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APPENDIX

A. Proof of Lemma 1

Proof: Define (·)/[·]0 = ∂(·)
∂[·] |[·]0 as partial dif-

ferential variables. Linearizing (3) around a trim point
[ε̈0, ε̇0, ε0, β̇0, β0, λ0, u0]T yields


 I 0 0

0 (MFF )ε0
(MFB)ε0

0 (MBF )ε0
(MBB)ε0


︸ ︷︷ ︸

Q1(0,0,ε0,0,β0)

+

 0 0 0
0 ∆MFF ∆MFB
0 ∆MBF ∆MBB


︸ ︷︷ ︸

∆Q∗1(ε̈0,ε̇0,β̇0)


 ε̇

ε̈

β̇



=




0 I 0

−(KFF )ε0
+ (JThε)ε0

Fload
/ε0

−Ce (JThε)ε0
Fload
/β0

0 0 −CRB + (JThb)ε0F
load
/β0


︸ ︷︷ ︸

Q2(0,0,ε0,0,β0)

+

 0 0 0
∆KFF ∆CFF ∆CFB
∆KBF ∆CBF ∆CBB


︸ ︷︷ ︸

∆Q∗2(ε̈0,ε̇0,β̇0)


 ε

ε̇
β


︸ ︷︷ ︸
xp

+

 0
BF/u0
BB/u0


︸ ︷︷ ︸

Q3

up (33)

where, following the definition of terms in (4), the unknown
deviation terms are

∆MFF = −(JThε)ε0F
load
/ε̈0

∆MBF = −(JThb)ε0
Fload
/ε̈0

∆BF/λ0
= (JThε)ε0

Fload
/λ0

∆MFB = −(JThε)ε0
Fload
/β̇0

∆MBB = −(JThb)ε0
Fload
/β̇0

∆BB/λ0
= (JThb)ε0

Fload
/λ0

∆KFF = MFF/ε0
ε̈0 +MFB/ε0

β̇0

∆KBF = MBF/ε0
ε̈0 +MBB/ε0

β̇0

∆CFF = −(CFF )x0
− CFF/ε̇0

ε̇0 − CFB/ε̇0
β0 + (JThε)ε0

Fload
/ε̇0

∆CBF = −(CBF )x0
− CBF/ε̇0

ε̇0 − CBB/ε̇0
β0 + (JThb)ε0

Fload
/ε̇0

∆CFB = −(CFB)x0 − CFF/β0
ε̇0 − CFB/β0

β0
∆CBB = −(CBB)x0 − CBF/β0

ε̇0 − CBB/β0
β0

(34)

BF/u0
= (JThε)ε0F

load
/u0

and BB/u0
= (JThb)ε0F

load
/u0

. Without
loss of generality, we scale each input so that F load/u0

= I .
In realistic application, only [ε0, β0, u0]T can be measured
accurately and therefore variables that depend on them can be
gain scheduled. [ε̇0, ε̈0, β̇0, λ0]T cannot be measured accurately
and therefore variables that depends on them are generally
unknown. As a result, Q1, Q2 and Q3 are known but ∆Q∗

1
and ∆Q∗

2 are unknown. Examination on (34) using (4) shows
that

∆Q
∗
1 =


0

JThε
JThb

0


ε0

[
0 Fload

/ε̈0
Fload
/β̇0

0
]

︸ ︷︷ ︸
Θ∗Tq1

= Q3Θ
∗T
q1

(35)

and

∆Q
∗
2 =

 0

JThε
JThb


ε0

[
Me

(
∂Jhε
∂ε

ε̈ +
∂Jhb
∂ε

β

)
Me

(
J̇hε +

∂J̇hε
∂ε̇

ε̇ +
∂J̇hb
∂ε̇

β

)

Me

(
J̇hb +

∂J̇hε
∂β

ε̇ +
∂J̇hb
∂β

β

)]
x0︸ ︷︷ ︸

Θ∗Tq2

= Q3Θ
∗T
q2

(36)
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which is used to rewritten (33) as(
Q1 +Q3Θ∗T

q1

)
ẋp =

(
Q2 +Q3Θ∗T

q2

)
xp +Q3up. (37)

Assume that Q1, (Q1 + Q3Θ∗T
q1 ) and (I + Θ∗T

q2 Q
−1

1 Q3) are
invertible around the equilibrium. Taking inverse on both sides,
and noting

(Q1 + Q3Θ
∗T
q1

)
−1

= Q
−1
1 − Q

−1
1 Q3(I + Θ

∗T
q1
Q
−1
1 Q3)

−1
Θ
∗T
q1︸ ︷︷ ︸

Θ∗Tq1

Q
−1
1 (38)

yields

ẋp =
(
Q
−1
1 − Q−1

1 Q3Θ
∗T
q1
Q
−1
1

) (
Q2 + Q3Θ

∗T
q2

)
xp (39)

+
(
Q
−1
1 − Q−1

1 Q3Θ
∗T
q1
Q
−1
1

)
Q3up

=
[
Q
−1
1 Q2 + Q

−1
1 Q3

(
Θ
∗T
q2
− Θ
∗T
q1
Q
−1
1 Q2 − Θ

∗T
q1
Q
−1
1 Q3Θ

∗T
q2

)]
xp (40)

+ Q
−1
1 Q3

(
I − Θ

∗T
q1
Q
−1
1 Q3

)
up

=


Ap + Bp

(
Θ
∗T
q2
− Θ
∗T
q1
Ap − Θ

∗T
q1
BpΘ

∗T
q2

)
︸ ︷︷ ︸

Θ∗Tp


xp + Bp

(
I − Θ

∗T
q1
Bp

)
︸ ︷︷ ︸

Λ∗p

up (41)

with Ap = Q
−1

1 Q2, Bp = Q
−1

1 Q3. Cp as in yp = Cpxp is the
selection matrix that picks out measurable states from xp.

B. Proof of Lemma 3
Proof: The proof will be performed in a transformed

coordinate. Similar to B2, we part CT =
[
CT2 CT1

]
.

For a square plant model that has nonuniform input rel-
ative degree two, there exists an invertible transformation

Tin =

[
(CB)−1C

N

]
, T−1

in =
[
B M

]
, where CT =[

CT2 ATCT2 C1

]
, B =

[
B2 AB2 Bs1

]
, N and M

are chosen to satisfy NB = 0, CM = 0 and NM = I , that
transforms (10) into a new coordinate called “input normal
form” (See [21, Corollary 2.2.5] for proof). In this proof,
matrices in input normal form coordinate will be denoted
with the subscript (·)in, as in xin = Tinx, Ain = TinAT

−1
in ,

B2,in = TinB2 (and therefore B2,in = TinB2 and Bs1,in =
TinBs1), B1,in = TinB1, Bz,in = TinBz , Cin = CT−1

in ,
Ψ∗T

1,in = Ψ∗T
1 T−1

in and Ψ∗T
2,in = Ψ∗T

2 T−1
in . The input normal

form of the plant model (10) is

ξ̇21
ξ̇22
ξ̇11
η̇

 =


0 R2

2,1 R1
2,1 V2

I R2
2,2 R1

2,2 0

0 R2
1,1 R1

1,1 V1
0 U2 U1 Z


︸ ︷︷ ︸

Ain


ξ21
ξ22
ξ11
η


︸ ︷︷ ︸
xin

+


Im
0

0

0


︸ ︷︷ ︸
B2,in

Λ
∗
u

+ B2,in

[
ψ2∗T

20 ψ2∗T
21 ψ1∗T

21 ψ2∗T
(n−rs)

]
︸ ︷︷ ︸

Ψ∗T
2,in

xin

+


Im
1
c
Im

0

0


︸ ︷︷ ︸
B1,in

[
0 ψ2∗T

11 ψ1∗
11 ψ1∗T

(n−rs)

]
︸ ︷︷ ︸

Ψ∗T
1,in

xin + Bz,inzcmd (42)

y =
[

0 CAB2 CBs1 0
]

︸ ︷︷ ︸
Cin

xin.

Matrix Z ∈ R(n−rs)×(n−rs), where rs =
∑
i ri, is the zero

dynamics matrix whose eigenvalues are transmission zeros of
the plant model (see [21, Section 2.3]). It is noted that B1,in =[
× × 0 0

]T
and Ψ∗T

1 T−1
in =

[
0 × × ×

]
since

Assumption 4 holds.
Define A∗

in = Ain+B1,inΨ∗T
1,in+B2,inΨ∗T

2,in = TinA
∗T−1
in .

Examination of the elements of B
1

2,in and B
1∗
2,in, which are



8

defined as B
1∗
2,in = TinB

1∗
2 , and B

1

2,in = TinB
1

2, respectively,
shows that

B
1

2,in =
[
B1

2,in Bs1,in
]

=


a0

1Im 0
a1

1Im 0
0 Ims
0 0

 , (43)

and

B
1∗
2,in =

[
B1∗

2,in Bs1,in
]

=


a0

1Im + a1
1ψ

2∗T
20 0

a1
1Im 0
0 Ims
0 0

 .
(44)

where B1
2,in = TinB

1
2,in, Bs1,in = TinBs1 and B1∗

2,in =

TinB
1∗
2 . It is noted that CinB

1

2,in = CinB
1∗
2,in =[

a1
1CAB2 CBs1

]
has full rank by Assumption 3 and

Lemma 2. Examination on elements of B
1∗
2,in and B

1

2,in shows
that

B
1∗
2,in = B

1

2,in +B2,ina
1
1Ψ∗T

in,m. (45)

where
Ψ∗T
in,m =

[
ψ2∗T

20 0m×ms
]
∈ Rm×p (46)

where ψ2∗T
20 is a subset of the elements in Ψ∗

2,in as shown in
(42). It is noted that (44) also holds for (A∗

in − LinCin) for
∀Lin ∈ Rn×m. Transformation back to the original coordinate
proves the Lemma.

C. Proof of Lemma 4

Proof: It has been proved that the Z{A∗, B1∗
2 , C}

is exactly the eigenvalues of N
1∗
2,inA

∗
inMin with

Min =

[
Im 0 0 0
0 0 0 In−rs

]T
and N

1

2,in =

(MT
inMin)−1MT

in

[
I −B1

2,in(CinB
1

2,in)−1Cin

]
(see [18]).

Some algebra shows that

N
1∗
2,inA

∗
inMin =

[
−a

0
1

a1
1

×
0 Z

]
(47)

where Z is the zero dynamics matrix as in 42 whose eigen-
values are Z{A,B2, C} (see [21, Section 2.3]).

D. Proof of Theorem 1

Proof: We propose a Lyapunov function candidate

V = eTmxP
∗emx

+ Tr
[
Ψ̃T

ΛΓ−1
ψλ

Λ∗Ψ̃Λ

]
+ Tr

[
Ψ̃T
mΓ−1

ψm
Ψ̃m

]
(48)

where P ∗ = P ∗T > 0 is the matrix that guarantees the SPR
properties of {A∗

L∗ , B
1∗
2 , SC}, satisfying

P ∗A∗
L∗ +A∗

L∗P
∗ = −Q∗ < 0 (49)

P ∗B
1∗
2 = CTST , (50)

for a Q∗ = Q∗T > 0. Partition on both sides of (50) yields

P ∗ [B1∗
2 B1

]
= CT

[
ST2 ST1

]
. (51)

By appealing to (27)(28)(29)(49)(51), the derivative of V has
the following bound

V̇ = eTmx
[
A∗T
L∗P

∗ + P ∗A∗
L∗
]
emx

− 2eTmx[P ∗B1∗
2 − CTST2 ]Λ∗Ψ̃T

Λχ

− 2eTmx[P ∗B1∗
2 − CTST2 ]Ψ̃T

mesy

= −eTmxQ∗emx ≤ 0. (52)

Then emx(t), Ψ̃Λ(t) and Ψ̃m(t) are bounded as t→∞, which
proves i). Applying Barbalat’s Lemma (using the fact that
ėmx(t) is bounded) shows that emx(t)→ 0 as t→∞, which
proves ii). From (28) and (16), the fact emx(t) → 0 implies
that ey(t)→ 0, esy(t)→ 0 and esy(t)→ 0 as t→∞, which
in turn implies that xm, as well as xm and ubl, is bounded.
Further, denote

epz(t) = z − zcmd, emz(t) = zm − zcmd. (53)

From (9), it is noted that
´
epz(t)dt is an element of x. From

(14), it is noted that
´

(emz(t)−LIey)dt is an element of xm
where LI are the rows of L corresponding to emz dynamics.
As a result, emx(t)→ 0 as t→∞, which, together with the
definition of emx as

emx = ex +B2Λ∗a1
1Ψ

∗T
1 xm +B2a

1
1

[
Ψ̃T
m(t)esy

]
−B2Λ∗a1

1Ψ̃T
Λχ, (54)

implies ex(t)→
´

(B2[·])dt and thereforeˆ
(epz − emz + LIey)dt→

ˆ
(B2,I [·])dt = 0 (55)

as t → ∞ (since B2,I , the rows of B2 corresponding to wz
dynamics, is zero). Eq.(55), together with the fact that

ez(t) = z − zm = epz − emz (56)

implies ˆ
ez(t)dt→ −

ˆ
(LIey)dt (57)

which has a bounded limit as t → ∞ (since ey(t) → 0).
Further, from (9) and (14), ėz(t) is bounded as t → ∞.
Applying Barbalat’s Lemma shows that ez(t)→ 0 as t→∞,
which proves iii).


