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We consider a system of spinless fermions on the honeycomb lattice with substrate-induced modulated
electrostatic potentials tripling the unit cell. The resulting non-Abelian SU (2) gauge fields act cooperatively to
realize a quadratic band crossing point (QBCP). Using a combination of mean-field theory and renormalization
group techniques, we show that in the QBCP regime, arbitrarily weak repulsive electronic interactions drive the
system into the quantum anomalous Hall state. This proves that substrate-induced local voltages are an effective
knob to induce the spontaneous formation of a topological quantum phase.
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I. INTRODUCTION

Realizing topologically nontrivial states of matter in band
insulators has been the subject of growing interest in recent
years. In the quantum anomalous Hall (QAH) insulator [1],
the time-reversal symmetry broken ground state has a bulk
insulating gap but has topologically protected chiral edge
states. In the time-reversal invariant quantum spin-Hall (QSH)
insulator [2–5] a pair of helical edge states, with electrons of
opposite spin counterpropagating at the sample boundaries,
are mandated by the nontrivial topology of the bulk electronic
states. The behavior of noninteracting insulating topological
phases is presently well understood [6–9]. Taking into ac-
count the effect of electronic correlations, many intriguing
questions arise. For instance, electronic interactions may give
rise to insulating topological phases without noninteracting
analogs, i.e., the symmetry protected topological phase [10],
or fractional topological insulators [11,12]. Another class
of interacting topological states are phases of interacting
electrons in which chiral orbital currents or spin-orbit coupling
are spontaneously generated by electron correlations. In these
quantum states conventional symmetry breaking order is
inextricably linked to their nontrivial topological character,
and they have been called topological Mott insulators (TMI)
[13].

Both the QAH and the QSH insulator were originally
conceived in the context of honeycomb lattice Dirac fermions
[1,2], by adding spin (in)dependent terms to the Dirac Hamil-
tonian that couple to the Dirac fermions as valley-dependent
Dirac masses. Similarly, the first proposal for realizing a TMI
originated from honeycomb lattice Dirac fermions, which
were shown to be dynamically gapped out by finite range
density-density interactions [13–16]. These proposals hold
the exciting promise of observing electronically self-organized
topological insulators with single-layer graphene as the prime
candidate material. Two main complications arise, however, in
the case of honeycomb lattice Dirac fermions.

First, the stability of the QAH state generally relies on
physically unrealistic interaction energy scales. In particular,
it requires the next-nearest neighbor (NNN) interaction to

be stronger than the nearest neighbor (NN) interaction, an
unlikely situation in for instance graphene [17]. Second, the
vanishing density of states at half filling implies, even at
zero temperature, a finite critical interaction strength for the
QAH state to be stabilized, which also raises questions as to
the validity of the Hartree-Fock approximation. Recent exact
diagonalization studies, indeed, have not been able to confirm
the mean-field results [18,19].

In this paper, we present a simple and physically intuitive
way to overcome these hurdles and realize the TMI on the
honeycomb lattice. The central idea of our proposal is to alter
the electronic properties of the honeycomb Dirac semimetal
by means of substrate-induced electrostatic potentials with an
hexagonal superlattice structure of a tripled unit cell.

In their simplest form, these substrate-induced potentials
take the form of non-Abelian SU (2) gauge fields in the low-
energy descriptions of honeycomb lattice electrons. Although
gauge potentials of any origin generally shift the Dirac cones in
momentum space [20,21], we show that for the combinations
of SU (2) gauge field components originating from an hexag-
onal underlay with tripled unit cell, the Dirac cones morph
into a quadratic band crossing point (QBCP). Higher order
harmonic components of the superlattice potential respecting
translational invariance but making the sublattices inequivalent
can remove the QBCP and open up a spectral gap. In the QBCP
regime, we analyze the effect of electron-electron interactions
in two ways. First, we use a perturbative renormalization group
(RG) approach to establish that as a consequence of the QBCP
the system has a weak-coupling instability in much the same
way as was established for generic symmetry protected QBCPs
[22,23]. However, in contrast to these models, the possible
occurrence of an interaction-induced rotational symmetry-
breaking nematic phase [22,23] with the QBCP splitting into
two Dirac cones is prohibited by the fact that the hexagonal
underlay fully breaks the threefold rotational symmetry of
the honeycomb lattice, leaving the time-reversal symmetry
breaking QAH gapped state as the only instability at weak cou-
pling. We use Hartree-Fock theory to show that the interaction-
induced QAH state is indeed realized at weak coupling.
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II. HONEYCOMB SUPERLATTICES

Superlattices [24] have attracted tremendous interest as
they allow one to accurately manipulate the band structure
of two-dimensional materials and hence hold the promise
of tailored electronic properties. Superlattices of a Dirac
semimetal, with graphene epitaxially grown on prepatterned
substrates being the canonical example [25], lead to a rich
plethora of phenomena such as Dirac fermions cloning
[26,27] or strongly anisotropic massless chiral fermions [28].
Generally, the physics of these honeycomb superstructures
can be described by considering the effect of a substrate-
induced external electrostatic potential acting on the pristine
honeycomb lattice sites. Within this approach, the generation
of secondary Dirac cones with halved group velocity in
large graphene Moiré superstructures [26] has been identified
[29,30]. We therefore use the same conceptual starting point
and consider electrons on a honeycomb lattice, in the presence
of an external electrostatic perturbation originating from a
commensurate

√
3×√

3 hexagonal underlay, as depicted in
Fig. 1(a). The

√
3×√

3 hexagonal superlattice, having a
unit cell three times larger than the elementary honeycomb
unit cell, allows for potential configurations leading to a
QBCP.

In the most general setting, noninteracting spinless
fermions subject to electrostatic potentials with

√
3×√

3
hexagonal periodicity are described by the tight-binding

FIG. 1. (a) Honeycomb lattice with enlarged unit cell. The unit
cell, which is marked by the dashed hexagon, contains six sites labeled
by Aα and Bα with α = 1,2,3. (b) On the left the Brillouin zone
of graphene and the folded Brillouin zone corresponding unit cell
tripling (inner black hexagon). On the right the sets of superlattice
wave vectors {G} and {G̃} with respect to the two Brillouin zones. (c)
Red dots indicate minima of

√
3×√

3 superlattice potential generated
by {G} giving rise to the QBCP. (d) Minima of the second order
superlattice components {G̃}.

Hamiltonian

H0 = t
∑

〈αi,βj〉
â
†
αi b̂βj + H.c.

+
3∑

α=1

∑
i

(
VAαn̂A

αi + VBαn̂B
αi

)
, (1)

where t indicates the NN hopping amplitude, the VAα’s,
VBα’s are the on-site energies renormalized by the substrate
perturbation, and the fermionic operator âαi (b̂αi) annihilates
an electron at position i in the sublattice Aα (Bα) with α =
1,2,3. Here 〈αi,βj 〉 denotes a sum over all NN combinations
of αi and βj , and n̂A

αi = â
†
αi âαi (same for B). As the real space

unit cell is tripled, the Brillouin zone (BZ) is folded, with the
corners of the hexagonal lattice BZ, the so-called Dirac points,
now occurring at the � point.

To gain insight in the effect of the substrate-induced
potentials on the electronic structure, we consider the effective
low-energy theory close to the � point of the folded Brillouin
zone (BZ) (see the Supplemental Material [31] for details). The
low-energy honeycomb lattice Dirac fermions are modified in
the following way:

Heff = [
�x

(
vF kx − Ai

xQi

) + �y

(
vF ky − Ai

yQi

)]
+V+τ0σ0 + V−τ0σ3, (2)

where vF is the Fermi velocity, �x = τ3σ1, �y = τ0σ2, and the
σ and τ operators are Pauli matrices acting on the sublattice
and valley degrees of freedom of the honeycomb lattice,
respectively. In addition, we introduced the Dirac matrices
Qi (i = 1,2,3) [20], which are given by Q1 = −τ2σ2, Q2 =
τ1σ2, and Q3 = τ3σ0. These matrices commute with the �x,y

matrices, and in addition realize an SU (2) pseudospin algebra
[Qi ,Qj ] = 2iεijkQk . We have defined V± = (VA ± VB)/2 as
the sum and the difference of the average potentials on each
sublattice, i.e., VX ≡ ∑3

i=1 VXi/3 (X = A,B). The sum V+
couples to the identity τ0σ0, whereas the difference couples to
τ0σ3, which anticommutes with the �x,y and corresponds to an
inversion symmetry breaking Dirac mass [32] [cf. Fig. 1(b)].
The remaining four linear combinations of potentials enter as
gauge fields Ai

x and Ai
y [20] and couple to the Qi . The explicit

expressions for these linear combinations are summarized
in Table I. For specific combinations of these pseudogauge
fields Ai

x and Ai
y , the low-energy spectrum becomes quadratic

as opposed to Dirac linear, and these pseudogauge field
configurations were shown to generate an effective nonzero
non-Abelian field strength [33].

Having discussed the general structure of the Hamiltonian,
we proceed to show that substrate-induced electrostatic poten-
tials can realize such pseudogauge field configurations. The
renormalization of the on-site energies due to a commensurate
hexagonal underlay with tripled unit cell can be obtained
following the observation [29,30,34] that the electrostatic
potential felt by the spinless electrons is smoothened by
the large separation between the system and the substrate,
as compared to the separation of NN honeycomb lattice
sites. We therefore consider a smooth superlattice perturbation
with triangular periodicity, expressed as V(r) = ∑

G VGeiG·r.
The amplitudes VG only depend on the modulus of G, and
we restrict the G’s to the simplest set of wave vectors
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TABLE I. Effect of substrate-induced electrostatic potentials in
the low-energy electronic structure. This first column lists the Dirac
matrices, the second column the combination of potentials VXα

(X = A,B) which couple to the respective terms. Note the definitions
VX ≡ ∑3

i=1 VXi/3 and Vω
X = (VX1 + ωVX2 + ω2VX3)/3, where in the

latter we used ω = exp [2πi/3]. The third and fourth column list the
specific values of these potentials in terms of the potential amplitudes
VG and VG̃, capturing the effect of first and second harmonics,
respectively.

Matrix Potentials VXα VG VG̃

τ0σ0 V+ = (VA + VB )/2 3VG̃/2
τ0σ3 V− = (VA − VB )/2 9VG̃/2

Q1 = −τ2σ2 A1
x (ReVω

A − ReVω
B )/2 3VG/2

A1
y −(ImVω

A + ImVω
B )/2

Q2 = τ1σ2 A2
x −(ImVω

A − ImVω
B )/2

A2
y (ReVω

A + ReVω
B )/2 −3VG/2

G/G= { ± 1,0},{± cos π/3, ± sin π/3} [34] with equal mag-
nitude G = 4π/(3a), a being the honeycomb lattice constant.
We distinguish two alternatives for choosing the origin of the
superlattice perturbation V(r) with respect to the center of
a reference honeycomb lattice hexagon. In case the origin
of the superlattice perturbation coincides with the center of
the reference hexagon, no symmetries other than translational
symmetry are broken and one finds VAi ≡ VBi ≡ 0, meaning
no electrostatic effect on the electrons at lattice sites. If,
however, the center of the superlattice electrostatic potential is
aligned with a honeycomb lattice site, the on-site energies on
the A sublattice take the values VA1 = 6VG and VA2 = VA3 =
−3VG, while the B-sublattice sites remain unaffected. The
latter case is shown in Fig. 1(c). In terms of the effective
low-energy Hamiltonian of Eq. (2) this yields the explicit
expressions for the gauge fields A1

x ≡ −A2
y ≡ 3VG/2 and

A2
x ≡ A1

y ≡ 0, while we find that V+ and V− vanish (see also
Table I). Given these expressions, the low-energy dispersion is

readily obtained as E(p) = ±A1
x + β

√
(A1

x)2 + v2
F k2 where

β = ±1. Two bands touch at � to form a QBCP as a direct
consequence of the gauge fields following from the specific
arrangement of the substrate.

Contrary to QBCPs protected by lattice symmetries and
carrying a 2π Berry flux [22,35], the QBCP emerging from
the substrate-induced potentials is not protected by any sym-
metries that may quantize the Berry flux. Topologically stable
QBCP can only be gapped out by T -breaking perturbations,
whereas the QBCP engineered by breaking symmetries can be
energetically split by T -invariant perturbations. Specifically,
we find that a full substrate-induced band gap naturally
arises by taking into account the next set of harmonics in
the superlattice perturbation V(r). The corresponding wave
vectors have equal magnitude G̃ = 4π/(

√
3a) and are given

by G/G̃ = {0,±1},{± cos π/6,± sin π/6}. The inclusion of
this additional set of harmonics in V(r) does not affect gauge
field terms, but rather introduces a finite V− which takes the
value V− = 9VG̃/2 and a finite V+ = 3VG̃/2. Apart from the
identity term, the dispersion of the low-energy Hamiltonian
Eq. (2) then explicitly reads E(p) = βA1

x ± [v2
F k2 + (A1

x +
βV−)2]1/2. With this, massive Dirac fermions and hence a full

substrate-induced band gap occur for |A1
x | < |V−|. We find

that the transition from the gapless QBCP regime to the gapped
one is marked by the presence of a pseudo-spin-1 conical-like
spectrum (see the Supplemental Material [31]).

III. INTERACTION-INDUCED
TOPOLOGICAL INSULATOR

The possibility to engineer a QBCP in the honeycomb
lattice band structure at half filling using a hexagonal su-
perlattice suggests a closer investigation of electron-electron
interactions and their effect on the electronic ordering in
the QBCP regime. The effect of interactions on a QBCP
have been studied previously both with RG methods and
mean-field theory [22,23], but since the QBCP under con-
sideration here is different in nature, these results do not
directly apply. In order to establish whether the electrostatic
potential-induced QBCP is still marginally unstable to weak
repulsive interactions, we have employed a perturbative RG
approach. To this end, we first obtained a continuum model
of spinless interacting electrons on the honeycomb lattice.
The noninteracting continuum theory contains the substrate
potentials and we only retain the first set of harmonics setting
V0 = VA1 = 6VG. To obtain a continuum QBCP theory we
take the Dirac Hamiltonian of Eq. (2) and project the mo-
mentum dependent part into the two-component low-energy
subspace at �. We find that the substrate potentials enter as
an effective mass, i.e., m∗ ≡ V0�

2/(4v2
F ), and hence control

the density of states (DOS). There are two interactions to
consider, the NN interaction V1 and NNN interaction V2 given
by the Hamiltonian HV1V2 = V1

∑
〈i,j〉 n̂i n̂j + V2

∑
〈〈i,j〉〉 n̂i n̂j .

Deriving the effective continuum vertices, i.e., projecting the
interactions into the low-energy subspace, shows that V1

is irrelevant in the weak coupling regime [36] due to the
specific structure of the low-energy states. These are localized
exclusively on one of the sublattices, the B sublattice for our
choice of potentials, and hence an intersublattice interaction
cannot contribute. In deriving the RG β function we follow
the scheme laid out in [37]. We find that, to one-loop order,
the RG-β function is given by β(V2) = ∂V2/∂ log s = αV 2

2
with α = |V0|/(16πv2

F ) = |m∗|/(4π�
2), which is equivalent

in structure to the result obtained in [22,23] and we thus
conclude that the coupling V2 flows to strong coupling.

Based on the result that V2 flows to strong coupling,
we employ mean-field techniques to determine the type of
ordering that is realized. As a first step, we have calculated the
normal state susceptibilities χ to various orders in the absence
of potentials, and find that fluctuations in the QAH channel
are strongest (see the Supplemental Material [32]). In the
presence of substrate potentials, which engineer the weak-
coupling instability, one thus expects the interaction-induced
QAH state. This is confirmed by extensive restricted and
unrestricted mean-field calculations, performed for a range of
parameters (V0,V1,V2) at zero temperature. In the mean-field
calculations we have explicitly allowed for the formation
of intrasublattice charge redistribution, as these have lower
energy than the QAH state at large V2 in case of pristine
graphene [16]. Details of the mean-field decoupling in the
six-atom unit cell may be found in Ref. [16]. For finite V2 we
consistently find the QAH state as the mean-field ground state.
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FIG. 2. (a) Electronic band structure of graphene in the presence
(and absence, V0 = 0.0) of substrate induced potentials. Representa-
tive examples are shown for which the QBCP emerges, i.e., V0 = 0.4
(red) and V0 = 0.8 (blue). (b) Scaling of the QAH order parameter �

as function of the NNN interaction V2 for various values of substrate
potentials (V0 ∼ m∗). Solid lines represent linear fits of ln � versus
−1/V2. (c) Scaling of the slopes of the linear fits in (b) as function of
1/V0 ∼ 1/m∗. Solid line represents a linear fit.

The RG calculation provides us with quantitative predic-
tions regarding the scaling of the QAH order parameter �

as function of coupling constant V2. We have used restricted
mean-field calculations, i.e., only decoupling in the QAH
channel, to check these predictions. Specifically, one expects
that � scales as � ∼ 
e−c/(m∗V2), where 
 is an energy cutoff
of the order of the bandwidth, and c = 8π�

2. Hence we
expect ln � to depend linearly on −1/V2. Figure 2(b) shows a
linear fit of ln � obtained from numerical restricted mean-field
calculations. We observe that the linear fit works well for
values of the superlattice potentials ranging from V0 = 0.2 to
V0 = 1.0. Figure 2(c) shows a linear fit of the slope of the
linear fits of Fig. 2(b) as function of 1/V0 ∼ 1/m∗. Again one
expects linear behavior which the panel (c) clearly shows.
Based on both the RG and the mean-field approaches we
therefore conclude that the substrate-induced QBCP gives rise

to a weak-coupling instability towards a time-reversal breaking
QAH state.

IV. CONCLUSIONS

We have shown, in conclusion, the emergence of a QBCP
in the half filled honeycomb lattice resulting from electrostatic
coupling to a substrate with hexagonal symmetry but with√

3×√
3 periodicity, i.e., a tripled unit cell. The superlattice

potential couples to the low-energy Dirac fermions as a
specific linear combinations of pseudogauge fields of SU (2)
type, corresponding to a nonzero non-Abelian field strength.
The QBCP we have shown to arise in the presence of
hexagonal superlattices carries a trivial zero Berry flux and
can be removed in favor of a full spectral gap by additional
modulations of electrostatic potentials. In the QBCP regime,
we have shown that a topological quantum anomalous Hall
phase can be generated by repulsive NN and NNN interactions
even when the latter is small, a regime which is naturally
realized in graphene. A one-loop RG analysis supplemented
by Hartree-Fock mean-field calculations demonstrate that the
quadratic low-energy dispersion is marginally unstable to the
formation of the QAH phase at arbitrarily weak repulsive
electronic interactions.

Using density functional theory (DFT) a QBCP has been
recently found in a graphene-indium chalcogenide heterostruc-
ture where single layer graphene is deposited on top of hexag-
onal In2Te2 monolayers [38]. For this prototypical bilayer,
the DFT characteristic strength of the electrostatic modulated
potential V0 � 0.2t , for which our Hartree-Fock mean-field
calculations predict the QAH gap to reach room temperature at
an effective NNN interaction V2 � 0.58t , a value smaller than
the effective Coulomb interaction of single-layer graphene
[17]. This observation suggests that the interaction-driven
QAH state can be realized in the experimental realm using
materials such as PtTe2, h-GaTe [34], and h-InSe as graphene
substrates.
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