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Quantum disordering a discrete-symmetry-breaking state by condensing domain walls can lead to a trivial
symmetric insulator state. In this work, we show that if we bind a one-dimensional representation of the symmetry
(such as a charge) to the intersection point of several domain walls, condensing such modified domain walls
can lead to a nontrivial symmetry-protected topological (SPT) state. This result is obtained by showing that the
modified domain-wall condensed state has a nontrivial SPT invariant, the symmetry-twist-dependent partition
function. We propose two different kinds of field theories that can describe the above-mentioned SPT states. The
first one is a Ginzburg-Landau–type nonlinear sigma model theory, but with an additional multikink domain-wall
topological term. Such theory has an anomalous Uk(1) symmetry but an anomaly-free Zk

N symmetry. The second
one is a gauge theory, which is beyond Abelian Chern-Simons/BF gauge theories. We argue that the two field
theories are equivalent at low energies. After coupling to the symmetry twists, both theories produce the desired
SPT invariant.

DOI: 10.1103/PhysRevB.93.115136

I. INTRODUCTION

A. SPT states and their effective field theories

Recently, it has been realized that many-body ground states
can be divided into two classes [1]: long-range entangled
(LRE) states and short-range entangled (SRE) states. The LRE
states can belong to many different phases that correspond to
topologically ordered phases [2,3]. When there is a global
symmetry (described by a group G), even SRE states can
belong to many different phases, and these phases are called
symmetry-protected topological (SPT) states [4–9]. A large
class of bosonic SPT states whose boundary has a pure “gauge
anomaly” [10–12] can be systematically classified via group
cohomology classes Hd+1(G,R/Z) [13–15]. All these SPT
states can be realized by exactly soluble lattice nonlinear σ

model with the symmetry group G as the target space plus a
2π quantized topological θ term. They can also be realized by
exactly soluble lattice Hamiltonians that contain many body
interactions. In addition, bosonic SPT states whose boundary
has a “gauge gravitational mixed anomaly” can all be realized
by lattice nonlinear σ model with SO∞ × G as the target
space and with a 2π quantized topological θ term [16]. The
potentially possible SPT invariants of the first and the second
classes of SPT states can also be studied directly via cobordism
theory [17–20], but the cobordism theory does not give rise to
a realization of the SPT states.

Many of the SPT states protected by discrete group
symmetry can also be realized by condensing domain walls
in symmetry-breaking states, if we decorate the domain
walls with lower-dimensional SPT states and/or invertible
topologically ordered states [16,21–23]. In this work, we will
realize some additional SPT states by condensing domain
walls, such that the intersection point of several domain walls
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carries the quantum number of the unbroken symmetries. More
general SPT states protected by discrete group symmetry can
be obtained by decorating the intersection lines (or surfaces)
of several domain walls with one-dimensional (1D) [or two-
dimensional (2D)] SPT states (as indicated by the Kunneth
formula for the group cohomology [16,21]).

In addition to the above systematic constructions of all the
bosonic SPT phases, people have also developed many field
theory realizations for some special simple SPT states (under
the name of bosonic topological insulator (BTI) [23–32])
which lead to some simple physical pictures and mechanisms
for bosonic SPT states. Due to the incompressibility of
topological phases, it is sufficient to only consider quantum
fluctuations of collective modes at low energies and long
wavelengths, e.g., density and current fluctuations. Such an
approach is the so-called “hydrodynamical approach” or
effective quantum field theory for topological phases. The field
theory realizations of SPT states belong to this approach.

Historically, the “hydrodynamical approach” turns out to
be extremely powerful to understand the underlying physics of
topological phases. For example, the fractional quantum Hall
effect (FQHE) can be understood by the Ginzburg-Landau
Chern-Simons theory [33] or more systematically by pure
Chern-Simons theory [34–40]. Those bulk dynamic effective
theories that capture the low energies and long-wavelength
physics are also very useful to study phase transitions
among different topological phases, e.g., phase transitions
between FQHE at different filling fractions. Thus, the bulk
dynamical Chern-Simons action approach to FQHE phases
can be viewed as the Ginzburg-Landau action approach to
symmetry-breaking phases. Therefore, it is very natural to ask
what is the “hydrodynamical approach” to SPT states.

Very recently, Chern Simons/BF theories have been pro-
posed [23,41–46] as bulk dynamical effective actions to
describe 2D/3D bosonic SPT states protected by Abelian
symmetry group (the so-called Abelian SPT states). Never-
theless, it has been pointed out [43] that the Abelian Chern
Simons/BF theory approach is incomplete. Therefore, a much
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FIG. 1. (a) Disordering a U (1) symmetry-breaking superfluid
with an action by condensing the vortices, e.g., tuning some coupling
constant U to increase the charge repulsion [47–49]. (b) Disordering
a discrete-symmetry-breaking state by condensing the domain walls.
The gray region qualitatively indicates the phase transition region,
such as a critical point or a different phase. (c) In this work, we
generalize the previous process by condensing domain walls with
multikink topological terms. We obtain nontrivial SPT states with
SPT invariants listed in Table I.

more general theoretical framework for bulk dynamical actions
of SPT states is very desired. In this paper, we will focus
on the mechanisms and bulk dynamical effective actions
for bosonic SPT states with finite Abelian group symmetry
within group cohomology classification. We propose a class
of new topological actions to characterize bosonic Abelian
SPT states in arbitrary dimensions that are beyond Abelian
Chern-Simons/BF theory. We will show that such a class
of generalized topological actions serves as a complete
description for bosonic Abelian SPT states in 1D and 2D.
In 3D, there are still some Abelian SPT states beyond the
proposed bulk dynamical effective action; however, we believe
that the basic principle and method developed in this paper
are still applicable. We will leave these studies for future
work. It is also worthwhile to mention that in a parallel
work [32], a bulk dynamical effective action for Abelian
SPT states beyond group cohomology classifications is also
proposed. In principle, the “hydrodynamical approach” can
also be generalized into interacting fermionic systems.

B. Summary of results

1. A mechanism of SPT states

Let us start by summarizing the mechanism that generates
SPT states at intuitive level. It is well known that if we disorder
a discrete-symmetry-breaking state by condensing domain
walls, we can obtain a symmetry-restored state. Our approach
is basically analogous to this line of thinking, except that
we generalize the approach by including additional multikink
topological terms to the domain walls (see Fig. 1).

There are two ways to view the multikink topological
terms: the space picture and the space-time picture. In the
space picture, we create the symmetry-breaking domain walls
and trap some charges (not fractionalized) of the remained
unbroken symmetry at the intersecting points, then we pro-
liferate and condense the domain walls to restore the broken
symmetry. On the other hand, in the space-time picture, we
have an intersecting profile that contributes a nontrivial phase
to the path integral [see Fig. 1(b)], and we then disorder
the symmetry-breaking state with such nontrivial multikink
topological term. As we will show explicitly and quantitatively
using field theories, both processes lead to a nontrivial SPT
state.

Using the above domain-wall condensation picture, we also
obtain two kinds of field theory realization of the correspond-
ing ZN1 × ZN2 × ZN3 × . . . SPT states (see Table I). The first
one is a Uk(1) nonlinear σ model with a multikink topological
term. The second one is a dynamical gauge theory that is
beyond Abelian Chern-Simons/BF theory. Throughout the
paper, we will implement the Euclidean space-time approach
with the Euclidean time tE = it as the Minkowski time
Wick-rotated by an imaginary i. We define the derivative ∂0

as ∂tE . We choose the Euclidean space-time for the future
convenience of the lattice regularization.

In the first column of Table I, we list the Uk(1) nonlinear
σ models with the multikink topological terms of the form
i
d
CIJK...ε

μνλ...∂μθI ∂νθ
J ∂λθ

K . . . with CIJK... a fully antisym-
metric tensor and d the space-time dimension. In the second
column of Table I, we list the gauge theory realization of
the same ZN1 × ZN2 × ZN3 × . . . SPT states. Our local field
theories in the first and the second columns can produce the
desired SPT invariants dictated by group cohomology [20]

TABLE I. First column: the Uk(1) nonlinear σ model (NLσM) realization of the ZN1 × ZN2 × ZN3 × . . . SPT states in the χ < χc

disordered limit. The additional multikink topological term [bikink for (1+1)D, trikink for (2+1)D, quadkink for (3+1)D, etc.] are listed.
The phase fluctuating term ∂μθI ≡ ∂μθI

s + bI
μ contains a smooth piece ∂μθI

s and a singular piece bI
μ. Here, CIJ ... is a totally antisymmetric

tensor, with C12 = 1
(2π )

N1N2 pII
N12

, C123 = 1
(2π )22!

N1N2N3 pIII
N123

, C1234 = 1
(2π )33!

N1N2N3N4 pIV
N1234

, etc., with N12... ≡ gcd(N1,N2, . . . ). Second column: the
dynamical gauge theory realization of the ZN1 × ZN2 × ZN3 × . . . SPT states. The important global constraints on the fields are not specified,
moreover, we need to well define the SPT path integral more than just the SPT Lagrangian; we will discuss this issue of path integral in
depth in Sec. VII. Third column: the SPT invariants after integrating out the matter fields. Here, the nondynamical flat AI field describes the
ZNI

-symmetry twist, which satisfies
∮

AI
μdxμ = 0 mod 2π/NI . The main result of our work is that the field theories in the first and the second

columns are equivalent at low energies at the χ < χc disordered limit. We can derive their SPT invariants by integrating out the matter field.

The SPT invariant is of the form
∫

ddx
iCI1I2 ...Id

d
εμν...σ AI1

μ AI2
ν . . . AId

σ given in [20].

SPT invariants:
Ginzburg-Landau NLσM Dynamical gauge theory Probed field theory

1D χ

2 (∂μθI )2 + i

2 CIJ εμν∂μθI ∂νθ
J i

2π
εμνbI

μ∂νa
I + −i

2 CIJ εμνbI
μbJ

ν
−i

2 CIJ εμνA1
μA2

ν

2D χ

2 (∂μθI )2 + i

3 CIJKεμνλ∂μθI ∂νθ
J ∂λθ

K iεμνλ

2π
bI

μ∂νa
I
λ + iCIJK

3 εμνλbI
μbJ

ν λK
b

iCIJK

3 εμνλA1
μA2

νA
3
λ

3D χ

2 (∂μθI )2 + i

4 CIJKLεμνλσ ∂μθI ∂νθ
J ∂λθ

K∂σ θL iεμνρσ

4π
bI

μ∂νa
I
σρ + −iCIJKL

4 εμνσρbI
μbJ

ν bK
σ bL

ρ
−iCIJKL

4 εμνρσ AI
μAJ

ν AK
ρ AL

σ
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(after integrating out the dynamical fields). We list the SPT
invariants in the third column of Table I.

2. Field theory with anomalous U(1) symmetry

We stress that although the proposed Uk(1) nonlinear σ

model with the multikink topological terms formally has a
Uk(1) global symmetry θI (xμ) → θI (xμ) + �fI . However,
due to the presence of multikink topological terms, the Uk(1)
global symmetry is actually anomalous, i.e., cannot be realized
by an onsite symmetry [12] in any lattice regularization of
the field theories. Or, more precisely, the Uk(1) nonlinear σ

models have anomalous Uk(1) symmetry if the multikink topo-
logical terms are quantized as C12 = 0 mod 1

(2π) in (1+1)D,

C123 = 0 mod 1
(2π)22! in (2+1)D, and C1234 = 0 mod 1

(2π)33! in
(3+1)D.

Here, we use a (1+1)D example to explain the above
statement (the higher-dimensional cases can be understood in a
similar way). Let us consider an ideal experiment by inserting
a 2π flux corresponding to the first U (1) symmetry through a
closed 1D ring, the bikink topological term i

2CIJ εμν∂μθI ∂νθ
J

will induce a charge 2πC12 associate with the second U (1)
symmetry. Therefore, if the 2πCIJ is not an integer, the Uk(1)
nonlinear σ model does not even have the Uk(1) symmetry
at quantum level. When 2πCIJ ∈ Z, the U 2(1) symmetry is
anomalous since adding the flux of the first U (1) can cause a
nonconservation of the second U (1).

The above charge pumping phenomena via flux insertion
can happen on a boundary of a (2+1)D system, where an
integer charge is created in the bulk and the total Uk(1) charges
are conserved.

However, the above charge pumping phenomena cannot
happen in a strict (1 + 1)D system with onsite Uk(1) symmetry.
This is because the onsite Uk(1) symmetry is gaugeable [i.e. ,
we can add U (1) flux without breaking the Uk(1) symmetry].
The presence of the charge pumping phenomena implies
that, at quantum level, the Uk(1) symmetry is broken by the
U (1) flux, which in turn implies that the Uk(1) symmetry
is anomalous (or non-onsite). Or, in other words, in a strict
(1+1)D system with U 2(1) onsite symmetry, C12 must vanish.

On the other hand, if the 2πC12 = 0 mod N1N2
N12

, the ZN1 ×
ZN2 subgroup of the U 2(1) corresponds to an anomaly-free
symmetry (i.e., an onsite symmetry). This is because the 2π

flux of U (1) induces a charge 2πC12 = N1N2
N12

× integer, which
is essentially trivial since ZN2 charge is only conserved mod
N2. Therefore, the ZN1 × ZN2 subgroup of the U 2(1) is not
anomalous. The U 2(1) nonlinear σ model describes a system
with ZN1 × ZN2 onsite symmetry, if 2πC12 = 0 mod N1N2

N12
.

Similarly, the Uk(1) nonlinear σ model has a ZN1 ×
ZN2 × ZN3 × . . . onsite symmetry only when proper
quantized values are assigned for CIJK.... For exam-
ple, in (1 + 1)D, (2 + 1)D, and (3 + 1)D, we require
that C12 = 1

(2π)
N1N2 pII

N12
, C123 = 1

(2π)22!
N1N2N3 pIII

N123
, and C1234 =

1
(2π)33!

N1N2N3N4 pIV

N1234
, where pI,pII,pIII ∈ Z.

C. Organization of the paper

The rest of the paper is organized as follows: In Sec. II,
we briefly review how to use SPT invariants to define SPT
states. In Sec. III, we propose a bulk dynamical effective action

to describe (1+1)D bosonic Abelian SPT states and use it to
derive the corresponding SPT invariants. In Sec. IV, we briefly
review the Chern-Simons action approach for (2+1)D bosonic
Abelian SPT states and discuss its limitation. In Sec. V, we
compute the SPT invariants for (2+1)D ZN1 × ZN2 × ZN3 SPT
state and propose a bulk dynamical effective action to describe
such (2+1)D SPT states. In Sec. VI, we generalize our results
to (3+1)D bosonic Abelian SPT states and propose a bulk
dynamical action beyond BF theory. In Sec. VII, we verified
that the partition function with the proposed SPT action has
the ground state degeneracy (GSD) = 1. In Sec. VIII, edge
theories for Abelian SPT states beyond Chern-Simons/BF
actions are discussed via a standard dimension reduction
scheme. Finally, there are conclusion remarks and discussions
for future directions.

In Appendix A, we review the derivation of disordering
the superfluid state to the Mott insulator (see the pioneering
work [47–49] and Refs. [50,51]. In Appendix B, we provide an
explicit calculation of an effective bulk action of SPT state. In
Appendix C, we provide some words of caution by comparing
our effective action of SPT state to topological gauge theories
with non-semisimple Lie algebra. In Appendix D, we compute
the edge mode GSD by counting the degenerate zero modes.

II. A REVIEW OF SPT STATES DEFINED
BY SPT INVARIANTS

It has been shown that SPT states (within group coho-
mology or beyond group cohomology classifications) can be
probed or even defined through the so-called SPT invariants
[21,52] that may completely characterize different SPT states.
In this section, we will review and discuss such a point of view.

A. Universal wave-function overlap: A complete SPT invariant
for SPT orders

We start from reviewing the results of the SPT invariants in
[52], using (2+1)D systems as examples. It was conjectured
that the degenerate ground states |�α〉, α = 1,2, . . . , of a
(2+1)D topological phase on a torus have the following
properties [53]:

Sαβ e−fSL2+o(L−1) = 〈�α|Ŝ|�β〉,
Tαβ e−fT L2+o(L−1) = 〈�α|T̂ |�β〉, (1)

where Ŝ is the 90◦ rotation operation (x,y) → (−y,x) and T̂

is the Dehn twist rotation operation (x,y) → (x + y,y). It was
conjectured that while the complex numbers fS and fT are
not universal, the complex matrices Sαβ and Tαβ are universal.
Sαβ and Tαβ can change only via phase transitions. Thus, we
can use them to characterize different topological orders. In
fact, we believe that Sαβ and Tαβ completely define (2+1)D
topological ordered phases with gappable edges.

Can we use the similar idea to completely define (2+1)D
SPT order? The wave-function overlap for SPT state also has
the following universal structure:

S e−fSL2+o(L−1) = 〈�0|Ŝ|�0〉,
T e−fT L2+o(L−1) = 〈�0|T̂ |�0〉, (2)
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FIG. 2. (a) Symmetry twist along the boundary ∂R is generated
by the symmetry transformation that acts only within R. (b) The
symmetry twist hx,hy on torus gives rise to the twisted ground state
|�(hx ,hy )〉.

where the 1 × 1 unitary matrices S and T are universal. In fact,
S = T = 1, due to the trivial bulk excitations in SPT state.
Thus, S and T are trivial and could not be used to distinguish
different SPT states.

To obtain a nontrivial wave-function overlap, we introduce
symmetry twist: a symmetric transformation generated by h ∈
G within the region R. The Hamiltonian is not invariant under
such a local symmetry transformation [see Fig. 2(a)]:

H =
∑

Hijk → Hh =
∑

in R,R̄

Hijk +
∑

on ∂R

Hh
ijk, (3)

where Hijk acts on sites i,j,k and Hh
ijk is on the boundary of

R, ∂R, if the sites i,j,k are not all on one side of ∂R. We call∑
on ∂R Hh

ijk the h-symmetry twist.
Note that H and Hh have the same energy spectrum. So, the

symmetry twist costs no energy. Let |�(hx,hy )〉 be the ground
state of Hhx,hy

on a torus with symmetry twists hx,hy in x

and y directions. |�(hx,hy )〉 simulates the degenerate ground
states for topologically ordered phases. We can use |�(hx,hy )〉
to construct S,T matrices that characterize the SPT order (see
Figs. 3 and 4):

Ŝ move: 〈�(h−1
y ,hx )|Ŝ|�(hx,hy )〉 = Shx,hy

e−fSL2+o(L−1),

T̂ move: 〈�(hx,hyhx )|T̂ |�(hx,hy )〉 = Thx,hy
e−fT L2+o(L−1),

Û move: 〈�(hthxh
−1
t ,ht hyh

−1
t )|Û (ht )|�(hx,hy )〉 = Uhx,hy

(ht ).

Note that in addition to the Ŝ and T̂ moves, the SPT
invariants also contain Û move generated by the global
symmetry transformation ht ∈ G.

The Ŝ, T̂ , and Û moves shift (hx,hy) → (h′
x,h

′
y):

Ŝ : (hx,hy) → (h′
x,h

′
y) = (

h−1
y ,hx

)
;

T̂ : (hx,hy) → (h′
x,h

′
y) = (hx,hyhx); (4)

Û (ht ) : (hx,hy) → (h′
x,h

′
y) = (

hthxh
−1
t ,hthyh

−1
t

)
.

(a) (b)

h

h

y

x

h

h

x

y

−1

FIG. 3. Ŝ move is 90◦ rotation.

h

h

x

y h y

h x

(a) (b)

h x

(c)

h y h x

FIG. 4. T̂ move is the Dehn twist followed by a symmetry
transformation hx in the shaded area.

When (h′
x,h

′
y) 
= (hx,hy), the complex phases

Shx,hy
, Thx,hy

, Uhx,hy
(ht ) are not well defined since they

depend on the choices of the phases of |�(hx,hy )〉 and |�(h′
x ,h

′
y )〉.

However, the product of Shx,hy
, Thx,hy

, Uhx,hy
(ht ) around a

closed orbit (hx,hy) → (h′
x,h

′
y) → · · · → (hx,hy) is universal

(see Fig. 5). We believe that those products for various closed
orbits completely characterize the (2+1)D SPT states.

For example, N T̂ moves always form a closed orbit for
Abelian ZN = {h = 0, . . . ,N − 1} group. For (2+1)D ZN

SPT state labeled by k ∈ H 3[ZN,U (1)] = ZN , it has one SPT
invariant:

Thxh
N−1
y ,hy

. . . Thxh2
y ,hy

Thxhy,hy
Thx,hy

= e2πi(hx−1)2k/N ,

hx,hy ∈ ZN . (5)

Such an SPT invariant completely characterizes the (2+1)D
ZN SPT state.

B. Universal wave-function overlap in (1+1)D

In (1+1)D, the SPT invariants are very simple. We only
have the Û move: 〈�(hthxh

−1
t )|Û (ht )|�(hx )〉 = Uhx

(ht ), which
generates the shift hx → hthxh

−1
t . Similar to the (2+1)D

cases, the product of Uhx
(ht ) around a closed orbit is well

defined and universal (see Fig. 6). In particular, for Abelian
symmetry group, Uhx

(ht ) itself is universal.

III. A (1+1)D ZN1 × ZN2 SPT STATE AND ITS BIKINK
BULK DYNAMICAL ACTION

A. A simple example

Now, let us apply the results obtained in the last section to
a (1+1)D ZN1 × ZN2 bosonic SPT state, which is classified by

H 2[ZN1 × ZN2 ,U (1)] = ZN12 = {0,1, . . . ,N12 − 1}, (6)

hy

hx

S

T

U

FIG. 5. A closed orbit in the (hx,hy) space.
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hx

FIG. 6. Two closed orbits in hx space.

where N12 = gcd(N1,N2). We consider an SPT state labeled
by k ∈ ZN12 .

The group elements of ZN1 × ZN2 are labeled by h =
(h1,h2), h1 ∈ ZN1 , h2 ∈ ZN2 . The universal wave-function
overlap [the SPT invariant Uhx

(ht )] is〈
�(h1

x ,h
2
x )

∣∣Û(
h1

t ,h
2
t

)∣∣�(h1
x ,h

2
x )
〉

= Uh1
x ,h

2
x

(
h1

t ,h
2
t

) = e
ik 2π

N12
(h1

xh
2
t −h2

xh
1
t )
, (7)

which can also be viewed as the fixed-point partition function
on space-time T 2 = S1 × S1 with symmetry twists in x,t

directions (see Fig. 7):

Zfixed point = Uh1
x ,h

2
x

(
h1

t ,h
2
t

) = e
ik 2π

N12
(h1

xh
2
t −h2

xh
1
t )
. (8)

Both wave-function overlap and partition function pictures
imply the following physical meaning for the above SPT
invariant: a symmetry twist of ZN1 carries ZN2 charge k:〈

�(h1
x ,h

2
x )=(1,0)

∣∣Û(
h1

t = 0,h2
t = 1

)∣∣�(h1
x ,h

2
x )=(1,0)

〉 = e
ik 2π

N12 . (9)

Let us discuss a concrete example for the above (1+1)D
SPT invariant. We consider a spin-1 chain with the spin-
rotation symmetry Z2 × Z2 = D2 = 180◦ in Sx,Sz. The
Hamiltonian on a ring is given by (untwisted case)

HD2 =
L−1∑
i=1

(
JxS

x
i Sx

i+1 + JyS
y

i S
y

i+1 + JzS
z
i S

z
i+1

)
+ JxS

x
LSx

1 + JyS
y

LS
y

1 + JzS
z
LSz

1, (10)

where Jx = Jy = Jz > 0. The ground state carries a trivial
quantum number eiπ

∑
Sz

i with eiπ
∑

Sz
i = 1.

If we add a twist by eiπ
∑

Sx
i , the Hamiltonian becomes

H twist
D2

=
L−1∑
i=1

(
JxS

x
i Sx

i+1 + JyS
y

i S
y

i+1 + JzS
z
i S

z
i+1

)
+ JxS

x
LSx

1 − JyS
y

LS
y

1 − JzS
z
LSz

1. (11)

The twisted ground state carries a nontrivial quantum number
eiπ

∑
Sz

i with eiπ
∑

Sz
i = −1. Such a dependence of the ground-

state quantum number eiπ
∑

Sz
i on the eiπ

∑
Sx

i twist is the
(1+1)D SPT invariant discussed above.

The above SPT invariant also suggests a mechanism for the
(1+1)D ZN1 × ZN2 SPT state. We notice that the SPT invariant

FIG. 7. Space-time S1 × S1 with two symmetry twists in x,t

directions.

2J J Jz z z

FIG. 8. Two kinds of domain walls with the same energy, but
different Zz

2 charges, 0 (mod 2) and 1 (mod 2), respectively, on a
lattice. Equation (14)’s H

hop
1 is a hopping operator for the first kind

of domain wall. Equation (15)’s H
hop
2 is a hopping operator for the

second kind of domain wall.

implies a symmetry twist of ZN1 that carries a “charge” of ZN2 .
Since the symmetry twist of ZN1 is the domain wall of ZN1 in
a ZN1 symmetry-breaking state, we may (1) start with a ZN1

symmetry-breaking state, (2) bind k ZN2 charge to the domain
wall of ZN1 , and (3) restore the ZN1 symmetry by proliferating
the domain walls. In this way, we obtain a (1+1)D ZN1 × ZN2

SPT state labeled by k ∈ H2[ZN1 × ZN2 ,U (1)].
For example, let us consider a 1D Zx

2 × Zz
2 spin-1 chain

with symmetry

Zx
2 : (|↑x〉,|0x〉,|↓x〉)→(|↑x〉, − |0x〉,|↓x〉),

Zz
2 : (|↑z〉,|0z〉,|↓z〉)→(|↑z〉, − |0z〉,|↓z〉). (12)

The following Hamiltonian has the Zx
2 × Zz

2 symmetry

H 0
Z2×Z2

=
∑

i

−JzS
z
i S

z
i+1, (13)

but its ground state breaks the Zx
2 symmetry. Such a symmetry-

breaking state has two kinds of domain walls which happen
to have the same energy, but different Zz

2 charges. The two
kinds of domain walls, shown in Fig. 8, have different hopping
operators:

H
hop
1 =

∑
i

−K

2

[
(S+

i )2 + (S−
i )2

]
=

∑
i

−K
[(

Sx
i

)2 − (
S

y

i

)2]
, (14)

H
hop
2 = −

∑
i

Jxy

2
(S+

i S+
i+1 + S−

i S−
i+1)

=
∑

i

Jxy

(−Sx
i Sx

i+1 + S
y

i S
y

i+1

)
. (15)

Here, we used the fact that S+
i ≡ Sx

i + iS
y

i and S−
i ≡ Sx

i −
iS

y

i . It is straightforward to see the (S+
i )2 operator hops the

first kind of domain wall of Fig. 8 in one direction, while the
(S−

i )2 operator hops the first kind of domain wall of Fig. 8 in
the opposite direction. On the other hand, the S+

i S+
i+1 operator

hops the second kind of domain wall of Fig. 8 in one direction,
while the S−

i S−
i+1 operator hops the second kind of domain

wall of Fig. 8 in the opposite direction.
Adding a strong enough hopping operator can make a

domain wall subject to a negative energy cost, which restores
the Zx

2 symmetry by proliferating the domain walls. We
find that H 0

Z2×Z2
+ H

hop
1 leads to a trivial SPT state, while

H 0
Z2×Z2

+ H
hop
2 leads to a nontrivial Z2 × Z2 SPT state. Via

a unitary transformation, the Hamiltonian H 0
Z2×Z2

+ H
hop
2 is

115136-5



ZHENG-CHENG GU, JUVEN C. WANG, AND XIAO-GANG WEN PHYSICAL REVIEW B 93, 115136 (2016)

equivalent to the Hamiltonian of Eq. (10) discussed above, as
the Haldane phase of a spin-1 antiferromagnetic Heisenberg
chain.

B. Bikink topological term NLσM and dynamic gauge theory

The underlying physics of the above (1+1)D ZN1 × ZN2

SPT state can also be captured by the following Higgs action
with a bikink topological term:

Lbikink = χ

2
(∂μθI )2 + i

2
CIJ εμν∂μθI ∂νθ

J

 χ

2

(
∂μθI

s + bI
μ

)2

+ i

2
CIJ εμν

(
∂μθI

s + bI
μ

)(
∂νθ

J
s + bJ

ν

) + Lb
Maxwell, (16)

where I = 1,2 and the structure constant CIJ is totally
antisymmetric with CIJ = −CJI . We assume Einstein sum-
mations for repeated indices throughout the whole paper.
The quantum phase fluctuation can be captured by a real
scalar compact field θI ≡ θI

s + θI
v with a smooth piece and

a singular piece θI
s and θI

v . To achieve the disordered insulator
state, we can condense the vortex, namely, strongly disorder
the superfluid coherent phase. We will write ∂μθI

s + ∂μθI
v ≡

∂μθI
s + bI

μ. The ∂μθI
s captures the smooth piece ∂μθI

s , and the
additional bI

μ captures the singular piece ∂μθI
v . We note that the

real scalar fields θI
s can be viewed as the phase fluctuations of

ZNI
symmetry in a ZN1 × ZN2 symmetry-breaking phase while

vector fields bI
μ (with Lb

Maxwell the corresponding Maxwell
term) describe the proliferations of domain walls, which
restore the ZN1 × ZN2 symmetry. Such a Higgs action with
a bikink topological term will enforce a ZN1 domain wall that
carries a “charge” of ZN2 , and vice versa. It is clear that the
bikink topological term is just a boundary term in the absence
of gauge fields bI

μ. In the following, we will show that such a
bulk action with the bikink topological term indeed describes
the ZN1 × ZN2 SPT physics in (1+1)D.

After dropping the total derivative term, we can rewrite the
above action as

Lbikink = χ

2

(
∂μθI

s + bI
μ

)2

+ i

2
CIJ εμν

(−2θI
s ∂μbJ

ν + bI
μbJ

ν

) + Lb
Maxwell. (17)

Next, we introduce the Hubbard-Stratonovich fields j
μ

I to
decouple the quadratic term as

Lbikink = 1

2χ

(
j

μ

I

)2−iθ I
s ∂μj

μ

I + ibI
μj

μ

I

+ i

2
CIJ εμν

(−2θI
s ∂μbJ

ν + bI
μbJ

ν

) + Lb
Maxwell.

Integrating out the smooth fluctuations θI
s leads to the

following constraint:

∂μ

(
j

μ

I + CIJ εμνbJ
ν

) = 0. (18)

The above constraints can be solved by

j
μ

I = 1

2π
εμν∂νa

I − CIJ εμνbJ
ν , (19)

where aI do not need to be globally defined. To disorder the
U (1) phase, we take χ � χc, we can drop out the 1

2χ
(jμ

I )2

term as well as the Maxwell term of gauge fields bI
μ thanks to

their renormalization group (RG) irrelevancy [51]. We end up
with an effective topological action

Ltop = i

2π
εμνbI

μ∂νa
I + −i

2
CIJ εμνbI

μbJ
ν . (20)

The gauge transformation of bI
μ in the above action will induce

a shift on the scalar fields aI :

aI → aI + 2πCIJ gJ ; bI
μ → bI

μ + ∂μgI . (21)

The above functions do not necessarily need to be globally
defined. In fact, the compactness condition of aI and bI

μ implies
the closed loop or the closed surface integral has the constraints∮

da/(2π ) ∈ Z,

∫
�
�

�
�

∫
dbI /(2π ) ∈ Z. (22)

In Sec. VII, we will derive the same constraints in the path-
integral level, from the constraints of U (1) charge and the
vortex number on a closed surface.

Now, let us compute the quantization condition for the
coefficients CIJ . We note that the average of θI = θI

s + θI
v

is quantized as 2π/NI× integer. In the disordered phase
which restores the ZN1 × ZN2 symmetry, θI ’s have many
fluctuating kinks. Let us consider a configuration where θ1

has a kink �θ1 = 2πk1/N1 on the t axis and θ2 has a kink
�θ2 = 2πk2/N2 on the x axis. For such a configuration, the
action from the bikink topological term is given by

S =
∫

dx dt
i

2
CIJ εμν∂μθI ∂νθ

J

= 8π2iC12
k1k2

N1N2
. (23)

This means that the θ1 kink carries a ZN2 charge 2πC12
k1
N1

mod N2. Since k1 = 0 ∼ k1 = N1, C12 must be quantized:

2πC12 = 0 mod N2, 2πC12 = 0 mod N1. (24)

Thus,

C12 = pII

2π

N1N2

N12
, pII = 0, . . . ,N12 − 1 (25)

where N12 = gcd(N1,N2). Also we note that C12 has only N12

distinct quantized values, corresponding to N12 distinct charge
assignments.

The above argument for the quantization condition of C12

due to global ZN1 × ZN2 symmetry can also be derived in a
rigorous way by adding a coupling term to external background
gauge field AI :

Lcoupling = i

2π
εμνAI

μ∂νa
I . (26)

As the physical meanings of A1 and A2 are ZN1 and
ZN2 symmetry twists, AI must be a flat connection with
dAI = 0 and

∮
AI = 2πnI/NI . On the other hand, since∫

dx dtLcoupling must be invariant under gauge transformation
(21), C12 can not take arbitrary value. A short calculation
suggests the same quantization condition (24).
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In Sec. VII, we will define a rigorous SPT internal gauge
theory path integral, and we confirm that the GSD of our theory
is unique on a closed manifold, GSD = 1, in agreement with
SPT state. We will also derive the SPT invariant in Ref. [20] by
coupling the internal gauge theory to semiclassical probed field
A. In this way, it becomes manifested that C12 can only take
N12 distinguishable value derived in Eq. (24). In the following,
we generalize the above results to higher dimensions.

IV. A REVIEW OF CHERN-SIMONS ACTION APPROACH
TO (2+1)D ABELIAN SPT STATES

In this section, we will start with a brief review on the Chern-
Simons action approach for (2+1)D Abelian SPT states. Then,
we explain the physical meaning of the Chern-Simons action
approach and discuss its limitations.

It is well known that a vortex condensation can turn a boson
superfluid into a trivial bosonic insulator. A bosonic U (1) SPT
state is also a bosonic insulator, but a nontrivial one. It turns
out that a condensation of vortex-charge bound state can turn
a boson superfluid into a nontrivial U (1) SPT state.

To show this, let us consider a boson superfluid for one
species of bosons, which can be described by an XY model:

LXY = 1
2 (∂μθ )2. (27)

If the vortex of the boson condenses, θ in the XY model is no
longer a smooth function of space-time. We can introduce the
singular part by replacing ∂μθ by ∂μθs + bμ, where the field
strength of gauge field bμ corresponds to the vortex current
density J̃ μ = 1

2π
εμνλ∂νbλ.

The charge of gauge field bμ is the number of vortices
minus the number of antivortices and is quantized. In the
vortex condensed phase, the phase fluctuation of the vortex
condensate can be described by another XY model, which is
dual to the Maxwell term of the gauge field bμ. Now, the boson
superfluid is described by the following Lagrangian:

LHiggs = 1

2

[
(∂μθs + bμ)2 + 1

4π2
F̃μνF̃

μν

]
, (28)

where F̃μν = ∂μbν − ∂νbμ and we have normalized with v =
1, χ = 1.

We can introduce a Hubbard-Stratonovich field jμ to
decouple the quadratic term as

LHiggs = 1

2
(jμ)2 − iθs∂μjμ + ibμjμ + 1

8π2
F̃μνF̃

μν.

Integrating out the θs field results in a constraint ∂μjμ = 0.
From this constraint, we can write jμ = 1

2π
εμνλ∂νaλ. The

charge of aμ is equal to the boson number and is quantized.
With these results, the path integral becomes

LBF = i

2π
εμνλbμ∂νaλ + 1

8π2
[F̃μνF̃

μν + FμνF
μν], (29)

where Fμν = ∂μaν − ∂νaμ. Note that the boson current jb
μ =

1
2π

εμνλ∂νbλ, while the vortex current jv
μ = 1

2π
εμνλ∂νaλ.

The above can be generalized to the case with k species of
bosons with Uk(1) symmetry. The bosonic insulator induced

by the vortex condensation is described by the following
Chern-Simons action:

LCS = i

4π
εμνλK0

IJ aI
μ∂νa

J
λ , I = 1,2, . . . ,2k (30)

with

K0
IJ =

(
0 1
1 0

)
⊗ Ik×k, (31)

where a2k
μ ∼ aμ and a2k−1

μ ∼ bμ. Since | det[K]| = 1, the
above Chern-Simons action has a unique ground state 1 on
any closed manifold. The chiral central charge for the edge
states is given by the signature of K which is zero. So, the
bosonic insulator has a trivial topological order.

However, the bosonic insulator may have a nontrivial Uk(1)
SPT order. To see this, we turn on the external Uk(1) gauge
field Aα

μ to reveal the Uk(1) symmetry of the theory:

Lcoupling = i

2π
εμνλqI

αAα
μ∂νa

I
λ, α = 1,2, . . . ,k. (32)

Here, qα are integer-value charge vectors. q2l−1
α is the Aα

charge carried by the lth species of bosons, and q2β
α is the

Aα charge carried by the vortex of the lth species of bosons.
We see that charge vectors qα reveal the information on what
kinds of vortex-charge bound states are condensing to produce
the bosonic insulator. Different vortex-charge bound states
(i.e., different charge vectors) will lead to different Uk(1) SPT
orders.

The full theory is given by L = LCS + Lcoupling. After
integrating out internal gauge fields aI

μ (the matter fields),
we obtain an effective theory for the external fields Aα:

Leff = − i

4π
εμνλAα

μqI
αK0

IJ qJ
β ∂νA

β

λ . (33)

By considering equivalent class of response K matrix K̃αβ ≡
qI

αK0
IJ qJ

β , we can “classify” (2+1)D Uk(1) SPT states
described by the Chern-Simons theory (30). We can also break
the Uk(1) symmetry down to ZN1 × . . . × ZNk

symmetry and
obtain a “classification” of ZN1 × · · · × ZNk

SPT states in
(2+1)D. Since ZNα

group can always be embedded into Uk(1)
group, it is not a surprise that the ZN1 × · · · × ZNk

SPT state
can be described by the same Chern-Simons action.

However, since H 3[ZN1 × · · · × ZNk
,U (1)] =

⊕iZNi
⊕i<j ZNij

⊕i<j<k ZNijk
[Nijk = gcd(Ni,Nj ,Nk)],

the above classification turns out to be incomplete and it can
only describe a subclass of Abelian SPT states labeled by
⊕iZNi

⊕i<j ZNij
, namely, the type I and type II SPT phases.

In the following, we will develop an effective field theory
description for type-III SPT order in (2+1)D, which is labeled
by ⊕i<j<kZNijk

.

V. A (2+1)D ZN1 × ZN2 × ZN3 SPT STATE AND ITS TRIKINK
BULK DYNAMICAL ACTION

A. A (2+1)D ZN1 × ZN2 × ZN3 SPT state

Without loss of generality, it is sufficient to discuss
a (2+1)D ZN1 × ZN2 × ZN3 bosonic SPT state, which is
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classified by

H 3[ZN1 × ZN2 × ZN3 ,U (1)]

= ZN1 × ZN2 ⊕ ZN3 ⊕ ZN12 ⊕ ZN23 ⊕ ZN13 ⊕ ZN123 .

(34)

We consider a type-III SPT state labeled by k ∈ ZN123 .
The group elements of ZN1 × ZN2 × ZN3 are labeled by h =

(h1,h2,h3), h1 ∈ ZN1 , h2 ∈ ZN2 , h3 ∈ ZN3 . The SPT invariant
Uhx,hy

(ht ) for the above SPT state is the fixed-point partition
function on space-time T 3 = (S1)3 with symmetry twists in
x,y,t directions:

Zfixed point = Uhx,hy
(ht ) = e

ik 2π
N123

εabch
a
xh

b
yh

c
t . (35)

The physical meaning of the SPT invariant is the following:
Consider the ground state of the Hamiltonian with symmetry
twists in ZN1 and ZN2 , the intersection of the symmetry twist
in ZN1 and the symmetry twist in ZN2 carries ZN3 charge k.

The above SPT invariant also allows us to calculate the
dimension reduction of the (2+1)D SPT state to a (1+1)D SPT
state: We view the space-time as T 3 = T 2

x,t × S1
y , and put ZN3

symmetry twist (h1
y,h

2
y,h

3
y) = (0,0,1) in the small circle S1

y .
The (2+1)D partition function reduces to a (1+1)D partition
function

Zfixed point = eik2π(h1
xh

2
t −h2

xh
1
t ), (36)

which is the SPT invariant of a (1+1)D SPT state. We
find that the resulting (1+1)D SPT state is the one labeled
by k ∈ H 2[ZN1 × ZN2 ,U (1)] = ZN12 . The boundary of such
a (1+1)D SPT state carries degenerated states that form
a projective representation of ZN1 × ZN2 . This leads to an
experimental probe of the ZN1 × ZN2 × ZN3 SPT state: a ZN3

“vortex” (end of ZN3 symmetry twist) carries degenerated
states that form a projective representation of ZN1 × ZN2 .

The result of the above dimension reduction can also
be viewed as each ZN3 twist (which is a 1D curve in
2D space) carries a (1+1)D ZN1 × ZN2 SPT state labeled
by k ∈ H 2[ZN1 × ZN2 ,U (1)]. This picture leads to another
mechanism for the (2+1)D ZN1 × ZN2 × ZN3 SPT state: (1)
start with a ZN3 symmetry-breaking state, (2) bind a (1+1)D
ZN1 × ZN2 SPT state to the domain wall of ZN3 , and (3) restore
the ZN3 symmetry by proliferating the domain walls. In this
way, we obtain a (2+1)D ZN1 × ZN2 × ZN3 SPT state labeled
by k ∈ ZN123 .

The (2+1)D SPT invariant (35) on space-time T 3 = (S1)3

can also be expressed as a topological term of probe fields AI :

Ztwist
fixed point(T

3) = e
ipIII

N1N2N3
(2π)2N123

∫
A1∧A2∧A3

, dAI = 0, (37)

with an integer pIII. Again, since AI describes symmetry twists
on the boundary, it must be flat connection with dAI = 0.∫

A1 ∧ A2 ∧ A3 is also gauge invariant if dAI = 0. The field
theory representation of the SPT invariants [Eq. (37)] should
be valid for any space-time topologies. In the following, we
will show how to derive such a topological response from a
bulk dynamical effective action.

B. Trikink topological term NLσM

To describe the so-called type-III ZN1 × ZN2 × ZN3 SPT
orders in (2 + 1)D, we consider the following effective action

for three species of bosons with vortex condensation. The
action contains a new trikink topological term, the CIJK term
[the following is a generalization of Eq. (28)]:

Ltrikink = 1

2
(∂μθI )2 + i

3
CIJKεμνλ∂μθI ∂νθ

J ∂λθ
K

 1

2

(
∂μθI

s + bI
μ

)2 + Lb
Maxwell

+ i

3
CIJKεμνλ

(
∂μθI

s + bI
μ

)(
∂νθ

J
s + bJ

ν

)(
∂λθ

K
s + bK

λ

)
,

(38)

where I = 1,2,3 and the structure constant CIJK is totally
antisymmetric with CIJK = −CJIK = −CIKJ . It is clear that
the trikink topological term is just a boundary term in the
absence of gauge fields bI

μ.
To understand the physical meaning of the trikink topo-

logical term, we first note that the type-III SPT orders in
(2+1)D only exist for a finite group ZN1 × ZN2 × ZN3 . So, we
need to break the U (1)3 symmetry down to ZN1 × ZN2 × ZN3

symmetry. The average of θI is quantized as 2π/NI× integer.
In the disordered phase which restores the ZN1 × ZN2 × ZN3

symmetry, θI ’s have many fluctuating kinks along space-time
surfaces. Let us consider a configuration in the space-time
where θ1 has a kink �θ1 = 2πk1/N1 on the y-t plane, θ2 has
a kink �θ2 = 2πk2/N2 on the t-x plane, and θ3 has a kink
�θ3 = 2πk3/N3 on the x-y plane. For such a configuration
(bI

μ = 0), the action from the trikink topological term is given
by

S =
∫

dxdydt
i

3
CIJKεμνλ∂μθI ∂νθ

J ∂λθ
K

= 16π3iC123
k1k2k3

N1N2N3
. (39)

This means that the intersection of the kinks in θ1 and θ2 carries
a ZN3 charge 8π2C123

k1k2
N1N2

mod N3. Since k1 = 0 ∼ k1 = N1,
C123 must be quantized:

8π2C123
k2

N2
= 0 mod N3, 8π2C123

k1

N1
= 0 mod N3. (40)

Thus,

C123 = pIII

(2π )22!

N1N2N3

N123
, pIII = 0, . . . ,N123 − 1 (41)

where N123 = gcd(N1,N2,N3). Also, we note that C123 has
only N123 distinct quantized values, corresponding to N123

distinct charge assignments.
Now, the physical meaning of the trikink topological term

is clear: It is well known that the fluctuations of the kinks
will turn a ZN1 × ZN2 × ZN3 symmetry-breaking state into a
ZN1 × ZN2 × ZN3 symmetric state with a trivial SPT order.
However, if we bound a ZN3 charge to the intersection of
the kinks in θ1 and θ2, etc., the resulting ZN1 × ZN2 × ZN3

symmetric state will have a nontrivial SPT order, as we will
show below. In this way, we can produce N123 distinct type-
III ZN1 × ZN2 × ZN3 SPT orders, consistent with the group
cohomology result.

By integrating out the smooth fluctuations θI and intro-
ducing auxiliary gauge fields aI

λ and λI
μ, we can derive the
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following bulk dynamical action:

Ltrikink = i

2π
εμνλλI

μ∂νa
I
λ + i

3
CIJKεμνλ

× [
λI

μλJ
ν λK

λ + (
bI

μ − λI
μ

)(
bJ

ν − λJ
ν

)(
bK

λ − λK
λ

)]
+1

2

(
bI

μ − λI
μ

)2 + Lb
Maxwell. (42)

The derivation from Eq. (38) to (42) is preserved in Appendix B
with details. Interestingly, the field strength of gauge field aI

μ is
formally akin to a non-Abelian gauge field and its infinitesimal
gauge transformation should be modified as

aI
μ → aI

μ + ∂μf I − 4πCIJK

(
gJ λK

μ + 1
2gJ ∂μgK

)
;

bI
μ → bI

μ + ∂μgI ; λI
μ → λI

μ + ∂μgI . (43)

C. Saddle-point approximation and internal gauge theory

If we assume the field bI
μ has a weak fluctuation, we can

apply the saddle-point approximation for bI
μ. The saddle-point

equation reads as

CIJKεμνλ
(
bJ

ν − λJ
ν

)(
bK

λ − λK
λ

) + (
bI

μ − λI
μ

)
+ higher-order terms = 0, (44)

clearly bI
μ = λI

μ is a stable saddle point. Since the λ field is
a Lagrangian multiplier and b is a more-restricted U (1) field,
we should replace λ by b. At the level of this approximation,
we can simplify the bulk effective action by

Leff = iεμνλ

2π
bI

μ∂νa
I
λ + iCIJK

3
εμνλbI

μbJ
ν bK

λ , (45)

and with the gauge redundancy given by

bI
μ → bI

μ + ∂μgI ,

aI
μ → aI

μ + ∂μf I − 4πCIJK

(
gJ bK

μ + 1
2gJ ∂μgK

)
. (46)

We also have the global constraints∫
�
�

�
�

∫
da/(2π ) ∈ Z,

∫
�
�

�
�

∫
dbI /(2π ) ∈ Z. (47)

Similar to the (1+1)D case, there is a rigorous way to
compute the quantization of coefficients C123 protected by
global ZN1 × ZN2 × ZN3 symmetry. Let us add a coupling
term to the external gauge field AI :

Lcoupling = iAI
μj

μ

I = i

2π
εμνλAI

μ∂νa
I
λ. (48)

Again, AI are ZNI
symmetry twists, thus AI must be a flat

connection with dAI = 0 and
∮

AI = 2πnI/NI . Similar to
the (1+1)D case, since

∫
dxdydtLcoupling must be invariant

under gauge transformation (46), C123 can not take arbitrary
value, and a short calculation gives rise to exactly the same
condition (40).

It turns out that the above gauge transformation corresponds
to a non-semisimple Lie algebra of symmetry. We will discuss
a generic class of such Lie algebra, called the symmetric self-
dual Lie algebra in Appendix C. In Sec. VII, we will define
a rigorous SPT internal gauge theory path integral, and we
confirm that the GSD of our theory is unique on a closed
manifold, GSD = 1, just like the SPT state. We will also

derive the SPT invariant by coupling the internal gauge theory
to semiclassical probed field A claimed in Ref. [20], which
suggests that Eq. (41) indeed gives rise to N123 distinguishable
SPT phases.

VI. A (3+1)D GENERALIZATION

The above trikink topological term can be generalized into
higher dimensions as well, such as a quadkink topological
action in (3+1)D:

Lq-kink = 1

2
(∂μθI )2 + i

4
CIJKLεμνλσ ∂μθI ∂νθ

J ∂λθ
K∂σ θL

 1

2

(
∂μθI

s + bI
μ

)2 + i

4
CIJKLεμνλσ

(
∂μθI

s + bI
μ

)
×(

∂νθ
J
s + bJ

ν

)(
∂λθ

K
s + bK

λ

)(
∂σ θL

s + bL
σ

)
. (49)

The quantization condition on CIJKL can be worked out in
a similar way, and finally we obtain C1234 = pIV

(2π)33!
N1N2N3N4

N1234
,

where pIV is an integer on pIV = 0, . . . ,N1234 − 1.
For example, in (3+1)D, we can use the following quartic-

kink term to describe the so-called type-IV SPT state. Parallel
to our previous derivation in Sec. V B, we can derive the SPT
bulk dynamical action

Lq-kink = i

4π
εμνλρλI

μ∂νa
I
λρ − i

4
CIJKLεμνλρ

× [
λI

μλJ
ν λK

λ λL
ρ − (

bI
μ − λI

μ

)(
bJ

ν − λJ
ν

)
× (

bK
λ − λK

λ

)(
bL

ρ − λL
ρ

)]
+ 1

2

(
bI

μ − λI
μ

)2 + Lb
Maxwell (50)

and its gauge transformation

aI
μν → aI

μν + ∂μf I
ν − ∂νf

I
μ+12πCIJKLgJ λK

μ λL
ν + . . .;

bI
μ → bI

μ + ∂μgI + . . . ; λI
μ → λI

μ + ∂μgI + . . . . (51)

Here, Lb
Maxwell terms contain nontopological Maxwell term. If

we further apply the saddle-point approximation, we obtain

Leff = iεμνρσ

4π
bI

μ∂νa
I
σρ−

iCIJKL

4
εμνσρbI

μbJ
ν bK

σ bL
ρ . (52)

The corresponding infinitesimal gauge transformation (we
only keep the leading-order term here and use . . . to represent
higher-order terms) of arbitrary functions f and g reads as

aI
μν → aI

μν + ∂μf I
ν − ∂νf

I
μ+12πCIJKLgJ bK

μ bL
ν + . . . ,

bI
μ → bI

μ + ∂μgI + . . . . (53)

Here, gI and bI are globally defined, but f I is not globally
defined. The analogous global constraint can be derived:∫

�
�

�
�

∫∫
da/(2π ) ∈ Z,

∫
�
�

�
�

∫
dbI /(2π ) ∈ Z. (54)

VII. PARTITION FUNCTION, GSD, AND SPT INVARIANTS
COMPUTED FROM THE SPT INTERNAL GAUGE THEORY

Here, we will analytically show the path-integral definition
of internal gauge field theory: Eq. (20) for (1+1)D, Eq. (45)
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for (2+1)D, Eq. (52) for (3+1)D. In particular, we will show
three key issues:

(i) Define the partition function Z using field theory path
integral.

(ii) Derive the SPT invariants of semiclassical flat probed
field theory in Ref. [20] by coupling the SPT internal gauge
theory to probed fields A.

(iii) The internal gauge theory on any compact closed
spatial manifold has a unique ground state, namely, GSD = 1.
This means that the absolute value of the phase space volume
ratio between the case with topological term and the case
without topological term: | Z

Z(p=0) | = 1.
This procedure also applies to the SPT internal gauge field

theory in any other dimensions. We know that the SPT state

has no intrinsic topological order and the SPT’s GSD = 1
on any compact closed spatial manifold. Therefore, this GSD
computation serves as the consistency check that the internal
field theory shows a gapped phase with nontrivial symmetry
transformation: the internal gauge field theory realizes SPT
state.

We emphasize that knowing the field theory action is not
enough to fully understand the SPT field theory. We stress
that defining the partition function Z using field theory path
integral is necessary to fully understand the SPT field theory.
In the following, we especially remark the global constraints
of fields in order to define the SPT path integral. The partition
function in terms of the path-integral form with a total space-
time dimension d is

Z =
∫

[Db][Da] exp

[ ∫ (
i

2π
bI ∧ daI + i(−1)d−1CIJK...

d
bI ∧ bJ ∧ bK ∧ . . .

)]
, (55)

here I,J,K, . . . ∈ {1,2,3, . . . ,d}. Here, b is 1-form, a is (d − 2)-form, and f = da is (d − 1)-form. In the presence of symmetry-
twist semiclassical background 1-form gauge field A, we can write the partition function Z as

Z =
∫

[Db][Da] exp

[ ∫ (
i

2π
(bI − AI ) ∧ daI + i(−1)d−1CIJK...

d
bI ∧ bJ ∧ bK ∧ . . .

)]

=
∫

[Db][Df ] exp

[ ∫ (
i

2π
(bI − AI ) ∧ f I + i(−1)d−1CIJK...

d
bI ∧ bJ ∧ bK ∧ . . .

)]
, (56)

with the field strength of charges f ≡ da. Importantly, we
view bI and aI all dynamical internal gauge fields, so they are
involved in the path-integral measure.

Now, let us define this path integral properly. Let us impose
the constraints for this field function in the path integral, based
on the dual equivalent theory using the nonlinear σ model. We
recall that the a is related to the current density j specified
by the U (1) or ZN charge, where we have the total number of
charges quantized:∫

�
�

�
�

∫
∗j =

∫
�
�

�
�

∫
da/(2π ) =

∫
�
�

�
�

∫
f/(2π ) ∈ Z. (57)

The current density ∗j is a (d − 1)-form, thus
∫�
�

�
�

∫
of da

represents the surface integral of a (d − 1)-closed manifold,
such as a 1-surface for (1+1)D space-time, 2-surface for
(2+1)D space-time.

Now, we integrate over the field variable f for the partition
function (56), which procedure analogous to the discrete
Fourier summation yields a constraint∑

n∈Z
eiϕn = δ(ϕ mod 2π ). (58)

For
∫

[Df ]e
∫

i
2π

(bI −AI )∧f I

with
∫�
�

�
�

∫
f/(2π ) ∈ Z or ZN , we ob-

tain an analogous constraint on a 1D loop:

∮
(bI − AI ) = 0 mod 2π (59)

⇒
∮

bI =
∮

AI mod 2π = 2πnI

NI

mod 2π. (60)

The first line constraint is true for both U (1) charge and
ZN charge. The second line constraint (60) with nI ∈ Z is
an additional constraint if

∫�
�

�
�

∫
f/(2π ) ∈ ZNI

for our case of
discrete ZN charge for SPT state with ZN symmetry. We can
still view b field as a U (1) connection but with a constraint
from the ZN symmetry-twist probed field A. This means that
the internal gauge field b is subject to the global constraint
from the semiclassical symmetry-twist probed field A. After
integrating out the f , the partition function (56) subject to the
global constraint (60) of the symmetry-twist fields A becomes

Z =
∫

[Db] exp

( ∫
i(−1)d−1CI1I2...Id

d
bI1 ∧ bI2 ∧ . . . ∧ bId

)

= exp

[ ∫ (
i(−1)d−1CI1I2...Id

d
AI1 ∧ AI2 ∧ . . . ∧ AId

)]
.

(61)

Thus, so far by using SPT internal gauge theory path integral,
we have recovered the SPT invariant of Ref. [20] claimed in the
item (ii). Next, without losing generality, let us take (2 + 1)D
SPT as an example, with an explicit CIJK = 1

(2π)22!
N1N2N3 pIII

N123
.

Let us do the explicit partition function calculation on the two
topologies, a sphere and a torus, respectively, by comparing
the nontrivial class Z to the trivial class Z(pIII = 0). For each
calculation below we will fix a particular set of nI for the
global constraint (60).

The first topology. On a spatial sphere S2 with a time
loop S1, there is only a noncontractible loop along the time
direction. So, there is only a nonzero nI for the global
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constraints in Eq. (60), and other nJ must be zeros. We have

Z
Z(pIII = 0)

=
exp

(
i

2πpIII

N123
0 0 nI

)
1

= 1. (62)

The second topology. On a space-time T 3 torus, without
losing generality, let us assume A1, A2, A3 along x, y, t

directions have nontrivial global constraints with some generic
n1, n2, and n3. For example, analogous to Sec. V B’s setup, we
can assume dxμ = dx, dxν = dy, dxρ = dt :

Z
Z(pIII = 0)

=
exp

(
ipIII

2π n1n2n3
N123

)
1

= e
ipIII

2π n1n2n3
N123 . (63)

Since for both on a sphere and on a torus, the absolute value
of the above, | Z

Z(pIII=0) |, measures the GSD ratio between the
nontrivial phases and the trivial insulator. Since the trivial
insulator has GSD = 1 here, all other phases have GSD = 1,
so the pIII 
= 0 phase is a generic SPT state.

We thus confirm that the path integral (55) with dynamical
variables describes nontrivial type-III SPT states in (2+1)D.
The same procedure can be generalized to other dimensions,
such as Eq. (20) as SPT states in (1+1)D and Eq. (52) as SPT
states in (3+1)D. The GSD for these theories defined by the
partition function is 1. The procedure works in more general
closed topology; we thus show the claim in the item (iii).

One further extension of our work is to study the duality
[10] between SPT (which is nontopologically ordered) and
dynamical topological gauge theory (which is topologically
ordered). More precisely, we can start from the SPT internal
gauge theory path integral of Eq. (56) and then dynamically
gauge the theory to a dynamical topological gauge theory
equivalent to the Dijkgraaf-Witten theory [54]. In Sec. IX, we
will outline such a procedure using field theory path integral,
and we will propose the continuous dynamical topological
gauge theory dual to the Dijkgraaf-Witten theory with a
discrete gauge group.

VIII. EDGE THEORY

The bulk effective field theory can also describe interesting
edge physics. For the (1+1)D case, by integrating out the
Lagrange multiplier fields aI in Eq. (20), the corresponding
edge theory takes a very simple form

L0
edge = i

2
CIJ ϕI ∂0ϕ

J , (64)

with scalar fields ϕI define the gauge transformation ϕI →
ϕI − gI to cancel the gauge transformation of bI → bI + dgI ,
which is nothing but a quantized topological term for a quan-
tum mechanical system with degenerate ground states. Such a
Berry phase implies the following quantization condition:

[ϕ1,ϕ2] = i

C12
= 2πiN12

pIIN1N2
= 2πi

pIIN12
. (65)

Here, N12 is defined as the least common multiplier (lcm)
where N12 ≡ lcm(N1,N2) = N1N2/N12. Due to the com-
pactification and the quantization constraint, shown in Ap-

pendix D 3, the symmetry generators are Sϕ1 = e
iN1ϕ

1 pII
N12

and Sϕ2 = e
iN2ϕ

2 pII
N12 . It is straightforward to check that

SϕI (
∫

dtL0
edge)S−1

ϕI = (
∫

dtL0
edge) + 2π integer, so the parti-

tion function Z = ∫
Dϕ1Dϕ2e− ∫

dtL0
edge is invariant under the

symmetry transformation SϕI . We find that the symmetry is
realized in a projective representation manner on the 0D edge
because the symmetry generators do not commute:

Sϕ1Sϕ2 = e
− 2πipII

N12 Sϕ2Sϕ1 . (66)

Here, pII is defined as a pII (mod N12) variable. If
gcd(pII,N12) = 1, it is the ZN12 Heisenberg algebra and
requires an N12-dimensional representation for the symmetry
generators Sϕ1 and Sϕ2 . This implies the (0+1)D edge mode
of the ground state has a N12-fold degeneracy, consistent with
the edge mode physics analysis via the dimensional reduction
approach in Ref. [46]. In general, even if gcd(pII,N12) 
= 1,
we have a generic N12

gcd(pII,N12) -dimensional representation for
the symmetry generators, thus, the zero-mode degeneracy is

GSD = N12

gcd(pII,N12)
. (67)

For the (2+1)D bulk system with its (1+1)D edge theory,
we have an analogous derivation as follows. Integrating out aμ

leads to the constraint

εμνλ∂μλI
ν = 0. (68)

The constraint can be solved by requiring

λI
ν = ∂νϕ

I . (69)

We see that Leff is nothing but a total derivative

Leff = i

3
CIJKεμνλ∂μϕI ∂νϕ

J ∂λϕ
K, (70)

which actually describes a (1+1)D edge with effective action

L1
edge = i

3
CIJKεμνϕI ∂μϕJ ∂νϕ

K. (71)

The higher-dimensional generalization is also straightfor-
ward, e.g., the type-IV SPT in (3+1)D can have a (2+1)D
edge theory described by

L2
edge = i

4
CIJKLεμνρϕI ∂μϕJ ∂νϕ

K∂ρϕ
L. (72)

The gapless nature of these boundary terms can be proved
via dimension reduction to the (1+1)D case we discussed
at the beginning of this section. Finally, we note that if we
view ϕI as scaling dimension zero fields, L1

edge and L2
edge

can be regarded as a fractionalized version of O(3) and O(4)
topological theta terms. For future work, it would be of great
interest to understand the underlying conformal field theory
described by these fractionalized theta terms.

IX. TOPOLOGICAL FIELD THEORY FOR
DIJKGRAAF-WITTEN LATTICE MODEL

In Sec. VII, we had established the SPT field theory
by defining the SPT path integral. It is known that there
exists a duality [10] between SPT (which is nontopologically
ordered) and dynamical topological gauge theory (which is
topologically ordered). More precisely, we can start from the
SPT internal gauge theory path integral of Eq. (56) and then
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dynamically gauge the theory by coupling the SPT matter field
to external probed fields A, and make the A dynamical gauge
fields. This procedure of gauging SPT with a finite symmetry
group in principle yields a dynamical topological gauge theory
equivalent to the Dijkgraaf-Witten theory [54]. Here, we
describe such a procedure using field theory path integral, and
we propose some continuous dynamical topological gauge
theory dual to the Dijkgraaf-Witten theory with a discrete
gauge group.

Naively, one approach is starting from the path integral (56),
if we promote the semiclassical probed field A to a dynamical
field by including the path-integral measure [DA], we obtain

Z =
∫

[Db][Da][DA] exp

[ ∫ (
i

2π
(bI − AI ) ∧ daI

+ iCIJK...

N
bI ∧ bJ ∧ bK ∧ . . .

)]
. (73)

One can see that if A is still subject to some global constraint∮
AI mod 2π = 2πnI

NI

mod 2π, (74)

but now nI ∈ ZNI
needs not to be fixed. The dynamical

gauge theory of A would sum over all possible nI . If we
compute the GSD of this field theory on a space-time manifold,
then we essentially reproduce the same calculation using the
group cohomology cocycle while summing over all possible
group elements nI ∈ ZNI

. Equation (73) can produce the same
physical observables such as GSD of Dijkgraaf-Witten theory.
This suggests that Eq. (73) can be an equivalent description of
Dijkgraaf-Witten theory.

Another approach to obtain the dynamical gauge theory is
through the minimal coupling of the internal gauge field a

to the external gauge field A, and then integrating out all the
internal gauge fields a and b. We describe it below.

(2+1)D. Now, we are ready to discuss the bulk response
theory. The external probe gauge field AI

μ will couple to the
internal charge current in a standard way:

Lcoupling = iAI
μj

μ

I = i

2π
εμνλAI

μ∂νa
I
λ. (75)

However, since AI
μ is in the Higgs phase with ZNI

charge
condensation, we need to introduce a BF term [43] for response
gauge field AI

μ as well:

iNI

2π
εμνλBI

μ∂μAI
ν. (76)

Actually, such a term is crucial for maintaining the gauge
invariance for the total action. (It is easy to check that Lcoupling

is not gauge invariant under the gauge transformation of aI
μ

and we need to shift BI
μ to restore the gauge invariance.)

Finally, by integrating out the internal gauge field aI
μ and

bI
μ, we end up with an effective action iNI

2π
εμνλBI

μ∂μAI
ν +

i
3CIJKεμνλAI

μAJ
ν AK

λ :

Lresponse = iNI

2π
εμνλBI

μ∂μAI
ν + ipIIIN1N2N3

(2π )2N123
εμνλA1

μA2
νA

3
λ.

(77)

If we view AI
μ as background gauge fields describing the sym-

metry twists on the boundary, the above action is equivalent
to the SPT invariants (37). However, if we view both AI

μ and
BI

μ as dynamical gauge fields, the above action potentially
describes non-Abelian Berry phases, although the original
global symmetry is Abelian and all the gauge fields are
Abelian in its own sectors. The whole Lie algebra becomes
a non-Abelian feature due to the central extension (C4). It will
be interesting to verify whether the fully dynamical topological
gauge theory is equivalent to the Dijkgraaf-Witten gauge
theory [54]. Our word of caution is that the non-semisimple Lie
algebra detailed in Appendix C suggests a more conservative
side of this claim. It is also likely that the method beyond
the saddle-point approximation is required to capture the
global constraints and missing pieces that we may omit in
Eqs. (42) and (45).

(3+1)D. Similarly, we can discuss the bulk response theory.
The external probe gauge field AI

μ will couple to the internal
charge current in a standard way:

Lcoupling = iAI
μj

μ

I = i

4π
εμνρσAI

μ∂νa
I
ρσ . (78)

Similar to the (2+1)D case, we also need to introduce a BF
term to describe the ZNI

external gauge field in (3+1)D:

iNI

4π
εμνρσBI

μν∂ρA
I
σ . (79)

By integrating out the internal gauge fields aI
μν and λI

μ, we end
up with an effective action

Lresponse = iNI

4π
εμνρσBI

μν∂ρA
I
σ

− i

4
CIJKLεμνρσAI

μAJ
ν AK

ρ AL
σ + . . . . (80)

We warn the reader that there is a potential danger to view
Eq. (80) as the dynamical topological gauge theory, as one
needs to further confirm the physical properties such as
topological GSD and braiding statistics must match with
the (3+1)D Dijkgraaf-Witten topological gauge theory [54]
computed in Ref. [55]. We will leave the study of topological
gauge theories for future work. The minimum claim of our
approach is that viewing the B field as a Lagrangian multiplier
constrains the flatness of A with dA = 0, we essentially derive
the SPT invariant in terms of the semiclassical probed field A

agreed with [20]. This confirms our multikink topological term
and vortex condensation mechanism do generate nontrivial
SPT states.

X. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have discussed the multikink topological
term and vortex condensation mechanism for bosonic Abelian
SPT states that cannot be described by Abelian Chern-
Simons/BF actions. We have pointed out that nontrivial SPT
states can be viewed as certain Higgs phases via defects
proliferating in various nontrivial ways. Thus, the formalism
and concepts developed in this paper can provide further in-
sights for understanding the universal mechanism for bosonic
SPT states, especially for those protected by non-Abelian
symmetry.
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Moreover, the general concept of “hydrodynamical ap-
proach” is applicable for fermion systems as well, if the
spin manifold is taken into account. Just like we can use the
spin Chern-Simons theory to describe certain special Abelian
fermionic SPT states [43], the bulk effective actions beyond
Chern-Simons/BF theory proposed here should also have their
corresponding “spin” version that can describe new classes of
fermion Abelian SPT states.

The field theory based on the saddle-point approximation
(detailed in Appendix C) may or may not fully capture the
topological properties of the gapped SPT state. However, in
Sec. VII, we show that at least for the level-1 trivial class
of our theory, it has GSD = 1 on a compact closed manifold
just like the SPT state. Moreover, so far as the SPT invariant
is concerned, we confirm that the bulk SPT response theory
induced by the multikink topological term does reproduce the
desired SPT invariant. Even though our theory exhibits the so-
called symmetric self-dual non-semisimple Lie algebra [56],
however, due to the extra set of global constraints [Eqs. (57)
and (60)], our theory is not equivalent to the usual gauge theory
with non-semisimple Lie algebra studied in the high-energy
literature (see Appendix C). We believe our theory is unitary
and has finite ground-state degeneracy on a closed manifold.

Another important research direction is to study the phase
transition between superfluids and SPT states, analogous to the
usual case where we have superfluid and insulator phase transi-
tion. We will leave these further developments for future work.
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APPENDIX A: DISORDER A SUPERFLUID STATE INTO
A MOTT INSULATOR OR AN SPT STATE

To guide the readers understanding our formalism, here
we briefly review this approach using field theory (see the
pioneering work [47–49] and Refs. [50,51] for a field theory
approach). We plan to study SPT states for a discrete Abelian
symmetry group. First, we will embed our discrete Abelian
symmetry group into the symmetry group of several U (1)
symmetries. Instead of starting with a discrete-symmetry-
breaking state, we will start with a symmetry-breaking state
that breaks several U (1) symmetries. When we restore the
U (1) symmetries, we also restore our real discrete symmetry.

The superfluid state [the U (1) symmetry-breaking state] in
any d-space-time dimension is described by a bosonic U (1)
quantum phase kinetic term, whose partition function Z is

Z =
∫

[Dθ ] exp

(
−

∫
ddx

χ

2
(∂μθs + ∂μθv)2

)
(A1)

with a smooth piece θs and a singular piece θv for the bosonic
phase, and the superfluid compressibility χ . We stress that the
θv is essential to capture the vortex core. We can introduce an
auxiliary field jμ and implement the Hubbard-Stratonovich
technique [50]

Z =
∫

[Dθ ][Djμ]

× exp

(
−

∫
ddx

1

2χ
(jμ

I )2 − ijμ(∂μθs + ∂μθv)

)
. (A2)

By integrating out the smooth part
∫

[Dθs], we obtain a
constraint δ(∂μjμ) in the measure of the path integral. We
can define a generic form

jμ = 1

2π (d − 2)!
εμμ2...μd ∂μ2aμ3...μd

,

with an antisymmetric a and the total space-time dimension d

to satisfy this constraint. More conveniently, in the differential
form notation, the constraint is d(∗j ) = 0 and the resolution
is j = 1

2π
(∗da) with ∗ the Hodge star, with an a gauge field

in real values. To disorder the superfluid, we have to make
the θ angle strongly fluctuate, namely, we should take the
χ < χc or χ → 0 limit [51] to achieve large (∂μθ )2. We will,
however, drop the Maxwell term due to its irrelevancy in
the renormalization group (RG) sense. The partition function
becomes Z = ∫

[Dθv][Da] exp[i
∫

1
2π

a ∧ (d2θv)]. Hereafter,
we compensate the dropped ± sign by redefining the fields.
Even though naively d2 = 0, due to the singularity core of
θv, the (d2θv) can be nonzero. Thus, (d2θv) describes the
vortex core density and the vortex current, which we shall
denote (d2θv)/(2π ) = ∗jvortex. In addition, the action has
a symmetry of a → a + dξ or, more explicitly, aμ3...μd

→
aμ3...μd

+ ∂[μ3ξμ4...μd ]. By Noether theorem, this symmetry
leads to the conservation of the vortex current: the continuity
equation d ∗ jvortex = 0, this implies that

∗jvortex ≡ (d2θv)/(2π ) = db/(2π )

for some gauge field b. We can thus define the singular part of
bosonic phase dθv = b as a 1-form gauge field to describe the
vortex core, so

dθs + dθv = dθs + b. (A3)

The partition function in the disordered state away from
the superfluid now becomes that of an insulator state Z =∫

[Db][Da] exp( i
2π

∫
b ∧ da ) with a topological BF action.

More explicitly, the path-integral formalism shows

Z=
∫

[Db][Da] exp

(
i

∫
ddx

2π (d − 2)!
εμμ2...μd bμ∂μ2aμ3...μd

)
.

(A4)

The Hamiltonian of Eq. (A4) is zero, which describes an
insulator with an energy gap separating the ground state from
excitations. It has no intrinsic topological order in the sense that
it has a unique ground-state degeneracy (GSD, see Ref. [57],
this action is a level-1 BF theory with GSD = 1). This is
known as the mechanism of disordering the charge, while
condensing the vortices generates a trivial insulator: a Mott
insulator without SPT order.
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APPENDIX B: DERIVATION OF THE DYNAMICAL EFFECTIVE BULK ACTION OF SPT

In the following, we list some details for deriving the internal field theory of SPT in Sec. V B, specifically for type-III (2+1)D
SPT with ZN1 × ZN2 × ZN3 symmetry. We note that up to a total derivative, the trikink action (38) can be simplified as

Ltrikink = 1

2

(
∂μθI

s + bI
μ

)2 + i

3
CIJKεμνλ

[−3θI
s ∂μ

(
bJ

ν bK
λ

) − 3θI
s ∂μ

(
∂νθ

J
s bK

λ

) + bI
μbJ

ν bK
λ

] + Lb
Maxwell. (B1)

Again, we can introduce Hubbard-Stratonovich fields j
μ

I to decouple the quadratic term as

Ltrikink = 1

2

(
j

μ

I

)2 − iθ I
s ∂μj

μ

I + ibI
μj

μ

I + i

3
CIJKεμνλ

[−3θI
s ∂μ

(
bJ

ν bK
λ

) − 3θI
s ∂μ

(
∂νθ

J
s bK

λ

) + bI
μbJ

ν bK
λ

] + Lb
Maxwell. (B2)

We further introduce Lagrangian multiplier fields ξ
μ

I and λI
μ to decouple the −CIJKεμνλθI ∂μ(∂νθ

J bK
λ ) term. We have

Ltrikink = 1

2

(
j

μ

I

)2 − iθ I
s ∂μj

μ

I + ibI
μj

μ

I + i

3
CIJKεμνλ

[−3θI
s ∂μ

(
bJ

ν bK
λ

) + bI
μbJ

ν bK
λ

] − iθ I
s ∂μξ

μ

I

+ iλI
μ

(
ξ

μ

I − CIJKεμνλ∂νθ
J
s bK

λ

) + Lb
Maxwell

= 1

2

(
j

μ

I

)2 − iθ I
s ∂μ

(
j

μ

I + ξ
μ

I + CIJKεμνλbJ
ν bK

λ

) + ibI
μj

μ

I + i

3
CIJKεμνλbI

μbJ
ν bK

λ

+ iλI
μ

(
ξ

μ

I − CIJKεμνλ∂νθ
J
s bK

λ

) + Lb
Maxwell

= 1

2

(
j

μ

I

)2 − iθ I
s ∂μ

[
j

μ

I + ξ
μ

I + CIJKεμνλ
(
bJ

ν bK
λ − λJ

ν bK
λ

)] + ibI
μj

μ

I + i

3
CIJKεμνλbI

μbJ
ν bK

λ + iλI
μξ

μ

I + Lb
Maxwell. (B3)

Integrating out the θI
s fields results in a constraint ∂μ[jμ

I + ξ
μ

I + CIJKεμνλ(bJ
ν bK

λ − λJ
ν bK

λ )] = 0. From this constraint, we can
write the conserved j

μ

I = 1
2π

εμνλ∂νa
I
λ − ξ

μ

I − CIJKεμνλ(bJ
ν bK

λ − λJ
ν bK

λ ). Finally, we obtain

Ltrikink = i

2π
εμνλbI

μ∂νa
I
λ − 2i

3
CIJKεμνλbI

μbJ
ν bK

λ + iCIJKεμνλbI
μλJ

ν bK
λ + 1

2

[
1

2π
εμνλ∂νa

I
λ − CIJKεμνλ

(
bJ

ν bK
λ − λJ

ν bK
λ

)]2

+1

2

(
ξ

μ

I

)2 +
[
i
(
λI

μ − bI
μ

) − 1

2π
εμνλ∂νa

I
λ + CIJKεμνλ

(
bJ

ν bK
λ − λJ

ν bK
λ

)]
ξ

μ

I + Lb
Maxwell. (B4)

Integrating out the ξ
μ

I fields, we end up with

Ltrikink = i

2π
εμνλbI

μ∂νa
I
λ − 2i

3
CIJKεμνλbI

μbJ
ν bK

λ + iCIJKεμνλbI
μλJ

ν bK
λ + 1

2

[
1

2π
εμνλ∂νa

I
λ − CIJKεμνλ

(
bJ

ν bK
λ − λJ

ν bK
λ

)]2

−1

2

[
i
(
λI

μ − bI
μ

) − 1

2π
εμνλ∂νa

I
λ + CIJKεμνλ

(
bJ

ν bK
λ − λJ

ν bK
λ

)]2

+ Lb
Maxwell

= i

2π
εμνλbI

μ∂νa
I
λ − 2i

3
CIJKεμνλbI

μbJ
ν bK

λ + iCIJKεμνλbI
μλJ

ν bK
λ + 1

2

(
λI

μ − bI
μ

)2

+ i
(
λI

μ − bI
μ

)[ 1

2π
εμνλ∂νa

I
λ − CIJKεμνλ

(
bJ

ν bK
λ − λJ

ν bK
λ

)] + Lb
Maxwell

= i

2π
εμνλλI

μ∂νa
I
λ + i

3
CIJKεμνλbI

μbJ
ν bK

λ − iCIJKεμνλbI
μλJ

ν bK
λ + iCIJKεμνλλI

μλJ
ν bK

λ + 1

2

(
λI

μ − bI
μ

)2 + Lb
Maxwell

= i

2π
εμνλλI

μ∂νa
I
λ + i

3
CIJKεμνλ

(
λI

μλJ
ν λK

λ + (
bI

μ − λI
μ

)(
bJ

ν − λJ
ν

)(
bK

λ − λK
λ

)) + 1

2

(
bI

μ − λI
μ

)2 + Lb
Maxwell. (B5)

APPENDIX C: COMMENTS ON NON-SEMISIMPLE LIE
ALGEBRA AND TOPOLOGICAL FIELD THEORY

In Sec. V C, we learn that the saddle-point approximation
leads us to an intrinsic field theory and a bulk dynamical
theory with non-semisimple Lie algebra. If we write the gauge
connection in terms of its gauge field components and its
generators,

ãα
μT α ≡ bI

μXI + aI
μH ∗

I , (C1)

(
ã1

μT 1,ã2
μT 2,ã3

μT 3
) = (

b1
μX1,b

2
μX2,b

3
μX3

)
, (C2)(

ã4
μT 4,ã5

μT 5,ã6
μT 6

) = (
a1

μH ∗
1 ,a2

μH ∗
2 ,a3

μH ∗
3

)
. (C3)

Here, α = 1, . . . ,6 and I = 1, . . . ,3.
The corresponding generators HI and XI satisfy

[H ∗
I ,H ∗

J ] = [H ∗
I ,XJ ] = 0; [XI ,XJ ] = CIJKH ∗

K, (C4)

where CIJK serves as the structure constant now. The full Lie
algebra consists of an Abelian Lie algebra X (X) with a central
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extension by another Abelian Lie algebraH∗(H ∗). Here,X (X)
contains the set of generators XI , and H∗(H ∗) contains the set
of generators H ∗

I .
For the specific case of level-1 Chern-Simons theory in

Sec. VII, we are able to show the GSD = 1. However, for the
general level-k case, the structure of the phase space volume
is changed (see for example, Appendix D). This appendix is
meant to provide some word of caution to prevent us from
making a stronger claim that the Chern-Simons theory with
this non-semisimple Lie algebra is exactly the dynamical
Dijkgraaf-Witten field theory we look for, unless we carefully
specify the global constraints analogous to Sec. VII.

The particular type of the non-semisimple Lie algebra we
derived in Eq. (C4) is in the class of symmetric self-dual Lie
algebra [56]. Even if the Killing form κab degenerates, we
can replace the κab by an invariant nondegenerate symmetric
bilinear form KG

aα′ if it satisfies the criteria below.
For a Lie algebra given by [Ta,Tb] = fab

cTc, the struc-
ture constant fab satisfies the Jacobi identity fbc

dfad
e +

fca
dfbd

e + fab
dfcd

e = 0. The Killing form as a bilinear matrix
in the adjoint representation can be determined from the
structure constant

κab = κ(Ta,Tb) = −Tr(Ta,Tb) = −
∑
α,β

faα
β fbβ

α. (C5)

The Killing form is called degenerate, if there exists a nonzero
generator T ′ such that κ(T ′,T ) = 0 for any T .

In the Euclidean space-time, we have a Chern-Simons
theory

L = i

4π
εμνρKG

aα′

(
Aa

μ(x)∂νAα′
ρ (x)

+1

3
fbc

aAα′
μ (x)Ab

ν(x)Ac
ρ(x)

)
. (C6)

Even if the Killing form is degenerate, as long as this (KG)IJ

can be found, the (KG)IJ can replace the degenerate Killing
form to make sense of the Chern-Simons theory [Eq. (C6)]
with the symmetric self-dual Lie algebra.

The (KG)IJ is a symmetric nondegenerate invariant bilinear
form, constrained by

fa�
i(KG)bi + fab

i(KG)�i = 0. (C7)

The finite and infinitesimal gauge transformations are

Aμ → AU
μ = U−1(Aμ + ∂μ)U = e−αaTa (Aμ + ∂μ)eαaTa ,

Aa
μ(x) → [

Aa
μ(x) + fbc

aAb
μ(x)αc(x) + ∂μαa(x)

]
. (C8)

The Lie algebra we find out in Sec. V C is a subalgebra of
the most generic symmetric self-dual Lie algebra [56]

[Xa,Xb] = if
(X)
ab

cX + if
(H ∗)
ab

αH ∗
α , (C9)

[Ha,Hb] = if
(H )
ab

cHc, (C10)

[Xa,Hb] = if
(xH )
ab

cXc, (C11)

[Ha,H
∗
b ] = −if (H )

ac
bH ∗

c , (C12)

[Xa,H
∗
α ] = [H ∗

α ,H ∗
β ] = 0. (C13)

Notice that the subalgebra spanned by X (X) and H∗(H ∗) is
the Abelian extension of X (X) by H∗(H ∗). The full algebra is
the semidirect product ofH(H ) by this Abelian extension. The
particular non-semisimple symmetric self-dual Lie algebra in
Eq. (C4) is nilpotent, non-Abelian, nonreductive, and solvable.
The corresponding Lie group is noncompact.

Our theory in Sec. VII is a special case such that the
GSD is still 1 which can describe the gapped SPT. Due to
the noncompact Lie group, however, it is likely the generic
gauge theory of symmetric self-dual Lie algebra can capture
an infinite degenerate gapless phase instead of a phase with
finite topological degenerate ground states. The concern of
(non)unitarity has been investigated, for example, in Ref. [58].

We believe that the generic difference between our SPT
path integral and the usual non-semisimple Lie algebra gauge
theory is the set of global constraints: Eqs. (57) and (60).
For our SPT path integral, the global constraints lead to the
finite ground-state degeneracy; for the usual non-semisimple
Lie algebra gauge theory, the ground-state degeneracy can be
infinite. It is possible a more generic theory can describe a
state close to the potential gapless phase transition between
superfluids, symmetry-breaking states, and SPT/topologically
ordered states. We will leave the further investigation open for
future work.

APPENDIX D: COUNTING THE DEGENERATE
ZERO MODES

1. GSD for a gapped system with a (0+1)D topological term

We first review a simple ground-state degeneracy (GSD)
calculation by counting the zero mode for a (0+1)D system.
Namely, we will count the volume of the phase space volume

GSD = the volume of the phase space, (D1)

up to some normalization factor.
The first system we consider is described by a Berry phase

term L0 = ẊP . On one hand, in the path-integral formalism,
we have a partition function

Z =
∫

[DX][DP ] exp

[
i k

∫
ẊP

]
, (D2)

Ẋ = ∂0X is the time derivative X.
On the other hand, in the quantum operator formalism, we

have the commutator [X,∂L0

∂Ẋ
] = i:

[X,P ] = i
1

k
. (D3)

X and P are some matrix operators acting on the (0+1)D
space. Here, we will consider a compact phase space, so that
the phase space volume is finite. In particular, without losing
generality, the identification we assume is X ∼ X + 2π and
P ∼ P + 1. Since the Hamiltonian is essentially H = ẊP −
L0 = 0, the system seems to be trivial without kinetic terms
or potential terms. However, there can be degenerated ground
states. All ground states � satisfy H� = 0. But, these � may
not be all independent. To count the GSD thus to count the
independent degree of freedom, we can construct a generic
ground state � in terms of the function of X if we choose X
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as the basis:

�(X) =
∑
n∈Z

cne
inX. (D4)

The form is obtained by satisfying the constraint �(X) =
�(X + 2π ) as X ∼ X + 2π . The 2π shift in the exponent
will not affect the form of the �(X) function. On the other
hand, by doing the Fourier transformation, we can transform
the X basis to the P basis via �̃(P ) = ∫

eikPX�(X) dP . Up
to some normalization factor, this yields

�̃(P ) =
∑
n∈Z

cnδ(kP + n). (D5)

Meanwhile, the form satisfies the constraint �̃(P ) =
�̃(P + 1) as P ∼ P + 1. This implies that cnδ(kP + n) =
cn−kδ[kP + k + (n − k)]. This means that

cn = cn−k (D6)

with k ∈ Z. The volume of the phase space is |k|. We have
|k| independent degenerate ground states determined by k

independent coefficients, thus GSD = |k|. The strategy for this
example is basically the same as the approach in Ref. [57].

2. Compactification and quantization

For the later convenience, we now set up a relation between
the constraint of compactification and quantization using an
angular rotational system as an example, with the angle �

and the angular momentum L. First, � is compactified and
identified via

� ∼ � + 2π.

The compactness of � leads to the quantization or the
discretization of its dual variable L, in order to have ei�L

stay invariant as � → � + 2π . That means, the quantization
is

�L = 1.

On the other hand, if we consider the angle � is also discretized
as rotor angle with

�� = 2π

N
,

then this quantization must come from the compactification of
L, with

L ∼ L + N.

In short, due to the constraint of compactification and quanti-
zation, we have a set of relations:

� ∼ � + 2π ⇔ �L = 1, (D7)

L ∼ L + N ⇔ �� = 2π

N
. (D8)

The volume of the phase space is N . It can be counted in �

space as well as in L space as (2π/��) = (N/�L) = N .

3. GSD for a gapped system at the (0+1)D edge of (1+1)D SPTs

After the previous simple first part of calculation, in the
second part, we consider the (0+1)D edge of (1+1)D SPT.
The system we consider is described by a Berry phase term in
the partition function for the path-integral formalism:

Z =
∫

[Dϕ1][Dϕ2] exp

[
i

2

∫
CIJ ϕI ∂0ϕ

J

]
, (D9)

with C12 = pIIN1N2

2πN12
.

On the other hand, for the canonical quantization with
quantum operators, the commutation relation satisfies

[ϕ1,ϕ2] = i

C12
= 2πiN12

pIIN1N2
. (D10)

To well define the denominator for the trivial class pII = 0,
the trivial class’s pII is identified as pII = N12. We may
define the conjugate variables as [ϕ1,Pϕ1 ] = [ϕ1,C12ϕ

2] = i

and [ϕ2,Pϕ2 ] = [ϕ2, − C12ϕ
1] = i.

The first approach. The compactified size of ϕ1 and ϕ2 is
no larger than 2π :

ϕ1 ∼ ϕ1 + 2π, ϕ2 ∼ ϕ2 + 2π. (D11)

The quantization and the discreteness of this rotor clock is no
smaller than

�ϕ1 = 2π

N1
, �ϕ2 = 2π

N2
. (D12)

Due to the conjugation relation, following the logic of
Eq. (D7), the compactness in Eq. (D11) of ϕ1 ∼ ϕ1 + 2π

leads to �Pϕ1 = C12�ϕ2 = 1. Similarly, the compactness of
ϕ2 leads to �Pϕ2 = C12�ϕ1 = 1. Namely, the quantization
can be

�ϕ1 = 2πN12

pIIN1N2
, �ϕ2 = 2πN12

pIIN1N2
. (D13)

On the other hand, following the logic of Eq. (D8), the
quantization Eq. (D12) implies the possible compactness
size of Pϕ1 and Pϕ2 as Pϕ1 ∼ Pϕ1 + N1 and Pϕ2 ∼ Pϕ2 + N2,
namely,

ϕ1 ∼ ϕ1 + 2πN12

pIIN1
, ϕ2 ∼ ϕ2 + 2πN12

pIIN2
. (D14)

To construct the refined phase space, we need to take
the largest quantization size in the discretized lattice among
Eqs. (D12) and (D13), and the smallest compactification size
among Eqs. (D11) and (D14). This means that we will require
Eqs. (D12) and (D14):

�ϕ1 = 2π

N1
, �ϕ2 = 2π

N2
,

ϕ1 ∼ ϕ1 + 2πN12

pIIN1
, ϕ2 ∼ ϕ2 + 2πN12

pIIN2
.

Therefore, the phase space volume counting from both ϕ1

space and its dual space ϕ2 is both 2πN12
pIIN1

/�ϕ1 = 2πN12
pIIN2

/�ϕ2 =
N12
pII

. However, N12
pII

may not be integer in general. We will need
to multiply a minimal factor on the size of the phase space
until it becomes an integer. This means that in general we will
multiply it by the minimal phase factor pII

gcd(pII,N12) until we have
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an integer size of phase volume: N12
gcd(pII,N12) = N12

pII

pII

gcd(pII,N12) .

The phase space volume counting from both ϕ1 space and ϕ2

space results in

GSD = N12

gcd(pII,N12)
. (D15)

It is straightforward to construct the functional �(ϕ1) and
its Fourier transformation �̃(ϕ2) with a number of N12

gcd(pII,N12)
independent coefficients as in Appendix D 1.

The second approach. We can verify this GSD result
from an alternative viewpoint by considering the projective
representation of the symmetry group G = ZN1 × ZN2 : We
propose the symmetry generators as

Sϕ1 = e
iN1ϕ

1 pII
N12 , (D16)

Sϕ2 = e
iN2ϕ

2 pII
N12 , (D17)

in order to have the symmetry generators invariant under
the shift over a full compactification size ϕ1 → ϕ1 + 2πN12

pIIN1

and ϕ2 → ϕ2 + 2πN12
pIIN2

. Namely, our choice is guaranteed

to satisfy Sϕ1 (ϕ1) = Sϕ1 (ϕ1 + 2πN12
pIIN1

) and Sϕ2 (ϕ2) = Sϕ2 (ϕ2 +
2πN12
pIIN2

). Our choice also obeys the ZN1 and ZN2 symmetries:

(Sϕ1 )N1 = (Sϕ2 )N2 = 1 when we impose the discretization as
Eq. (D12).

One can check that SϕI (
∫

dtL0
edge)S−1

ϕI = (
∫

dtL0
edge) +

2π integer, so the partition function Z = ∫
Dϕ1Dϕ2e− ∫

dtL0
edge

is invariant under the symmetry transformation SϕI . To
calculate the ground-state degeneracy at the (0+1)D edge,
we can study the projective representation of the symmetry

group acting on the zero-energy modes, we find

Sϕ1Sϕ2 = e
− 2πipII

N12 Sϕ2Sϕ1 . (D18)

If pII = 0, the symmetry generators are commutative, so it
can be written as a linear representation, and the GSD = 1. In
general, the symmetry generators are not commutative, so it
shall be written as a higher-dimensional matrix representation.
If gcd(pII,N12) = 1, it is the ZN12 Heisenberg algebra and
it requires an N12-dimensional representation. This implies
the (0+1)D edge mode of the ground state has GSD = N12,
consistent with the edge mode physics analysis via the
dimensional reduction approach in Ref. [46]. If gcd(pII,N12) 
=
1, we can reduce the rank of the representation matrix to a
smaller rank, and rewrite

Sϕ1Sϕ2 = e
−2πi 1

N12
gcd(pII ,N12)

pII
gcd(pII ,N12)

Sϕ2Sϕ1 .

In this way, we obtain a relative prime factor pII

gcd(pII,N12) , and
the GSD is the reduced rank of the matrix representation of
the symmetry generators:

GSD = N12

gcd(pII,N12)
.

We have shown the degenerate zero modes happening
on the 0D edge of 1D bulk SPT. In general, if we create
various symmetry-breaking domain wall to gap the gapless
boundary mods of the higher-dimensional boundaries, we can
study the zero modes trapped at the gapped domain wall via
the dimensional reduction approach. As an example, we can
look into the (0+1)D kink on a (1+1)D domain-wall edge
[Eq. (71)] of (2+1)D bulk SPTs. This result is consistent with
Refs. [20,46].
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