $e_{m x}(t) \rightarrow 0$ as $t \rightarrow \infty$, which proves ii). From (28) and (16), the fact $e_{m x}(t) \rightarrow 0$ implies that $e_{y}(t) \rightarrow 0, e_{s y}(t) \rightarrow 0$ and $\bar{e}_{s y}(t) \rightarrow 0$ as $t \rightarrow \infty$, which in turn implies that x_{m}, as well as \bar{x}_{m} and $\bar{u}_{b l}$, is bounded. Further, denote

$$
\begin{equation*}
e_{p z}(t)=z-z_{c m d}, e_{m z}(t)=z_{m}-z_{c m d} \tag{53}
\end{equation*}
$$

From (9), it is noted that $\int e_{p z}(t) d t$ is an element of x. From (14), it is noted that $\int\left(e_{m z}(t)-L_{I} e_{y}\right) d t$ is an element of x_{m} where L_{I} are the rows of L corresponding to $e_{m z}$ dynamics. As a result, $e_{m x}(t) \rightarrow 0$ as $t \rightarrow \infty$, which, together with the definition of $e_{m x}$ as

$$
\begin{align*}
e_{m x}=e_{x}+B_{2} \Lambda^{*} a_{1}^{1} \bar{\Psi}_{1}^{* T} x_{m}+B_{2} a_{1}^{1} & {\left[\widetilde{\Psi}_{m}^{T}(t) \bar{e}_{s y}\right] } \\
& -B_{2} \Lambda^{*} a_{1}^{1} \widetilde{\Psi}_{\Lambda}^{T} \bar{\chi} \tag{54}
\end{align*}
$$

implies $e_{x}(t) \rightarrow \int\left(B_{2}[\cdot]\right) d t$ and therefore

$$
\begin{equation*}
\int\left(e_{p z}-e_{m z}+L_{I} e_{y}\right) d t \rightarrow \int\left(B_{2, I}[\cdot]\right) d t=0 \tag{55}
\end{equation*}
$$

as $t \rightarrow \infty$ (since $B_{2, I}$, the rows of B_{2} corresponding to w_{z} dynamics, is zero). Eq.(55), together with the fact that

$$
\begin{equation*}
e_{z}(t)=z-z_{m}=e_{p z}-e_{m z} \tag{56}
\end{equation*}
$$

implies

$$
\begin{equation*}
\int e_{z}(t) d t \rightarrow-\int\left(L_{I} e_{y}\right) d t \tag{57}
\end{equation*}
$$

which has a bounded limit as $t \rightarrow \infty$ (since $\left.e_{y}(t) \rightarrow 0\right)$. Further, from (9) and (14), $\dot{e}_{z}(t)$ is bounded as $t \rightarrow \infty$. Applying Barbalat's Lemma shows that $e_{z}(t) \rightarrow 0$ as $t \rightarrow \infty$, which proves iii).

[^0]: ${ }^{1}$ Accepted by 2016 American Control Conference, Boston, MA. This work is supported by Boeing Strategic University Initiative.
 ${ }^{2}$ Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. IEEE fellow.
 ${ }^{3}$ The Boeing Company, Huntington Beach, CA, 92647, USA. IEEE fellow.

