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Despite their importance for precision QCD calculations, correlations between in- and out-of-jet regions
of phase space have never directly been observed. These so-called nonglobal effects are present generically
whenever a collider physics measurement is not explicitly dependent on radiation throughout the entire
phase space. In this paper, we introduce a novel procedure based on mutual information, which allows us to
isolate these nonglobal correlations between measurements made in different regions of phase space. We
study this procedure both analytically and in Monte Carlo simulations in the context of observables
measured on hadronic final states produced in eþe− collisions, though it is more widely applicable. The
procedure exploits the sensitivity of soft radiation at large angles to nonglobal correlations, and we
calculate these correlations through next-to-leading logarithmic accuracy. The bulk of these nonglobal
correlations are found to be described in Monte Carlo simulation. They increase by the inclusion of
nonperturbative effects, which we show can be incorporated in our calculation through the use of a model
shape function. This procedure illuminates the source of nonglobal correlations and has connections more
broadly to fundamental quantities in quantum field theory.
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I. INTRODUCTION

Because of the infrared divergences in a weakly coupled
gauge theory, like QCD at high energy, final states manifest
themselves as collections of jets. To connect the observed
final state to final states from fixed-order perturbative
calculations, infrared and collinear (IRC) safe jet algorithms
[1] have been invented to make these jets well-defined.
Traditionally, these jets have been used as a proxy for the
short distance degrees of freedom, quarks and gluons, and
provide definite objects for matching to fixed-order calcu-
lations of cross sections inclusive over the entire final state.
However, with a definite algorithm, individual jets can be
studied in their own right, ignoring or integrating over all
other radiation in the final state, that is not included in the jet.
This introduces implicit dependence into the jet on the
relevant scales of the out-of-jet radiation, the dominant
effects of which are referred to as nonglobal logarithms
(NGLs) [2]. Nonglobal effects and logarithms arise generi-
cally whenever an observable is only measured on a
restricted region of phase space.
For observables measured exclusively on jets, like the jet

mass for example, NGLs can introduce large corrections in
specific phase space regions, and have proved challenging to
understand systematically [3–6]. There has been significant
advances recently in theoretical progress for understanding
and calculating NGLs [2,3,7–25] as well as the development
of techniques for eliminating them by removal of appropriate

soft radiation in jets [26–28]. Despite their importance and
relevance, NGLs and nonglobal correlations in general, have
never directly been observed. In particular, their effects on
observables such as the jet mass, while potentially large, are
difficult to unambiguously disentangle from perturbative and
nonperturbative uncertainties when comparing with mea-
surements. In this paper, we introduce a novel procedure
which directly measures nonglobal correlations between in-
jet and out-of-jet phase space regions, and which vanishes
when such correlations are not present. We present theo-
retical calculations of this observable to next-to-leading
logarithmic (NLL) accuracy in QCD, and study its properties
in Monte Carlo simulation.
While our procedure for measuring nonglobal correlations

can be applied widely, we will restrict our discussion to
correlations between hemisphere jets in eþe− annihilation to
hadrons. In that case,we first separate events into left and right
hemispheres using a cone jet algorithm defined about recoil-
free jet axes [29–31]. This is necessary to eliminate
back-reaction of soft particles near the hemisphere boundary
on the jet finding. With identified hemispheres, we then
measure IRC safe two-point energy correlation functions
eðβÞ2 [29,32–34], defined by the angular exponent β, in each
hemisphere. The energy correlation functions are sensitive to
wide-angle, soft radiation and so bymeasuring the correlation
between the measured values in each hemisphere, one defines
an observable that is sensitive to nonglobal correlations. The
problem of measuring nonglobal correlations is then reduced
to defining a measure of the correlation between the left and
right hemisphere values of the energy correlation functions.
While there are many measures that can be used to

determine the correlation, the one we will use is the mutual
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information. For the application of nonglobal correlations,
the mutual information measures the number of bits of
information that are known about the probability distribution

of the right hemisphere energy correlation function, eðβÞ2;R,
given that the distribution of the energy correlation function

in the left hemisphere, eðβÞ2;L, is known (or vice versa). The

definition of mutual information, IðeðβÞ2;L; e
ðβÞ
2;RÞ, is

IðeðβÞ2;L;e
ðβÞ
2;RÞ¼

Z
deðβÞ2;Lde

ðβÞ
2;RpðeðβÞ2;L;e

ðβÞ
2;RÞlog2

pðeðβÞ2;L;e
ðβÞ
2;RÞ

pðeðβÞ2;LÞpðeðβÞ2;RÞ
:

ð1Þ

Here pðaÞ is the probability distribution of an observable a
and pða; bÞ is the joint probability distribution of two
observables a and b. Note that

pðaÞ ¼
Z

dbpða; bÞ: ð2Þ

If the left and right hemisphere observables eðβÞ2;L and eðβÞ2;R are
truly uncorrelated, then

pðeðβÞ2;L; e
ðβÞ
2;RÞ ¼ pðeðβÞ2;LÞpðeðβÞ2;RÞ;

and the mutual information is zero.1 Therefore, the mutual

information IðeðβÞ2;L; e
ðβÞ
2;RÞ is only nonzero if there are non-

trivial correlations between the hemispheres. Just the abso-
lute value of the mutual information is difficult to interpret
because it can range anywhere from 0 to ∞.
Mutual information by itself is just one number, and it

can potentially be unclear what that number means. We are
able to learn about the origin of the correlation between the
left and right hemispheres by measuring the mutual
information over a range of angular exponents β. As we
will discuss in Sec. III, the energy correlation functions are
defined such that by increasing the angular exponent β, one
becomes increasingly sensitive to soft, wide angle emis-
sions. These soft wide angle emissions are the most
sensitive to nonglobal correlations between the hemi-
spheres. Therefore, as the angular exponent β increases,

IðeðβÞ2;L; e
ðβÞ
2;RÞ should also increase due to the increasing

importance of soft emissions sensitive to nonglobal corre-

lations. As the β dependence of IðeðβÞ2;L; e
ðβÞ
2;RÞ is most

important for understanding nonglobal effects, we will

denote IðeðβÞ2;L; e
ðβÞ
2;RÞ≡ Iβ. Monotonically increasing Iβ with

β is an unambiguous signal of nonglobal physics. There
may be baseline correlations due to other effects, but these
would not be manifest as a rise in Iβ with β.

An important prediction of this framework is that when
appropriate methods are used to remove soft wide-angle
radiation, so-called jet grooming algorithms, the correla-
tions between the hemispheres should vanish. It has been
shown that the modified mass drop [26,27] and the soft
drop [28] jet groomers eliminate NGLs, at least through
NLL accuracy. Therefore, in our analytical calculations,
when these jet grooming techniques are applied, Iβ is close
to zero and does not increase with β. This is also borne out
in Monte Carlo simulation of eþe− collision events.
We choose to use mutual information to measure corre-

lations as it has been used in some other studies of
correlations of QCD jet observables [35–37]. However,
any procedure that tests the difference between the joint
probability distribution of two observables and the product
of the individual probability distributions would be suffi-
cient. Other examples, though not exhaustive, that quantify
correlations used in statistical analyses include Hellinger
distance, Jensen-Shannon divergence, Kolmogorov-Smirnov
test, and Rényi divergence. The Hellinger distance is actually
a metric and ranges strictly between 0 and 1. More
ambitiously, although we have focused on methods which
allow for the reduction of the correlations to a single number,
it would also be interesting to directly study the double

differential distribution of pðeðβÞ2;L; e
ðβÞ
2;RÞ − pðeðβÞ2;LÞpðeðβÞ2;RÞ.

This is, however, considerably more complicated to directly
interpret, and we therefore restrict ourselves to the study of
the mutual information, which summarizes the correlations
in a single number.
It is tempting to draw an analogy between these non-

global correlations and quantum entanglement of the two
hemispheres, but mutual information is measured on the
asymptotic states, long after decoherence. It is therefore
challenging to make a direct connection to the underlying
quantum correlations. More generally, in an experiment
that only measures energy deposits it is not possible to
construct noncommuting operators at the same point in the
detector, so as to test Bell’s inequalities [38]. It may be
possible to do so, however, with idealized detectors in toy
models, as was recently proposed in the context of inflation
[39]. We leave a study of possible connections between
NGLs and entanglement to future work.
The outline of this paper is as follows. In Sec. II, we

review the source of dominant nonglobal correlations and
logarithms from fixed-order matrix elements in eþe−
collisions. In Sec. III, we define the two-point energy
correlation functions appropriate for eþe− collisions and
calculate the mutual information Iβ to NLL accuracy,
capturing nonglobal logarithms with the dressed gluon
expansion of Ref. [22]. We are also able to include
nonperturbative effects by convolving the perturbative
distributions with a shape function, and we demonstrate
that nonperturbative effects in general increase the corre-
lation between the hemispheres. In Sec. IV, we calculate the
mutual information in Monte Carlo simulation and find

1Reference [35] discusses other basic properties of the mutual
information and its calculation in the context of correlations of
multiple observables measured on the same jet.
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good agreement between our analytical calculation and
the simulations. We conclude in Sec. V and discuss other
scenarios where nonglobal effects can be directly measured
in a similar manner. Calculational details both of the
analytics and algorithms for determining the mutual infor-
mation on finite data sets are presented in the Appendixes.

II. NONGLOBAL PHYSICS

In this section, we briefly review nonglobal physics in
the context of eþe− → dijets events. Our goal is to calculate
the distribution of observables measured on the left and
right hemispheres (appropriately defined) of each event and
we choose these observables such that a nonzero value
regulates the soft and collinear singularities. While the two-
point energy correlation functions are one example of such
observables, other examples include hemisphere masses or
hemisphere thrust. By demanding that both hemisphere
masses are nonzero, for example, means that the lowest
order contribution to the double differential cross section or
joint probability distribution is at Oðα2sÞ. Sufficient for our
analysis here, we can consider purely gluonic radiation
from the initial qq̄ dipole. Then, we must calculate the
Feynman diagrams that contribute to this final state.
If we assume that QCD is an Abelian gauge theory, then

gluons are emitted exclusively off of the qq̄ dipole. For two
positive helicity Abelian gluons, the matrix element can be
written in spinor helicity notation [40,41] as

Aðe−a ; ēþb → qþ1 ; g
þ
2 ; g

þ
3 ; q̄

−
4 Þ

Aðe−a ; ēþb → qþ1 ; q̄
−
4 Þ

¼ h14i
h12ih24i

h14i
h13ih34i ; ð3Þ

where the quarks are particles 1 and 4, the gluons are
particles 2 and 3, and we have stripped away couplings.
The Born-level matrix element is

Aðe−a ; ēþb → qþ1 ; q̄
−
4 Þ ¼

h4ai2
h14ihabi ; ð4Þ

again, stripped of couplings, with the initial electron and
positron particles a and b. The spinor products are defined
with jhijij2 ¼ sij. In Eq. (3), we have dropped the
momentum-conserving δ function as well. Momentum
conservation does correlate the two hemispheres, but in
the limit that gluons 2 and 3 become soft, this correlation
vanishes. Note also that even away from the soft limit the
matrix element factorizes into two contributions, one for
each gluon. In the soft limit and demanding that the gluons
are in different hemispheres, the gluons are completely
uncorrelated. Therefore, in an Abelian gauge theory like
QED, there are no NGLs to this order in perturbation
theory.
In a non-Abelian gauge theory, however, gluons can

radiate more gluons. For the same selection of helicities, the
color-ordered matrix element for the emission of two
gluons is

Aðe−a ; ēþb → qþ1 ; g
þ
2 ; g

þ
3 ; q̄

−
4 Þ

Aðe−a ; ēþb → qþ1 ; q̄
−
4 Þ

¼ h14i
h12ih23ih24i ; ð5Þ

where, again, we strip couplings and momentum-
conserving δ functions. Taking the soft limit of gluons
2 and 3 removes correlations through momentum con-
servation, but even in this limit, the matrix element does not
factorize. The soft gluons in each hemisphere will know
about the other through the matrix element, unlike in an
Abelian theory. Therefore, in the soft limit, these correla-
tions will manifest themselves as large logarithms in the
cross section of the hemisphere observables. Resummation
of these large logarithms is necessary for convergence of the
perturbation theory in the singular region of phase space. In
the next section, we present the details of the method for
measuring these correlations directly.

III. ANALYTICAL CALCULATION
OF MUTUAL INFORMATION

Isolating nonglobal correlations between the hemi-
spheres is subtle and robust definitions of the hemispheres
and observables measured on them are required. In this
section, we define how we identify hemispheres, measure
the energy correlation functions, and present a calculation
to NLL accuracy.

A. Observable definitions

Because wide angle soft radiation is most sensitive to
nonglobal correlations, we need a procedure for identifying
the hemispheres that is insensitive to back-reaction by the
soft particles on the boundary. Effectively, we must define
the hemispheres with an algorithm that does not introduce
clustering logarithms [42,43]. Our procedure for doing this
is the following. We first cluster the event with the
exclusive kT algorithm [44] to two jets using Winner-
Take-All (WTA) recombination [30,31,45]. WTA recom-
bination ensures that the jet axes lie along the direction of
the hardest radiation in the event, and are not displaced by
recoil effects from soft, wide angle radiation. We then
identify the axis defined in this way of the highest energy
jet in the event and cluster all radiation within an angle of
π=2 of this axis into one hemisphere, and all of the
remaining radiation into the other hemisphere. This effec-
tively defines an exclusive cone jet algorithm. We then
randomly choose one of the hemispheres to be the left
hemisphere, and the other to be the right hemisphere.
With these hemisphere definitions, we then measure

energy correlation functions on each hemisphere. The two-
point energy correlation functions eðβÞ2 are defined for eþe−
collision events as

eðβÞ2 ¼ 1

E2
J

X
i<j∈J

EiEj

�
2pi · pj

EiEj

�
β=2

; ð6Þ
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where EJ is the total energy of the jet (or otherwise
identified region), the sum runs over all distinct pairs of
particles in the jet, and β is an angular exponent required to
be larger than 0 by IRC safety. Note that for massless
particles,

2pi · pj

EiEj
¼ 2ð1 − cos θijÞ; ð7Þ

and so larger values of β give greater weight to wide-angle
emissions. The two-point energy correlation function is
nonzero for a jet with two particles. By separately meas-

uring eðβÞ2 in each hemisphere and demanding that both are
nonzero requires that each hemisphere has at least two
particles. We will denote the energy correlation functions

measured on the left (right) hemisphere as eðβÞ2;L (eðβÞ2;R).
We emphasize that no other cuts are performed: the left

and right hemisphere energy correlation functions are
measured on every eþe− → hadrons collision event.

B. Perturbative calculation

With robust jet definitions and observables measured on
the jet hemispheres, we now calculate the joint probability
distribution or double differential cross section of the
measured values of eðβÞ2;L and eðβÞ2;R. Our calculation will be
accurate to NLL order, and here we will not include fixed-
order corrections. These are expected to be a small effect on
our results because the bulk of the distribution is in the
region where logarithms of the observables are large, and
therefore well-described by a resummed calculation.
The first relevant fixed-order corrections arise at Oðα2sÞ,

when each hemisphere has an extra emission. The OðαsÞ
corrections are not representative of power corrections,
because one hemisphere necessarily has zero mass. That
means that at OðαsÞ, the hemispheres are completely
uncorrelated (except for total momentum conservation).
Matching fixed-order at Oðα2sÞ to our resummed expres-
sions will be addressed in future work.
For the resummation of energy correlation functions

measured in each hemisphere, there are two components
that contribute to NLL accuracy. First, there are global
logarithms, which arise from soft or collinear emissions in
each hemisphere that are uncorrelated with emissions in the
other hemisphere. In App. A, we present the calculation of
the global logarithms of the two-point energy correlation
functions measured on a hemisphere to NLL accuracy
using soft-collinear effective theory (SCET) [46–49],
though other methods can be used and produce identical
results [29]. The global cumulative probability distribution
or double cumulative cross section ΣG for the hemisphere
energy correlation functions can be expressed as

ΣGðeðβÞ2;L; e
ðβÞ
2;RÞ≡ ΣðeðβÞ2;LÞΣðeðβÞ2;RÞ; ð8Þ

where ΣðeðβÞ2;LÞ is the global NLL resummed cumulative
distribution of the left-hemisphere energy correlation func-
tion. Because the left and right hemispheres are otherwise

identical, ΣðeðβÞ2;LÞ is identical to ΣðeðβÞ2;RÞ. If this was the only
contribution to the distribution, then the mutual information
of the two hemispheres would be zero, as there is no
correlation between between the hemispheres.
However, in addition to global logarithms, at NLL

accuracy, there are also NGLs that must be included that
introduce correlations between the hemispheres. To this
accuracy, NGLs can be included by Monte Carlo simu-
lation [2] or by solving the Banfi-Marchesini-Smye (BMS)
equation [9]. Here, we will use the dressed gluon expansion
[22], including NGLs with the one-dressed gluon approxi-
mation. The one-dressed gluon does not include complete
NGLs at NLL accuracy, but was shown to agree with the
solution of the BMS equation at the percent level over the
range

αsCA

π

���� log e
ðβÞ
2;R

eðβÞ2;L

����≲ 1.5:

The one-dressed gluon resummation of nonglobal loga-
rithms can be expressed as

Sð1;NGLÞnn̄ ðμL; μRÞ ¼ 1 −
2CF

β0

�
γE

���� log αsðμRÞαsðμLÞ
����

þ β0
2CA

logΓ
�
1þ 2CA

β0

���� log αsðμRÞαsðμLÞ
����
��

:

ð9Þ

Here, ΓðxÞ is Euler’s gamma function, γE ≃ 0.577 is the
Euler-Mascheroni constant, and β0 is the leading coeffi-
cient of the β function,

β0 ¼
11

3
CA −

2

3
nf; ð10Þ

where nf is the number of active quark flavors. The scales
μL and μR are set by the measured values of the left
and right hemisphere energy correlation functions. Up to
factors of order 1, the left hemisphere scale is, for example,

μL ≃ eðβÞ2;LEL; ð11Þ

where EL is the energy of the left hemisphere. This scale
can be varied to provide a measure of perturbative
uncertainties.
Then, to NLL accuracy with the one-dressed gluon to

capture NGLs, the double cumulative cross section of the
hemisphere energy correlation functions can be expressed as

ΣðeðβÞ2;L; e
ðβÞ
2;RÞ ¼ ΣðeðβÞ2;LÞΣðeðβÞ2;RÞSð1;NGLÞnn̄ ðμL; μRÞ: ð12Þ
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The double differential cross section or joint probability
distribution is found by the double derivative:

pðeðβÞ2;L; e
ðβÞ
2;RÞ ¼

1

σ

∂2

∂eðβÞ2;L∂eðβÞ2;R

ΣðeðβÞ2;L; e
ðβÞ
2;RÞ: ð13Þ

With this result, we can then calculate the mutual informa-
tion Iβ as defined in Eq. (1).2

In Fig. 1, we plot the mutual information Iβ as calculated
from Eq. (13) as a function of the angular exponent β for
eþe− collisions at 1 TeV center of mass energy. As
expected, the mutual information is nonzero and increases
with β, reflecting the increasing importance of soft, wide
angle emissions to the energy correlation functions. The
lighter band is representative of theoretical uncertainties,
determined by varying the natural scales appearing in the
double differential cross section by factors of 2 and taking
the envelope. While the uncertainties are large, the increase
of Iβ with β is robust.
It is interesting to study the sensitivity of the mutual

information Iβ to the size of the NGLs. We can demonstrate
this sensitivity by modifying the one-dressed gluon by a
coefficient B to be

Sð1;NGLÞnn̄ ðμL; μR;BÞ ¼ 1 − B
2CF

β0

�
γE

���� logαsðμRÞαsðμLÞ
����

þ β0
2CA

logΓ
�
1þ 2CA

β0

���� log αsðμRÞαsðμLÞ
����
��

:

ð14Þ

By varying B we can observe the corresponding response
of the mutual information. In Fig. 2, we plot the mutual
information Iβ for B ¼ 0.5, 1, 2, without including theo-
retical uncertainties. Iβ exhibits roughly linear dependence
on B, demonstrating that this observable is very sensitive to
both the value of αs and the size of nonglobal effects.

C. Including nonperturbative effects

One can additionally include the effects of nonperturba-
tive physics due to hadronization by convolution with a
nonperturbative shape function [52,53] because the energy
correlation functions are additive observables. Korchemsky
and Tafat [53] introduced a shape function differential in
both hemisphere scales ϵL and ϵR, FðϵL; ϵRÞ. The non-
perturbative distribution can then be expressed as

σðeðβÞ2;L;e
ðβÞ
2;RÞ

¼
Z

dϵLdϵRFðϵL;ϵRÞσp
�
eðβÞ2;L−

ϵL
EL

;eðβÞ2;R−
ϵR
ER

�
; ð15Þ

where σp denotes the perturbative distribution. The shape
function is normalized,

1 ¼
Z

dϵLdϵRFðϵL; ϵRÞ; ð16Þ

and has support over a region of size set by the non-
perturbative scale of QCD, ΛQCD. The parametrization of
the shape function introduced by Korchemsky and Tafat is

FðϵL; ϵRÞ ¼ N

�
ϵLϵR
Λ2

�
a−1

e−
ϵ2
L
þϵ2

R
þ2bϵLϵR

Λ2 : ð17Þ

N is set by the normalization of the shape function, and a,
b, and Λ are parameters of the shape function. By fitting
data for heavy jet mass, they suggested the values a ¼ 2,

FIG. 1. The mutual information Iβ as calculated to NLL
accuracy with the one-dressed gluon to capture NGLs. The lighter
band reflects conservative theoretical uncertainties.

FIG. 2. Plot of the dependence of the mutual information on the
size of the nonglobal contributions. The parameter B controlling
the size of the NGLs is varied from 0.5 to 2.

2While other nonglobal observables have appeared in the
literature e.g. that of Refs. [50,51], a key advantage of the use of
mutual information between IRC safe observables is that we have
a precise definition of the nonglobal correlations that are probed
in terms of an all-orders factorization theorem. The above
discussion defines precisely what this constitutes for the case
of hadronic jets in eþe−.
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b ¼ −0.4, and Λ ¼ 0.55 GeV. It is important to emphasize
that this is a parameterization, and other possibilities are
possible. Most generally, a complete basis of shape
functions should be considered [54].
The parameter b controls the amount of correlation

between the hemispheres introduced by nonperturbative
effects. A value of b ¼ 0 eliminates nonperturbative corre-
lations, while b > −1 is required for the shape function to be
normalizable. In general, we expect the amount of non-
perturbative correlation to depend on the angular exponent β
of the energy correlation functions. We are able to para-
metrize this dependence by considering simple limiting
cases. As β → ∞, the nonperturbative correlations should
become unbounded because the mutual information is
controlled by emissions right at the hemisphere boundary.
Therefore, as β → ∞, we expect that b → −1. If β ≤ 1, then
collinear emissions live at an equal or lower virtuality than
soft emissions. Thus, for β ≤ 1, nonperturbative corrections
will be dominated by high energy collinear splittings with
relative transverse momentum near the scale ΛQCD. The
nonperturbative correlations should therefore vanish for
β ≲ 1, because different hard collinear sectors are uncorre-
lated, up to corrections at higher powers in the observables.
Therefore, as β → 1, b → 0. A simple parametrization of b
that accounts for these expected limits is

b ¼ 1 − β

β
: ð18Þ

We do not, however, have a proof of this relation.
Measurement of b as a function of β, perhaps using our
mutual information observable, would shed light onto the
nonperturbative correlations between observables. For the
hemisphere mass, β ¼ 2 and b ¼ −0.5, close to the value
suggested by Korchemsky and Tafat. We will therefore use
this value of b in our analysis. Since our perturbative
uncertainties are large, we will not study in detail the
variation of nonperturbative parameters. Instead, our focus
is simply on showing how nonperturbative effects can be
incorporated, and understanding their impact on the mutual
information.
It is interesting to note that while to leading logarithmic

accuracy the mutual information, Iβ, vanishes in perturba-
tion theory, this is no longer true once nonperturbative
effects are included with a nonzero value of the shape
function parameter b. A nonzero b induces correlations
between the energy correlation functions as measured on
the left and right hemispheres even if they are not present
perturbatively. A measurement of the mutual information
could therefore also prove useful in constraining non-
perturbative correlations in event shape observables, and
improving their modeling in Monte Carlo programs.
The nonperturbative scale Λ will also have dependence

on β. From the universality of the leading nonperturbative
corrections [55,56], it has been demonstrated that for

observables like the energy correlation functions that are
additive and have an angular exponent parameter, the
nonperturbative scale Λ is

Λ ¼ Ω
β − 1

; ð19Þ

where Ω is a fixed energy scale set by a nonperturbative
matrix element. Following Korchemsky and Tafat, we
set Ω ¼ 0.55 GeV. Note that this is only sensible for
β > 1, where soft emissions dominate the nonperturbative
corrections.
While nonperturbative correlations can be large, they do

not necessarily result in a large change of the mutual
information. Nonperturbative corrections are only domi-
nant near the singular regions of phase space. For large
values of the energy correlation functions the effect of the
shape function reduces to a shift of the perturbative
distribution by an amount proportional to the nonpertur-
bative scale. However, a shift of the distribution does not
affect the mutual information (which can be seen by a
simple change of variables in its definition). So, non-
perturbative effects contribute to the mutual information an
amount suppressed by the volume of phase space in which
they dominate.
In Fig. 3, we plot the mutual information Iβ including

nonperturbative corrections, as a function of β. For this
plot, we set the parameters in the shape function to be

a ¼ 2;

b ¼ 1 − β

β
;

Λ ¼ 0.55 GeV
β − 1

:

FIG. 3. The mutual information Iβ as calculated to NLL
accuracy with the one-dressed gluon to capture NGLs including
a nonperturbative shape function (solid). The lighter band reflects
conservative theoretical uncertainties and the purely perturbative
result is shown for comparison (dashed).
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Additionally, we include an estimate of perturbative
uncertainties by varying scales in the perturbative distri-
bution. For comparison, we also include the perturbative
mutual information. We can only compute the nonpertur-
bative mutual information for β ≳ 1, for the reasons
described above. Especially as β increases, we see that
nonperturbative correlations further increase Iβ, as
expected. While we only plot for one value of the non-
perturbative parameter Λ, we found only very weak
dependence on this value.

IV. MONTE CARLO STUDY

In this section, we compare our analytical calculations of
nonglobal correlations to Monte Carlo simulation of eþe−
collision events. We generate eþe− collision events at
1 TeV center of mass energy with both Pythia 8.210

[57,58] and Vincia 1.2.02 [59–64] Monte Carlos. For com-
parison to our analytic calculations, we consider parton
level and hadron level events. We then cluster the event into
two jets with the exclusive eþe− kT algorithm [44] with
WTA recombination [30,31,45,50] as implemented in FastJet

3.1.3 [65]. About the axis of the highest energy jet in the
event, we cluster particles into one hemisphere if they lie
within an angle of π=2 of this axis, and cluster them into the
other hemisphere if they are outside this region. The
hemispheres are then randomly assigned to be left or right
and the energy correlation functions are measured on them.
The calculation of the mutual information from these

event samples is quite subtle, and a detailed discussion of
calculating mutual information from finite statistics is
described in Ref. [35].3 While we do not present a detailed
discussion of the calculation of mutual information on
finite data, we will present the results. Mutual information
can be equivalently defined through the Shannon entropies
of the various distributions. For observables a and b, the
mutual information can be written as

Iða; bÞ ¼ HðaÞ þHðbÞ −Hða; bÞ: ð20Þ

For binned data, the entropy HðaÞ is

HðaÞ ¼ −
X
i∈bins

ni
Na

ev
log2

ni
Nev

; ð21Þ

where Na
ev is the total number of events in the a sample and

nai is the number of events in bin i for observable a. For a
finite data set, the number of events per bin will fluctuate,
and the leading effect of these fluctuations on the mutual
information can be calculated. The mutual information is
then

Iða; bÞ ¼ I∞ða; bÞ −
1

2 log 2

�
nabins
Na

ev
þ nbbins

Nb
ev

−
nabbins
Nab

ev

�
þ � � �

ð22Þ

Here, I∞ða; bÞ is the mutual information with infinite
statistics, nabins is the number of bins in the a sample,
andNa

ev is the number of events in the a sample. To remove,
or at least minimize, effects of finite binning, we want to set
the term in parentheses in Eq. (22) equal to zero with
judicious choices of bin and sample sizes. The choice used
in this paper is to set nabins ¼ nbbins ≡ nbins and nabbins ¼ n2bins.
With this choice the one dimensional sample sizes are

Na
ev ¼ Nb

ev ¼
2Nab

ev

nbins
: ð23Þ

With this choice, we find that the mutual information that
we calculate on Monte Carlo data is largely independent of
the number of bins nbins. There do exist nonparametric
methods for estimating mutual information that often have
the advantage that a significantly smaller amount of data
can be used. We discuss one such algorithm in App. B.
We plot the extracted mutual information Iβ in both

parton level and hadron level Monte Carlo in Fig. 4. Both
Monte Carlos exhibit the characteristic increase in Iβ as β
increases, indicative of nonglobal correlations. The values
of Iβ are nicely consistent with our calculations at both
parton level (Fig. 1) and hadron level (Fig. 3), as well as
with each other. We do not have a clear explanation for the
slight discrepancy between the two generators observed at
higher β at parton level, as it is well within our perturbative
uncertainties. The Monte Carlo also manifests the expected
increase of nonglobal correlations with the addition of
hadronization.
Nonglobal effects and NGLs in particular, strictly first

occur at NLL order, and this observable demonstrates that
formally leading logarithmic parton showers do include
some amount of NGLs. This is perhaps not too surprising,
because even in the Monte Carlos it is possible that an
emission in the left hemisphere subsequently emits into the
right hemisphere. What may be surprising is that the
strength of these correlations seems to be consistent with
that calculated to NLL accuracy. Because of the slightly
different physics incorporated in the Monte Carlo predic-
tions and the analytic calculations, we have chosen not to
show them on the same plot. As nonglobal effects are
probed in more detail, it will important to understand,
preferably with a proof from the evolution kernels in the
parton shower, to what extent parton shower Monte Carlos
reproduce, for example, the BMS equation. It would also be
interesting to improve the perturbative uncertainties in the
analytic calculation of the mutual information by including
higher order NGLs, for example using the formalisms
proposed in Refs. [21,22,24,25], allowing for a more

3The effects described there have actually been known for a
very long time in other applications of mutual information; see,
e.g., Refs. [66,67].
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precise comparison between analytic calculations and
Monte Carlo programs.
To provide further support for our interpretation of the

rise of Iβ with β being due to nonglobal interactions of soft
QCD particles, in Fig. 5 we show a comparison of the
mutual information on Pythia dijet events measured before
and after the application of the modified mass drop (or
equivalently, soft drop) grooming procedure [26–28] with
fractional energy cut zcut ¼ 0.1. In analytic calculations,
this jet groomer has been shown to eliminate NGLs by
removing wide angle soft radiation from the jet. This
prediction is supported by Fig. 5, where the groomed Iβ
is small relative to Iβ measured on the original event, and
exhibits minimal dependence on β. This suggests that soft
wide angle radiation is not responsible for the residual
correlations. We have restricted the range of the plot to a
single unit interval in β, as for angular exponents β ≳ 2, the
values of the energy correlation function after grooming
become very small and our numerical methods become
unstable. Because the characteristic increase of Iβ with β is

not present in the groomed events, NGLs have indeed been
removed.

V. CONCLUSIONS

Despite their importance for precision jet calculations,
NGLs have never directly been observed. In this paper,
we introduced a novel procedure that allows us to isolate
nonglobal correlations and their manifestation as NGLs.
The correlation between hemispheres in eþe− collisions
as quantified by the mutual information is calculable and
measurable and we find good agreement between ana-
lytics and Monte Carlo simulation. This correlation is
also very sensitive to the value of the coupling αs, which
can be brought under better theoretical control with
higher-order calculations. Nonperturbative contributions
generically increase the correlation between the hemi-
spheres, but are still subdominant effects to perturbative
NGL correlations. The mutual information Iβ is sensitive
to physics formally beyond the accuracy of Monte Carlo
generators, and so could be a powerful observable for
tuning. Additionally, while we focused on correlations in
TeV collisions, this procedure could be applied for
collisions at the Z pole at LEP. Perturbative nonglobal
correlations would still exist, but nonperturbative corre-
lations would be significantly larger.
While we have focused our discussion on the mutual in

formation in the context of eþe− collisions it, or something
similar, can in principle be measured at a hadron collider. A
potentially clean measurement which is directly related to
our discussion at eþe− colliders is the decay of a color
singlet initial state into hadrons. One could create such a
sample at the LHC by identifying the hadronic decays of
electroweak bosons. With all particles from the decay, one
can boost the system to its center of mass, identify the
hemispheres, and measure the correlations. It would also be
interesting to use this observable to measure correlations
between jet properties in pp → dijets, or more generally in
QCD events. In particular, this procedure can be entirely
data driven, and could be used as a powerful probe of

FIG. 5. The mutual information for eþe− → dijets before and
after the application of the modified mass drop (mMDT)
grooming procedure.

FIG. 4. The mutual
information Iβ as cal-
culated in Pythia and
Vincia Monte Carlo at
(a) parton-level and
(b) hadron-level.
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correlations for measurements made in distinct regions of
the detector. Experimentally, this would be significantly
challenging, especially controlling effects from contami-
nation. Nevertheless, because it probes explicitly higher-
order physics, measuring these nonglobal correlations
could provide powerful insight into subleading QCD
effects.
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APPENDIX A: GLOBAL LOGARITHM
RESUMMATION

In this appendix, we collect the expression of the
resummed cross section to NLL order for global logarithms
in the framework of SCET. The first factorization theorem
and resummation of the global logarithms of jet observ-
ables to NLL was presented in Ref. [68]. Ref. [31] extended
that analysis to the resummation of recoil-free angularities
[69,70] and energy correlation functions. To NLL accuracy,
the energy correlation functions were also resummed by
the CAESAR collaboration [29]. The master formula for
resummation of global logarithms of the hemisphere energy
correlation functions is

σGðeðβÞ2;L; e
ðβÞ
2;RÞ ¼ exp½KHðμ; μHÞ þ KJRðμ; μJRÞ þ KJLðμ; μJLÞ þ KSRðμ; μSRÞ þ KSLðμ; μSLÞ�

× exp

�
2γE
β

ðωJRðμ; μJRÞ þ ωJLðμ; μJLÞÞþ 2ðγE þ ðβ − 1Þ log 2ÞðωSRðμ; μSRÞ þ ωSlðμ; μSLÞÞ
��

μ2H
4E2

J

�
ωHðμ;μHÞ

×
�

μ2JR

ðeðβÞ2;RÞ2=βE2
J

�ωJR
ðμ;μJR Þ� μ2JL

ðeðβÞ2;LÞ2=βE2
J

�ωJL
ðμ;μJL Þ� μ2SR

ðeðβÞ2;RÞ2E2
J

�ωSR
ðμ;μSR Þ� μ2SL

ðeðβÞ2;LÞ2E2
J

�ωSL
ðμ;μSL Þ

×
1

Γð1 − 2
β ωJrðμ; μJRÞ − 2ωSRðμ; μSRÞÞ

1

Γð1 − 2
β ωJLðμ; μJLÞ − 2ωSLðμ; μSLÞÞ

: ðA1Þ

The functions Kiðμ; μiÞ and ωiðμ; μiÞ are defined as

Kiðμ;μiÞ¼Ci
Γ0

2β20

�
4π

αsðμiÞ
�
logrþ1

r
−1

�

þ
�
Γ1

Γ0

−
β1
β0

�
ðr−1− logrÞ− β1

2β0
log2r

�
−

γ0
2β0

logr;

ωiðμ;μiÞ¼−Ci
Γ0

2β0

�
logrþαsðμiÞ

4π

�
Γ1

Γ0

−
β1
β0

�
ðr−1Þ

�
;

ðA2Þ

and the various QCD constants are

β0 ¼
11

3
CA −

2

3
nf; ðA3Þ

β1 ¼
34

3
C2
A −

10

3
CAnf − 2CFnf; ðA4Þ

Γ0 ¼ 4; ðA5Þ

Γ1 ¼ 4CA

�
67

9
−
π2

3

�
−
40

9
nf; ðA6Þ

r ¼ αsðμÞ
αsðμiÞ

: ðA7Þ

The color factors and noncusp anomalous dimensions
appearing in the K and ω functions are:

CH ¼ −2CF; ðA8Þ

γH ¼ −12CF; ðA9Þ

CJ ¼
β

β − 1
CF; ðA10Þ

γJ ¼ 6CF; ðA11Þ

CS ¼
1

1 − β
CF; ðA12Þ

γS ¼ 0: ðA13Þ

For canonical resummation of the hemisphere observables
to NLL, one sets the scales μi to their canonical values as
determined by the ratios appearing in Eq. (A1). By
consistency of the factorization, the master formula is
independent of the scale μ. By varying the scales μi in
Eq. (A1) by order-1 amounts, one can estimate the
perturbative uncertainty by not resumming to higher
accuracy.
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APPENDIX B: NONPARAMTERIC ALGORITHM
FOR MUTUAL INFORMATION

In this appendix, we describe a nonparametric algorithm
for calculating the mutual information on a finite data set,
introduced in Ref. [71]. We will not present a proof of the
algorithm here, but just describe the method and demon-
strate its performance on simulated Monte Carlo data.
Given a two-dimensional data set over an N number of

events,

Z ¼ fX; Yg; ðB1Þ
we define the distance measure between two events as

∥z − z0∥ ¼ maxf∥x − x0∥; ∥y − y0∥g; ðB2Þ

where ∥ ∥ denotes any metric; for example, just the absolute
value of the difference of measured values of the observ-
ables in the two events. Here, X or Y denote the set of
events and x and y denote the measured values of a
particular event. Then, given an integer k, for each event

measurement zi, one determines the minimal distance ϵi
from zi in which k other events are contained. The estimate
of the mutual information is then

IðX; YÞ ¼ ψðNÞ þ ψðkÞ − hψðnx þ 1Þ þ ψðny þ 1Þi;
ðB3Þ

where ψðxÞ is the digamma function. nxðiÞ and nyðiÞ are the
number of events which have measured values of x and y,
respectively, that are within a distance of ϵi of event i. The
angle brackets hi denote averaging over the ensemble.
We demonstrate in Figs. 6 and 7 the effectiveness of this

procedure for calculating the mutual information of the
energy correlation functions of the two hemispheres from
Monte Carlo simulation, as a function of the number of
events N used in the sample. In these plots, we take k ¼ 1.
While it takes several thousand events for the fluctuations
of the mutual information to stabilize, for N ≳ 104, the
nonparametric mutual information does exhibit the
expected ordering as a function of angular exponent β.

FIG. 6. The non-
parametric mutual
information depend-
ence on the number
of events used in the
sample. Hadron-level
Vincia is shown in (a)
and Pythia in (b).

FIG. 7. The non-
parametric mutual
information depend-
ence on the number
of events used in the
sample, zoomed in to
larger sample sizes.
Hadron-level Vincia is
shown in (a) and
Pythia in (b).
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