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Single-Photon Depth Imaging
Using a Union-of-Subspaces Model

Dongeek Shin, Jeffrey H. Shapiro, and Vivek K Goyal

Abstract—Light detection and ranging systems reconstruct
scene depth from time-of-flight measurements. For low light-
level depth imaging applications, such as remote sensing and
robot vision, these systems use single-photon detectors that
resolve individual photon arrivals. Even so, they must detect
a large number of photons to mitigate Poisson shot noise and
reject anomalous photon detections from background light. We
introduce a novel framework for accurate depth imaging using a
small number of detected photons in the presence of an unknown
amount of background light that may vary spatially. It employs a
Poisson observation model for the photon detections plus a union-
of-subspaces constraint on the discrete-time flux from the scene
at any single pixel. Together, they enable a greedy signal-pursuit
algorithm to rapidly and simultaneously converge on accurate
estimates of scene depth and background flux, without any
assumptions on spatial correlations of the depth or background
flux. Using experimental single-photon data, we demonstrate
that our proposed framework recovers depth features with 1.7
cm absolute error, using 15 photons per image pixel and an
illumination pulse with 6.7-cm scaled root-mean-square length.
We also show that our framework outperforms the conventional
pixelwise log-matched filtering, which is a computationally-
efficient approximation to the maximum-likelihood solution, by
a factor of 6.1 in absolute depth error.

Index Terms—Computational imaging, LIDAR, single-photon
imaging, union-of-subspaces, greedy algorithms.

I. INTRODUCTION

A conventional light detection and ranging (LIDAR) system,
which uses a pulsed light source and a single-photon detector,
forms a depth image pixelwise using the histograms of photon
detection times. The acquisition times for such systems are
made long enough to detect hundreds of photons per pixel
for the finely binned histograms these systems require to
do accurate depth estimation. In this letter, we introduce a
framework for accurate depth imaging using only a small
number of photon detections per pixel, despite the presence
of an unknown amount of spatially-varying background light
in the scene. Our framework uses a Poisson observation
model for the photon detections plus a union-of-subspaces
constraint on the scene’s discrete-time flux at any single pixel.
Using a greedy signal-pursuit algorithm—a modification of
CoSaMP [1]—we solve for accurate estimates of scene depth
and background flux. Our method forms estimates pixelwise
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and thus avoids assumptions on transverse spatial correlations
that may hinder the ability to resolve very small features.
Using experimental single-photon data, we demonstrate that
our proposed depth imaging framework outperforms log-
matched filtering, which is the maximum-likelihood (ML)
depth estimator given zero background light.

Because our proposed framework is photon-efficient while
using an estimator that is pixelwise and without background
calibration, it can be useful for dynamic low light-level
imaging applications, such as environmental mapping using
unmanned aerial vehicles.

A. Prior Art

The conventional LIDAR technique of estimating depth
using histograms of photon detections is accurate when the
number of photon detections is high. In the low photon-count
regime, the depth solution is noisy due to shot noise. It has
been shown that image denoising methods, such as wavelet
thresholding, can boost the performance of scene depth re-
covery in the presence of background noise [2]]. Also, using
an imaging model that incorporates occlusion constraints was
proposed to recover an accurate depth map [3]]. However, these
denoising algorithms implicitly assume that the observations
are Gaussian distributed. Thus, at low photon-counts, where
depth estimates are highly non-Gaussian [4]), their performance
degrades significantly [5]].

First-photon imaging (FPI) [6] is a framework that allows
high-accuracy imaging using only the first detected photon
at every pixel. It demonstrated that centimeter-accurate depth
recovery is possible by combining the non-Gaussian statistics
of first-photon detection with spatial correlations of natural
scenes. The FPI framework uses an imaging setup that includes
a raster-scanning light source and a lensless single-photon
detector. More recently, photon-efficient imaging frameworks
that use a detector array setup, in which every pixel has the
same acquisition time, have also been proposed [J5], [[7]], [8].

We observe two common limitations that exist in the prior
active imaging frameworks for depth reconstruction.

¢ Over-smoothing: Many of the frameworks assume
spatial smoothness of the scene to mitigate the effect of
shot noise. In some imaging applications, however, it is
important to capture fine spatial features that only occupy
a few image pixels. Using methods that assume spatial
correlations may lead to erroneously over-smoothed im-
ages that wash out the scene’s fine-scale features. In such
scenarios, a robust pixelwise imager is preferable.
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Fig. 1.

An illustration of the single-photon imaging setup for one illumination pulse. A pulsed optical source illuminates a scene pixel with photon-flux

waveform s(t). The flux waveform r(¢) that is incident on the detector consists of the pixel return as(t — 2d/c)—where a is the pixel reflectivity, d is the
pixel depth, and c is light speed—-plus the background-light flux b. The rate function A(¢) driving the photodetection process equals the sum of the pixel
return and background flux, scaled by the detector efficiency 7, plus the detector’s dark-count rate by. The record of detection times from the pixel return (or
background light plus dark counts) is shown as blue (or red) spikes, generated by the Poisson process driven by A(¢).

o Calibration: Many imaging methods assume a calibra-
tion step to measure the amount of background flux exist-
ing in the environment. This calibration mitigates bias in
the depth estimate caused by background-photon or dark-
count detections, which have high temporal variance.
In practical imaging scenarios, however, the background
response varies in time, and continuous calibration may
not be practical. Furthermore, many methods assume
background flux does not vary spatially. Thus, a calibra-
tionless imager that performs simultanous estimation of
scene parameters and spatially-varying background flux
from photon detections is useful.

In this letter, we propose a novel framework for depth
acquisition that is applied pixelwise and without calibration.
At each pixel, our imager estimates the background response
along with scene depth from photon detections. Similar to [3]],
we use a union-of-subspaces constraint for modeling the scene
parameters. However, our union-of-subspace constraint is de-
fined for both the incoherent signal and background waveform
parameters that generate photon detections; the constraint in
[3]] is defined for only the coherent signal waveform that is
perturbed by Gaussian noise, not photon noise.

Using the derived imaging model, we propose a greedy
signal pursuit algorithm that accurately solves for the scene
parameters at each pixel. We evaluate the photon efficiency
of this framework using experimental single-photon data. In
the presence of strong background light, we show that our
pixelwise imager gives an absolute depth error that is 6.1 times
lower than that of the pixelwise log-matched filter.

II. SINGLE-PHOTON IMAGING SETUP

Figure. [I) illustrates our imaging setup, for one illumination
pulse, in which photon detections are made. A focused optical
source, such as a laser, illuminates a pixel of the scene with the
pulse waveform s(t) that starts at time 0 and has root-mean-
square pulsewidth T},. This illumination is repeated every T;.
seconds for a sequence of Ny pulses. The single-photon detec-
tor, in conjunction with a time correlator, is used to time stamp
individual photon detections, relative to the time at which the

immediately preceding pulse was transmitted. These detection
times, which are observations of a time-inhomogeneous Pois-
son process, whose rate function combines contributions from
pixel return, background light, and dark counts, are used to
estimate scene depth for the illuminated pixel. This pixelwise
acquisition process is repeated for N, x IV, image pixels by
raster scanning the light source in the transverse directions.

III. FORWARD IMAGING MODEL

In this section, we study the relationship between the
photon detections and the scene parameters. For simplicity of
exposition and notation, we focus on one pixel; this is repeated
for each pixel of a raster-scanning or array-detection setup.

Let a, d, and b be unknown scalar values that represent
reflectivity, depth, and background flux at the given pixel.
The reflectivity value includes the effects of radial fall-off,
view angle, and material properties. Then, after illuminating
the scene pixel with a single pulse s(t), the backreflected
waveform that is incident at the single-photon detector is

r(t) =as(t—2d/c)+b, t€]0,T,). (D

A. Photodetection statistics

Using (T, we observe that the rate function that generates
the photon detections is

At) =n(as(t —2d/c) + b) + by,

where 1 € (0, 1] is the quantum efficiency of the detector and
bq > 0 is the dark-count rate of the single-photon detector.

Let A be the time bin duration of the single-photon detector.
Then, we define M = T, /A to be the total number of time
bins that capture photon detections. Let y be the vector of size
M x 1 that contains the number of photon detections at each
time bin after we illuminate the pixel N, times with pulse
waveform s(t). Then, from photodetection theory [9], we can
derive

tel0,Ty), (2

kA
[n(as(t —2d/c) +b) + by dt |,

3

yi ~ Poisson Ns/
(k—1)A



for k =1,..., M. Note that we have assumed that our total
pixelwise acquisition time N T, is short enough that b is
constant during that time. Let

je
v, = / ad(t —2d/c) dt, @)
(5—1)e
iA Je
Si.j :/ / Nsns(t —y) dt dy, (5)
(i—1A J(j—1)e
B = N,A(nb + b), ©)
fori =1,...M, 5 =1,...,N, where ¢ is a small number,

such that 7, is divisible by € and N = T,./e. Defining 171
to be an M x 1 vector of ones, we can approximate the rate
function in and rewrite the distribution as

yi ~ Poisson( (Sv + Blarx1)y ) (7

for k = 1,... M. Finally, defining A = [S,1/x1] and x =
[vT, B]T, we can further rewrite (7) as

¥& ~ Poisson( (Ax), ). 8)

So far, we have simplified the pixelwise single-photon obser-
vation model, such that the photon-count vector y € NM*1 ig

. (N+1)x1
a linear measurement of scene response vector x € R}
corrupted by Poisson noise.

B. Scene parameter constraints

Using the expression in (@), we observe that

je
\Z :/ ad(t —2d/c) dt )
(G=1e
:a']l{m:(jfl)e§2$/c<je} (d)a (10)
for j = 1,..., N, where 14(x) is an indicator function that

equals 1 if x € A and 0 otherwise. In other words, vector v
has exactly one nonzero element, and the value and index of
the nonzero element represents the scene reflectivity and depth
at an image pixel, respectively.

We defined our (N + 1) x 1 signal x to be a concatenation
of v, which is the scene response vector of size N, and B,
which is the scalar representing background flux. Since v has
exactly one nonzero entry, x lies in the union of N subspaces
defined as

N

Sn = U {x e RM* i xp0 v} =0},
k=1

(1)

where each subspace is of dimension 2.

IV. SOLVING THE INVERSE PROBLEM

Using accurate photodetection statistics and scene con-
straints, we have interpreted the problem of robust single-
photon depth imaging as a noisy linear inverse problem, where
the signal of interest x lies in the union of subspaces Sy.

Using (8], the observed photon count histogram y has the
probability mass function

z e’(Ax)k(Ax)%"’
A =]]

: (12)
Y-
k=1

Thus, neglecting terms in the negative log-likelihood function
that are dependent on y but not on x, we can define the
objective function

M

L(xA,y) = ) | [(Ax), — yxlog (Ax),].
k=1

13)

This objective can be proved to be convex in x.

We solve for x by minimizing L£(x; A,y) with the con-
straint that x lies in the union of subspaces Sy . Also, because
photon flux is a non-negative quantity, the minimization results
in a more accurate estimate when we include a non-negative
signal constraint. In summary, the optimization problem that
we want to solve can be written as

minimize L(x;A)y) (14)
s.t. x € Sy,
Xz'ZO, Zil,,(N+1)

To solve our constrained optimization problem, we propose
an algorithm that is inspired by existing fast greedy algorithms
for sparse signal pursuit. CoSaMP [1]] is a greedy algorithm
that finds a K -sparse approximate solution to a linear inverse
problem. We modify the CoSaMP algorithm so that we obtain
for a solution constrained to the union of subspaces Sy,
instead of a K -sparse one.

Algorithm 1 Single-photon depth imaging using a union-of-
subspaces model

Input: y, A, §
Output: x(¥)
Initialize x(© « 0, u + y, k < 0;
repeat
k+k+1;
%+ ATu;
© = supp( (%)) U supp(xty
bl + Agy; blge + 0;
x) 7o ([(br.a)Fys byva]T)
u+y— Ax®
until [|[x*~1 —x®))2 < §

YJU{N +1};

Our proposed greedy algorithm is given in Algorithm [I] We
define To(x) to be the thresholding operator setting all negative
entries of x to zero, supp(x) to be the set of indices of nonzero
elements of x, and xp) to be the vector that approximates x
with its k largest terms. Also, we take A g to be a matrix with
columns of A chosen by the index set S. Finally, we use A7
and A to denote the transpose and pseudo-inverse of matrix
A, respectively.

To solve the constrained optimization problem in (14), our
algorithm iteratively performs the following steps:
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Experimental pixelwise depth imaging results using single photon observations. The number of photon detections at every pixel was set to be 15.

The figure shows the (a) photograph of imaged face, (b) ground-truth depth, (c) depth from log-matched filtering, which is approximately ML and (d) depth
using our method. Also, (e) and (f) show the absolute depth error maps for ML and our framework, respectively.

1) gradient descent on £(x; A,y), which is approximated
by the squared {o-norm ||y — Ax||3 for computational
efficiency;

2) projection of the intermediate estimate onto the closest
subspace in the union of subspaces Sy ; and

3) projection of the intermediate estimate onto the non-
negative cone,

until a convergence criterion is satisfied. We define conver-
gence of the solution as ||x*~1) — x(®) |2 < §, where J is a
small number.

V. EXPERIMENTAL RESULTS

To validate our imaging framework, we used a dataset
collected by D. Venkatraman for the First-Photon Imaging
project [6]]; this dataset and others are available from [10]. The
experimental setup uses a pulsed laser diode with pulsewidth
T, = 270 ps and repetition period 7;. = 100 ns. A two-axis
galvo was used to scan 350 x 350 pixels of a mannequin face
at a distance of about 4 m. A lensless SPAD detector with
quantum efficiency n = 0.35 was used for detection. The
background light level was set using an incandescent lamp.
The original mannequin data from had the background
count rate approximately equal to the signal count rate. Our ex-
periment uses the cropped data showing only the mannequin’s
face, where the background count rate was approximately 0.1
of the average signal count rate. Although we used a raster-
scanning setup for our single-photon imaging experiments,
since our imaging algorithm is applied pixelwise, it can be
also used for imaging with a floodlight illumination source
and a single-photon detector array.

We could compare our imaging method with the ML estima-
tor of scene parameters. Unfortunately, due to nonzero back-
ground flux, ML estimation of a, b, and d requires minimizing
a non-convex cost function, leading to a solution without
an accuracy guarantee. Thus, zero background is assumed
conventionally such that the ML depth estimate reduces to
the simple log-matched filter [11]:

5)

dwi, = < argmax log SiTy .
2 ie{l,...,n}

We use (I3) as the baseline depth estimator that is compared
with our proposed estimator.

Figure [2] shows the results of recovering depth of the
mannequin face using single-photon observations. The kernel
matrix S was obtained by an offline measurement of the pulse
shape. Note that this measurement depends only on the source,

not on properties of the scene. The ground-truth depth, shown
in Fig. P[b), was generated separately by using background-
calibrated ML estimation from 200 photons at each pixel.

In our depth imaging experiment, the number of photon
detections at each pixel was set to 15. We observe that, due
to extraneous background photon detections, the log-matched
filter estimate in Fig. [JJc) (average absolute error = 10.3 cm)
is corrupted with high-variance noise and the facial features
of the mannequin are not visible. On the other hand, our
estimate, shown in Fig. 2(d), shows high-accuracy depth
recovery (average absolute error = 1.7 cm). As shown by the
error maps in Fig. 2fe), (), both methods fail in depth recovery
in the face boundary regions, where very little light is reflected
back from the scene to the single-photon detector and the
signal-to-background ratio is thus very low. Also, we observe
that our estimated average background level over all pixels
was B = 1.4 x 10~3, which is very close to the calibrated
true background level B = 1.3 x 1073, In this experiment, we
had M = N = 801. Also, we set 6 = 10~% and the average
number of iterations until convergence was measured to be 2.1
over all pixels. Code and data used to generate results can be
downloaded from [[12].

VI. CONCLUSIONS AND FUTURE WORK

In this letter, we presented an imaging framework for cali-
brationless, pixelwise depth reconstruction using single-photon
observations. Our imaging model combined photon detection
statistics with the discrete-time flux constraints expressed
using a union-of-subspaces model. Then, using our imaging
model, we developed a greedy algorithm that recovers scene
depth by solving a constrained optimization problem.

Our pixelwise imaging framework can be used in low light-
level imaging applications, where the scene being imaged has
fine features and filtering techniques that exploit patchwise
smoothness can potentially wash out those details. For exam-
ple, it can be useful in applications such as airborne remote
sensing [13]], where the aim is to recover finely-featured 3D
terrain maps.

It is straightforward to generalize the proposed single-
photon imaging framework to multiple-depth estimation,
where more than one reflector may be present at each pixel.
In the case of estimating depths of K reflectors at a pixel,
the 1-sparsity assumption must be changed to more general
K -sparsity assumption when defining the union-of-subspaces
constraint.
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