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Abstract
Company-Coq is a new Emacs package that extends Proof Gen-
eral with a contextual auto-completion engine for Coq proofs and
many additional facilities to make writing proofs easier and more
efficient. Beyond fuzzy auto-completion of tactics, options, mod-
ule names, and local definitions, company-coq offers offline in-
editor documentation, convenient snippets, and multiple other Coq-
specific IDE features. The system will be presented at CoqPL 2016,
focusing on a live demo with an emphasis on writing proofs in
Emacs more efficiently, and a discussion of desirable features of
proof-oriented development environments.

Categories and Subject Descriptors D.2.6 [Software Engineer-
ing]: Programming Environments—Integrated environments

Keywords IDE, documentation, proof engineering, user experi-
ence

Introduction
Users of the Coq Proof Assistant [3] are roughly divided between
two interactive development environments1: Proof General, an ex-
tension of Emacs written by David Aspinall [1], and CoqIDE,
a Coq-specific development environment written from scratch by
members of the Coq team and generally touted as more beginner-
friendly (mostly due to Proof General’s dependence on Emacs).
Both are powerful tools for writing proofs, and significantly im-
prove the experience of proof authors when compared to Coq’s
simple read-eval-print loop. Yet these tools do not offer advanced
features typically found in IDEs, such as in-editor documentation
or context-sensitive completion. In addition, when advanced fea-
tures are in fact available (Proof General, for example, does sup-
ports snippets and improved display of mathematics), they tend to
lack discoverability: users do not explore the menus and miss con-
venient features that would make them more efficient.

1 There also exist Coq interfaces for vim and Eclipse, though their use does
not seem very widespread.
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Company-Coq is a new Emacs package that attempts to fix
some of these limitations: we extend Proof General with many
advanced IDE features (fuzzy completion, various Coq-specific
snippets, and in-editor documentation for most of Coq’s 2000-odd
tactics, options, and errors), and solve the discoverability issue
by taking an “all-on” approach: the default distribution has most
features automatically enabled2. In addition, company-coq comes
with a comprehensive tutorial that showcases most of its features.
Since it is not part of the core Proof General, company-coq can
serve as a convenient experimentation area for new features and
development directions, before they are merged into other IDEs.

Workshop description
The presentation will consist of a quick run through company-coq’s
features, and a tutorial on using these and other Proof General fea-
tures to write proofs more efficiently with emphasis on the lemma
extraction feature. The workshop will also be a good occasion to
showcase some features that Proof General inherits from Emacs, to
discuss how much of this work could be used to enhance other Coq
interfaces, and to ponder about desirable features for proof-oriented
development environments.

Overview of some features of company-coq
Context-sensitive autocompletion with holes Company-Coq im-
plements a number of backends for the CompleteAnything Emacs
package (company). Typing appin therefore suggests variants of
the apply tactic (bold text indicates holes):

2 For example, although Proof General does support enhanced display-
ing of mathematics (non-destructively displaying fun (n m: nat) =>

forall p, p <> n -> p >= m as λ (n m: N) ⇒ ∀ p, p ̸= n →
p ≥ m), few users seem to know about this feature. Company-Coq, on
the other hand, enables a similar feature by default, and most users seem
pleased with it.
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Offline documentation Part of the development of company-coq
involved cross-referencing tactics and options from the user man-
ual; this allows company-coq to display documentation for most
completion entries, without querying INRIA’s website3:

Lemma extraction At any point in a proof, users may choose to
extract the current goal, including some hypotheses, to a separate
lemma. Instead of painstakingly copy-pasting bits of the proof con-
text, company-coq offers a convenient interface to pick hypotheses
and generate the statement of the extracted lemma4.

Point and click documentation Clicking on an identifier while
pressing the control key opens an inline documentation window
(which disappears when the mouse button is released):

Snippets Company-Coq connects with YASnippet to make cer-
tain common Coq patterns quicker to write. For example, to write

match goal with

| [ H: ?a /\ ?b |- ?a ] => destruct H; assumption

end

the user only needs to type the following commands:

m g w ...
..Alt+ . +. ... ?a /\ ?b ... ?a ...

destr ... H; ass ...

3 The list of tactic templates, and the associated documentation, is extracted
from the annotated manual into an index and a set of data files that could be
useful to other editors.
4 The statement is produced by generalizing the hypotheses that the goal
mentions and the ones that the user selected, using a small Ltac script.

The key here is the ..Alt+ . +. shortcut, which introduces the

| [ H: _ |- _ ] => _

pattern, leaving holes that the user can navigate between with TAB

in place of each _.

Automatic named introduction Scripts that depend on the names
of hypotheses can often be made more robust by choosing names
explicitly: company-coq leverages an existing feature of Proof
General to let the user type

intros! ...

to create an invocation of the intros tactic that explicitly mentions
all introduced variables.

New features of Proof General
A number of new Proof General features are also useful for proof
development:

Automatic indentation of bulleted proofs Coq proofs can be
structured with bullets and curly brackets, making proof structure
more readily apparent, and helping with maintenance. Thanks to
SMIE [2], Proof General implements an indentation routine based
on structuring commands which makes proofs easier to format.

Automatic recompilation at Require When developing a proof,
one has to deal with several inter-dependent files. Proof General,
thanks to a contribution of Hendrik Tews, can transparently and
recursively recompile dependencies as it reaches Require com-
mands, launching the required compilation jobs in the background.

Conclusion
Company-Coq has been well received by the community5, and
we expect many of its features to find their way into other Coq
development environments6; we hope that the CoqPL workshop
will be a good venue to discuss it, and more generally to discuss
the development of new editor features enhancing the experience
of authors of Coq programs and proofs.
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