
Stress tensor correlators in three dimensional gravity

Arjun Bagchi,1,* Daniel Grumiller,2,† and Wout Merbis2,‡
1Center for Theoretical Physics, Massachusetts Institute of Technology,
77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA

2Institute for Theoretical Physics, Vienna University of Technology,
Wiedner Hauptstrasse 8–10/136, A-1040 Vienna, Austria
(Received 10 August 2015; published 11 March 2016)

We calculate holographically arbitrary n-point correlators of the boundary stress tensor in three-
dimensional Einstein gravity with negative or vanishing cosmological constant. We provide explicit
expressions up to 5-point (connected) correlators and show consistency with the Galilean conformal field
theory Ward identities and recursion relations of correlators, which we derive. This provides a novel check
of flat space holography in three dimensions.
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I. INTRODUCTION

Correlation functions are the main observational and
theoretical entities in many branches of physics, in particular
in any system that effectively is described by some quantum
field theory (QFT),with numerous applications in condensed
matter physics, cosmology, particle physics and many other
research fields. Given their ubi-quitousness, it is useful to
have several tools available to calculate correlators.
A remarkable tool for strongly coupled QFTs is provided

by holography [1,2]. In particular, the anti–de Sitter/
conformal field theory (AdS/CFT) correspondence [3,4]
allows us to calculate correlators in a specific strongly
coupled CFT by mapping this (typically) hard calculation
to a simple one in a specific gravity theory [5,6].
As the simplest example, the 1-point function [i.e., the

vacuum expectation value (VEV)] of the stress tensor Tμν is
calculated by taking the first variation of the corresponding
gravity action SAdS with respect to the metric, evaluated on
solutions of the equations of motion (EOM):

hTμνiCFT ∼
δSAdS
δgμν

����
EOM

: ð1Þ

Note that the right-hand side is nonzero and finite due to
boundary terms [7–9]. The holographic calculation of
arbitrary (connected) n-point correlators of the stress tensor
is a straightforward generalization of (1) and requires us to
evaluate the nth variation of the gravity action. The n-point
correlators of the stress tensor can also be calculated on the
CFT side, so ultimately these calculations are a check of
the holographic Ward identities.
Of course, calculating, say, the 42nd variation of the

Einstein-Hilbert action in order to comparewith the 42-point
correlator of the stress tensor is not necessarily the most
efficient way of performing such checks, so it is useful to

have an alternative tool available. Moreover, for more recent
holographic correspondences that go beyondAdS/CFT, such
as flat space holography [see [10–34] for some recent advan-
ces in three dimensions (3D)], similar checks would con-
tribute to increasing the credibility of the purported relations
between certain QFTs and their conjectured gravity duals.
The main goal of the present work is to provide the check

outlined above for flat space Einstein-Hilbert (EH) gravity
in 3D by calculating arbitrary n-point correlators of the
stress tensor components on the QFT side and, independ-
ently, on the gravity side. So far only the 0- and 1-point
functions were calculated holographically [18,21,22,25].
Our results are the first explicit check of the flat space
holographic 2- and higher-point correlators and allow us to
present for the first time explicit results for the 3-, 4- and
5-point correlators of the stress tensor components in two-
dimensional (2D) Galilean conformal field theories
(GCFTs) as well as their Ward identities. In addition we
derive recursive relations for the n-point correlation func-
tions of the stress tensor in 2D GCFTs. GCFTs arise in
various systems such as nonrelativistic hydrodynamics
[35], Galilean electrodynamics [36] and Galilean Yang-
Mills theories, and tensionless string theory [37] and are
expected to govern fixed points in renormalization group
flows for nonrelativistic theories. So our present results are
relevant for a vast range of applications over and above the
subject of holography in flat space.

II. ADS3=CFT2

We start with the AdS3=CFT2 derivation of n-point
correlators to exhibit the required tools in a familiar
context. The key result is that all n-point correlators of
the stress tensor in a CFT2 are determined by the under-
lying symmetry algebra, which consists of two copies of
the Virasoro algebra (n, m are integers),

½Ln;Lm� ¼ ðn −mÞLnþm þ c
12

nðn2 − 1Þδn;−m ð2Þ
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and similarly for the barred generators L̄n, with the central
charge c replaced by its barred counterpart c̄. (The same
remark applies to all remaining CFT formulas, so to reduce
clutter we display only unbarred quantities.)
In their seminal paper, Belavin et al. proved a recursion

relation between n- and (n − 1)-point correlators of the
stress tensor in any CFT2 [38]. For the connected part of the
correlators this recursion relation reads

hT1T2…Tni ¼
Xn
i¼2

�
2

z21i
þ 1

z1i
∂zi

�
hT2…Tni ð3Þ

where we introduced the abbreviation zij ¼ zi − zj. Here
Ti ¼ TzzðziÞ is the holomorphic component of the stress
tensor and z, z̄ are coordinates on the plane with metric
gzz ¼ 0 ¼ gz̄ z̄ and gzz̄ ¼ 1. The disconnected contribution
to the n-point correlators is the sum of all permutations of
products of lower-point functions such that all products
have n points. Since holographic computations yield
connected correlators we focus on them. All correlators
in this paper are solely the connected part.
The n-point correlators are completely determined by the

Ward identities and the 2-point correlators, which in turn
are uniquely determined by conformal invariance (2):

hT1T2i ¼ c
2z412

: ð4Þ

Using this in the recursion relation (3) gives the higher-
point correlators [39–42]:

hT1T2T3i ¼ c
z212z

2
23z

2
13

ð5aÞ

hT1T2T3T4i ¼ 2cg4ðγÞ
z214z

2
23z12z13z24z34

ð5bÞ

hT1T2T3T4T5i ¼ 4cg5ðγ; ζÞQ
1≤i<j≤5zij

: ð5cÞ

The functions

g4ðγÞ ¼
γ2 − γ þ 1

γ
ð5dÞ

g5ðγ; ζÞ ¼
γ þ ζ

2ðγ − ζÞ −
ðγ2 − γζ þ ζ2Þ

γðγ − 1Þζðζ − 1Þðγ − ζÞ
× ð½γðγ − 1Þ þ 1�½ζðζ − 1Þ þ 1� − γζÞ ð5eÞ

depend on the cross-ratios

γ ¼ z12z34
z13z24

ζ ¼ z25z34
z35z24

: ð5fÞ

This procedure can be iterated to arbitrary n-point
correlators, with increasingly lengthy expressions [43].

Thus, if we can holographically establish the recursion
relation (3) and calculate the 2-point correlators (4) we have
essentially succeeded in holographically computing all the
n-point correlators of the stress tensor. To this end, we
consider a deformation of a free CFT action S0 by a source
term μ for the stress tensor,

Sμ ¼ S0 −
Z

d2zμðz; z̄ÞTðzÞ: ð6Þ

We then localize the source at some point ðz2; z̄2Þ:
μðz; z̄Þ ¼ ϵδð2Þðz − z2; z̄ − z̄2Þ ð7Þ

Here ϵ is a small expansion parameter introduced to keep
track of the order of μ. The 1-point function with respect to
the μ-deformed vacuum yields the 2-point correlator with
respect to the free vacuum,

hT1iμ ¼ hT1i þ ϵhT1T2i þOðϵ2Þ: ð8Þ
We now compute this expansion in the dual AdS3 gravity

theory. According to the AdS/CFT dictionary, the source μ
corresponds to the boundary value of the metric component
gz̄ z̄. To compute the n-point function we need the nth
variation of the bulk action with respect to the source. Such
a computation is lengthy in the metric formulation, but
fortunately simplifies significantly in the Chern-Simons
(CS) formulation of 3D gravity [44,45]. In this framework,
the EH action is the difference of two CS actions:
IEH ¼ ICS½A� − ICS½Ā� with

ICS½A� ¼
k
4π

Z
Tr

�
A∧dAþ 2

3
A∧A∧A

�
ð9Þ

where A and Ā are two slð2;RÞ-valued connections and the
CS level k is related to the AdS length l and Newton’s
constantGN through k ¼ l

4GN
. Wewrite asymptotically AdS

spacetimes in a “highest-weight gauge” [46]:

A ¼ b−1ðdþ aÞb b ¼ eρL0 ð10aÞ

az ¼ Lþ þ L
k
L− az̄ ¼ −μLþ þ � � � ð10bÞ

Similar expressions hold for the barred sector. Here L�, L0

are the slð2;RÞ generators and ρ is the radial coordinate of
AdS. The dots denote terms of lower weight which are
completely fixed by the EOM. In this gauge, the “chemical
potential” μ corresponds precisely to the source of the
boundary stress tensor and L is its VEV [47]; see also
[48,49]. The EOM are the CFT Ward identities:

−∂̄L ¼ k
2
∂3μþ 2L∂μþ μ∂L: ð11Þ

To calculate the 2-point function, we localize the sources as
in (7) and expand
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LðzÞ ¼ Lð0ÞðzÞ þ ϵLð1ÞðzÞ þOðϵ2Þ ð12Þ

where Lð0Þ is the background value, which we take to be
AdS3 in the Poincaré patch ðLð0Þ ¼ L̄ð0Þ ¼ 0Þ, while Lð1Þ
corresponds to the linear term in ϵ in (8). This is precisely
the 2-point function. From (11) we find

∂̄Lð1Þ ¼ − k
2
∂3δð2Þðz − z2; z̄ − z̄2Þ: ð13Þ

We solve this differential equation using the Green function
of the Laplacian ∂∂̄ in flat space,

Gðz12; z̄12Þ ¼ ln ðz12z̄12Þ: ð14Þ
Then

Lð1Þ ¼ − k
2
∂4
z1Gðz12Þ ¼

3k
z412

ð15Þ

gives exactly the 2-point function (4) with central charge

c ¼ 6k ¼ 3l
2GN

; ð16Þ

compatible with [50].
The n-point functions can be obtained similarly. We

localize the source at n − 1 points,

μðz; z̄Þ ¼
Xn
i¼2

ϵiδ
ð2Þðz − zi; z̄ − z̄iÞ≔

Xn
i¼2

ϵiδi: ð17Þ

On the CFT side, this gives the expansion

hT1iμ ¼ hT1i þ
Xn
i¼2

ϵihT1Tii þ � � �

þ
�Yn

i¼2

ϵi

�
hT1T2…Tni þOðϵnÞ: ð18Þ

The EOM at order ϵn−1 give

−∂̄Lðn−1Þ ¼
Xn
i¼2

ð2Lðn−2Þ∂δi þ δi∂Lðn−2ÞÞ: ð19Þ

Using the Green function G to solve for Lðn−1Þ yields

Lðn−1Þðz1Þ ¼
Xn
i¼2

�
2

z21i
þ 1

z1i
∂zi

�
Lðn−2ÞðziÞ: ð20Þ

This expression yields the recursion relation (3).
We have now derived holographically the 2-point func-

tion and the CFT recursion relation for the correlators (3)
in the CS formulation and therefore know that all n-point
correlators of the stress tensor match between gravity and
the CFT side.
The results generalize from the plane to the cylinder

after taking z ¼ eiω, with ω ¼ itþ φ and φ ∼ φþ 2π,
so that ðω; ω̄Þ ∼ ðωþ 2π; ω̄þ 2πÞ. In all correlators

effectively the only change is that one needs to replace
the quantities zij → 2 sin ½ðωi − ωjÞ=2�≕sij and (3)
becomes

�
cij≔ cot½ðωi − ωjÞ=2�

�

hT1T2…TniC ¼
Xn
i¼2

�
2

s21i
þ c1i

2
∂ωi

�
hT2…TniC: ð21Þ

On the gravity side the relevant vacuum state is now global
AdS3 with background values Lð0Þ ¼ L̄ð0Þ ¼ k

4
.

This concludes the AdS3 proof that the holographic
calculation of (the connected part of) n-point correlators of
the stress tensor matches precisely the CFT calculation.
In the remainder of the paper we focus on 3D flat space,
starting with the field theory side.

III. GCFT STRESS TENSOR CORRELATORS

The asymptotic symmetries of 3D flat space at null
infinity are governed by the BMS3 algebra [10,51] whose
nonvanishing commutators are (n, m are integers)

½Ln; Lm� ¼ ðn −mÞLnþm þ cL
12

nðn2 − 1Þδn;−m ð22aÞ

½Ln;Mm� ¼ ðn −mÞMnþm þ cM
12

nðn2 − 1Þδn;−m: ð22bÞ

This algebra also arises out of non- or ultrarelativistic
contractions of two copies of the Virasoro algebra (2) and is
known as 2D Galilean conformal algebra (GCA). QFTs
with GCA symmetries are called GCFTs. If there exists a
dual formulation of 3D flat space gravity in terms of a 2D
QFT it has to be a GCFT2 [10,12,13].
The stress tensor componentsMP,N P of a GCFT2 on the

plane can be mode-expanded in terms of Ln, Mn [37,52],

MP ¼
X
n

Mnξ
−n−2;

N P ¼
X
n

�
Ln − ðn − 2Þ η

ξ
Mn

�
ξ−n−2: ð23Þ

The mapping from the plane to the cylinder is given by
ξ ¼ eiφ, η ¼ iueiφ withφ ∼ φþ 2π. On the cylinder one has
the following mode expansions [37]:

−M þ cM
24

¼ ξ2MP ¼
X
n

Mne−inφ ð24aÞ

−N þ cL
24

¼ ξ2N P − 2ξηMP ¼
X
n

ðLn − inuMnÞe−inφ:

ð24bÞ

For our explorations of flat holography we work on the
cylinder and consider highest-weight representations of the
GCFT2 [53,54]. We define the vacuum of the theory j0i
as Lnj0i¼ 0¼Mnj0i; ∀ n≥−1: Using the above relation
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and its conjugate (h0jLn ¼ 0 ¼ h0jMn, n ≤ 1), togetherwith
(25) and (22), we can calculate any correlation function
of the GCFT2 stress tensor components. In particular, the
nonvanishing 2-point functions in the cylinder representation
are given by

hM1N2i ¼ cM
2s412

hN1N2i ¼ cL − 2cMτ12
2s412

ð25Þ

with the definitions Mi¼MðφiÞ, Ni¼Nðui;φiÞ, sij¼
2sin½ðφi−φjÞ=2�,cij¼cot½ðφi−φjÞ=2�andτij¼ðui−ujÞcij.
Using the mode expansion and the algebra, the higher-

point correlators can be derived similarly. Note that
(the connected part of) any correlator with two or more
M-insertions vanishes. The first few nonvanishing higher-
point functions read

hM1N2N3i ¼ cM
s212s

2
13s

2
23

ð26aÞ

hN1N2N3i ¼ cL − cMτ123
s212s

2
13s

2
23

ð26bÞ

hM1N2N3N4i ¼ 2cMg4ðγÞ
s214s

2
23s12s13s24s34

ð26cÞ

hN1N2N3N4i ¼ 2cLg4ðγÞ þ cMΔ4

s214s
2
23s12s13s24s34

ð26dÞ

hM1N2N3N4N5i ¼ 4cMg5ðγ; ζÞQ
1≤i<j≤5sij

ð26eÞ

hN1N2N3N4N5i ¼ 4cLg5ðγ; ζÞ þ cMΔ5Q
1≤i<j≤5sij

ð26fÞ

where Δ4 ¼ 4g04ðγÞη1234 − ðτ1234 þ τ14 þ τ23Þg4ðγÞ and
Δ5 ¼ 4∂γg5ðγ; ζÞη1234 þ 4∂ζg5ðγ; ζÞη2345 − 2g5ðγ; ζÞτ12345:
In the above, we have defined τ1…n ¼

P
1≤i<j≤nτij; e.g.

τ123 ¼ τ12 þ τ13 þ τ23. The function g4ðγÞ [g5ðγ; ζÞ] is
again given by (5d) [(5e)], where zij has to be replaced
by sij in the cross-ratios (5f). The quantity ηpqrs is defined

as ηpqrs ¼
P0ð−1Þ1þi−j ðui−ujÞ sinðφk−φlÞ

s2prs2qs
and the sum

P0

goes over all six permutations of fi; j; k; lg ¼
πðp; q; r; sÞ where i < j and k < l.

IV. RECURSION RELATIONS

We derive now GCFT recursion relations involving the
stress tensor components that encode the corresponding
Ward identities [54]. The GCFT stress tensor components
on the cylinder, (25), obey the conservation equations

∂uhMðφÞOi¼ 0 ∂uhNðu;φÞOi¼ ∂φhMðφÞOi ð27Þ

for any operator (or product of operators) O. The left
equation (27) looks very similar to the CFT conservation

equation [38] ∂ z̄hTðzÞOi ¼ 0 which together with the
similarity of the GCA (22) to the Virasoro algebra (2)
eventually leads to a recursion relation similar to (21):

hM1N2…Nni ¼
Xn
i¼2

�
2

s21i
þ c1i

2
∂φi

�
hM2N3…Nni ð28Þ

The right equation (27) allows us to determine the
correlation functions with only N-insertions in terms of
correlation functions with one M-insertion (28):

hN1N2…Nni¼ cL
cM

hM1N2…Nniþ
Xn
i¼1

ui∂φi
hM1N2…Nni:

ð29Þ
The second recursion relation (29) can be derived as
follows. Integrating the right equation (27) and using the
cyclic symmetry of the hMN…Ni correlators we obtain

hN1…Nni ¼ Aþ
Xn
i¼1

ui∂φi
hM1N2…Nni: ð30Þ

The quantity A is a u-independent integration constant that
must be identical to the result in a chiral CFT with central
charge cL, since the u-independent part of N contains only
theVirasoro generatorsLn.As the hMN…Ni correlators also
give chiral CFT results, with central charge cM, we can write

A ¼ cL
cM

hM1N2…Nni: ð31Þ

We have checked that the recursion relations (28), (29)
also follow from a suitable contraction of CFT results (21)
and that they are compatible with all our explicit results for
correlators, (25)–(26f). Thus we have succeeded in deriving
the GCFT2 analog of the CFT recursion relation on the
cylinder (21). In the last part of the paper we derive the
same results holographically.

V. FLAT SPACE CORRELATORS

The 3D flat space EH action can be rewritten as the
Chern-Simons action (9) for the isoð2; 1Þ connection
A ¼ An

MMn þ An
LLn where Ln, Mn (n ¼ 0, �1) generate

the global part of the GCA (22) and the trace is defined
as TrðLmMnÞ ¼ −2γmn, where γ ¼ antidiagð1;− 1

2
; 1Þ; see

[31] for our conventions, details and references. Just like in
the AdS case, we parametrize the radial dependence of A by
going to a gauge where [27,31] A ¼ b−1ðdþ aÞb with the
group element b ¼ expðr

2
M−Þ and a ¼ auduþ aφdφ with

u, r, φ the (outgoing) Eddington-Finkelstein coordinates.
The metric is constructed as

ds2 ¼ gμνdxμdxν ¼ −4Aþ
MA

−
M þ ðA0

MÞ2: ð32Þ

In the absence of chemical potentials the connection
components take the form
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au ¼ Mþ þM
2k

M− ð33Þ

aφ ¼ Lþ þM
2k

L− þN
2k

M−: ð34Þ

Here the CS-level k is related to Newton’s constant as
k ¼ 1=ð4GNÞ. The EOM restrict the state-dependent func-
tions M, N as follows:

∂uM ¼ 0 ∂uN ¼ ∂φM: ð35Þ
These equations are equivalent to the GCFT conservation
equations (27).
We proceed as in the AdS case and introduce chemical

potentials as sources. The component aφ remains unaf-
fected, while au changes to au þ Δau with

Δau ¼ −μMMþ − μLLþ þ a0M0 þ a1L0 þ a2M− þ a3L−:
ð36Þ

The EOM determine completely the functions ai in terms
of the chemical potentials μM and μL and restrict the state-
dependent functions as follows [31]:

−∂uM ¼ k∂3
φμL þ μL∂φMþ 2M∂φμL ð37aÞ

−∂uN ¼ k∂3
φμM − ð1 − μMÞ∂φMþ 2M∂φμM

þ μL∂φN þ 2N ∂φμL: ð37bÞ

Analogous to the AdS case, these equations can be
interpreted as GCFT Ward identities.
For our background we choose global Minkowski space,

Mð0Þ ¼ k=2, N ð0Þ ¼ 0. To calculate 2-point correlators in
this Minkowski background we switch on chemical poten-
tials, localized at ðu2;φ2Þ, like in the AdS case (7),

μM=L ¼ ϵM=Lδ
ð2Þðu − u2;φ − φ2Þ≔ϵM=Lδ: ð38Þ

Here ϵM=L are constants. Plugging these localized chemical
potentials into the EOM (37) with M ¼ k=2þMð1Þ,
N ¼ N ð1Þ yields the linearized Ward identities:

∂uMð1Þ ¼ − kϵLð∂3
φδþ ∂φδÞ ð39aÞ

∂uN ð1Þ ¼ − kϵMð∂3
φδþ ∂φδÞ þ ∂φMð1Þ: ð39bÞ

To solve them we use the Green function defined as

∂u∂φGðu − u2;φ − φ2Þ ¼ δ: ð40Þ

Using the method of images yields

Gðu − u2;φ − φ2Þ ¼ lnððu − u2Þ sin½ðφ − φ2Þ=2�Þ ð41Þ
and thus we can solve the linearized Ward identities (39a),
(39b),

Mð1Þ ¼ 6kϵL
s412

N ð1Þ ¼ 6kðϵM − 2ϵLτ12Þ
s412

ð42Þ

where sij and τij are defined below (25). The ϵL component
of Mð1Þ [and the ϵM component of N ð1Þ] is the 2-point
function hM1N2i and the ϵL part of N ð1Þ is the 2-point
function hN1N2i. They agree precisely with the GCFT
2-point functions (25) for cL ¼ 0 and cM ¼ 12k ¼ 3=GN ,
compatible with [10,15].
Like in the AdS case we compute the higher-point

functions by localizing the sources at multiple points ui,
φi and expanding the VEVs of the deformed theory to order
ϵn−1, which eventually establishes recursive formulas:

Mðn−1Þ ¼
Xn
i¼2

ϵiL

�
2

s21i
þ c1i

2
∂φi

�
Mðn−2Þ ð43aÞ

N ðn−1Þ ¼
Xn
i¼2

��
2

s21i
þ c1i

2
∂φi

�
ðϵiMMðn−2Þ þ ϵiLN

ðn−2ÞÞ

þ uiϵiL

�
2c1i
s2ij

þ ∂φi

s21i

�
Mðn−2Þ

�
þ u1∂φ1

Mðn−1Þ:

ð43bÞ

The ϵL component of N ðn−1Þ then corresponds to the
n-point function hN1N2…Nni. The ϵM component of
N ðn−1Þ corresponds to the n-point correlator with one Mi

insertion [just as the ϵL component ofMðn−1Þ]. The recursion
relation (43a) then simply gives (28) with cM ¼ 12k, while
the ϵL part of (43b) can be simplified to give

hN1N2…Nni ¼
Xn
i¼1

ui∂φi
hM1N2…Nni: ð44Þ

These results show precise agreement with the GCFT
recursion relations (28), (29), provided that cL ¼ 0 and
cM ¼ 12k ¼ 3=GN , again compatible with [10,15].

VI. CONCLUSIONS

Since the holographic recursion relations (43a), (44) are
exactly the ones that we found in a GCFT (28), (29) with
the EH values of the central charges, cL ¼ 0, cM ¼ 3=GN ,
and the 2-point correlators coincide as well, we conclude that
flat space holography is perfectly consistent with the GCFT
Ward identities. In other words, all holographic n-point
correlators of the stress tensor components match precisely
with the corresponding GCFT (connected) correlators.
It would be interesting to generalize our analysis to

other 3D gravity (or gravitylike) theories; see e.g.
Refs. [19,20,44,55–63] for various intriguing models.
In this work we have focused mainly on the Ward

identities for correlation functions on one half of lightlike
infinity. A similar construction (exchanging retarded time u
with advanced time v) works for the other half. It would be
interesting to investigate the relation between these two
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symmetries by matching the appropriate charges through
spatial infinity, along the lines of [64].
Finally, it would be interesting to generalize our dis-

cussions to other correlation functions, for instance of
scalar operators, like in AdS/CFT [6]. This will require the
introduction of matter degrees of freedom, both on the field
theory side and on the gravity side.
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