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Abstract

While only 5% of the human genome is conserved across mammals, a substantially larger portion

is biochemically active, raising the question of whether the additional elements evolve neutrally or

confer a lineage-specific fitness advantage. To address this question, we integrate human variation

information from the 1000 Genomes Project and activity data from the ENCODE Project. A broad

range of transcribed and regulatory non-conserved elements show decreased human diversity,

suggesting lineage-specific purifying selection. Conversely, conserved elements lacking activity

show increased human diversity, suggesting that some recently became non-functional.

Regulatory elements under human constraint in non-conserved regions were found near color

vision and nerve-growth genes, consistent with purifying selection for recently-evolved functions.

Our results suggest continued turnover in regulatory regions, with at least an additional 4% of the

human genome subject to lineage-specific constraint.

Initial sequencing of the human genome revealed that 98.5% of human DNA does not code

for protein (1), raising the question of what fraction of the remaining genome is functional.

Mammalian conservation suggests that ~5% of the human genome (2–3) is conserved due to

non-coding and regulatory roles, but more than 80% is transcribed, bound by a regulator, or

associated with chromatin states suggestive of regulatory functions (4–6). This discrepancy

may result from non-consequential biochemical activity or lineage-specific constraint (7–8).

Similarly, evolutionary turnover in regulatory regions (9–11) may be due to non-

consequential activity in neutrally-evolving regions in each species, or turnover in functional

elements associated with turnover in activity. To resolve these questions, we need new

methods for measuring constraint within a species, rather than between species.

Single nucleotide polymorphisms (SNPs) within human populations have been identified

only every 153 bases per average (12), compared to 4.5 substitutions per site among the

genomes of 29 mammals (2), making it impossible to detect individual constrained elements

(13). Instead, aggregate measures of human diversity across thousands of dispersed elements

are needed. Such measures have been used to show that human constraint correlates with
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mammalian conservation (4, 14–17), mRNA splice sites (18), regulatory elements (19), and

that similar selective pressures act in human and across mammals (2). However, differences

between mammalian and human constraint remain unresolved. Recent positive selection has

been detected by unexpectedly many recent substitutions (20) or extreme patterns of linkage

disequilibrium (LD) and population differentiation (21). However, recent negative selection

has not been investigated, as the paucity of variants segregating in the global population

makes a selective decrease in the diversity of any given locus indistinguishable from a

fortuitous one.

Combining population genomic information from the 1000 Genomes Project (12) and

biochemical data of the ENCODE project (5) we estimated constraint associated with

diverse genomic functions in aggregate over 1567 Mb of `previously-unannotated' regions

encompassing 4.7 million SNPs, excluding exons, proximal promoter regions, and artifact-

prone regions (22) (Fig. 1A). On the basis of SNP density, heterozygosity, and derived allele

frequency (DAF), we developed a statistical procedure for measuring genome-wide

constraint accounting for mutation rate biases and interdependence of allele frequencies due

to LD (22). All P values are derived from this test unless otherwise noted. To distinguish

whether the increased human constraint in active regions (5) could be due solely to

mammalian conservation (Figs. 1B, S1), rather than lineage-specific constraint, we

specifically studied regions not conserved across mammals.

Remarkably, non-conserved active regions showed significant evidence of purifying

selection: SNP density was 10% lower (P<10−64), heterozygosity 13% (P<10−85), and DAF

5% (P<10−65), compared to reductions of 28%, 33%, and 16% respectively for conserved

regions. As non-conserved regions cover a >10-fold larger fraction of the genome, this

suggests that a significant fraction of human constraint lies outside mammalian-conserved

regions. The observed decrease in diversity is not due to undetected conserved regions or the

threshold used to defined conserved elements (Fig. S2), nor to background selection (23)

(Fig. 1C,D), biased gene conversion (Table S1), or decreased mapping to non-reference

alleles (22) (Table S2).

The level of human-specific constraint varies with the observed biochemical activity (Figs.

2, S3–S5, Table S3–S4). Short non-coding RNAs are as strongly constrained as protein-

coding regions. Long non-coding RNAs (lncRNAs) are significantly constrained in human,

even though they lack significant mammalian conservation (5), suggesting primarily

lineage-specific functions. These results are not explained by local mutation rate variation

nor transcription-mediated repair, as DAF is robust to both.

We also found human-specific constraint across non-conserved regulatory features (Fig.

2C,D). Regulatory motifs bound by their regulators show constraint similar to coding

regions, and consistently higher than for non-bound instances (P = 9.5 × 10−7, binomial test)

(Fig. 3). Regulatory regions defined by different assays, including DNase hypersensitivity

and transcription factor binding, show significant and similar levels of human constraint.

Different chromatin states (5, 24) show levels of constraint according to their roles (Fig.

2E,F), with promoter states similar to previously-annotated TSS-proximal regions, enhancer

states significant but weaker, and insulators similar to background regions, consistent with

Ward and Kellis Page 2

Science. Author manuscript; available in PMC 2014 July 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



enhancer and promoter regions requiring a larger number of motifs than insulator regions. In

contrast, regions that do not overlap with active ENCODE elements and inactive chromatin

states show even lower constraint than ancestral repeats (Fig. 2B,D,F), suggesting they may

provide a more accurate neutral reference than repeats that can have exapted functions (25).

Comparison with primate constraint suggests evolutionary turnover. Mammalian-conserved

regions lacking ENCODE activity show reduced human constraint relative to active regions

(SNP density P<10−41, heterozygosity P<10−52, DAF P<10−14) (Fig. 1B, S1), suggesting

recent loss in function and activity. These also show higher primate divergence relative to

active regions, suggesting some loss of constraint likely predates human-macaque

divergence. Conversely, a fraction of lineage-specific elements likely arose in the common

ancestor of primates, as human-macaque divergence mirrors human diversity for both active

and inactive non-conserved regions (Fig. S6).

To gain insights into the functional adaptations likely involved in this turnover, we applied

our aggregation approach to regulatory regions associated with genes of different functions

(22). We found that highly-constrained non-conserved enhancers are associated with retinal

cone cell development (P<10−4 in GO) and nerve growth (P<10−5 in GO, Reactome, and

KEGG; Fig. S7). This evidence of recent purifying selection for regulation of the nervous

system and color vision is intriguing given their accelerated evolution in primates (20, 26–

27).

We next studied how the number of aggregated regions affects the ability to discriminate

functional elements based on their increased human constraint (Fig. S8). We found no

discriminative power for individual elements, despite a significant global reduction in

heterozygosity (P<10−20, Mann-Whitney-Wilcoxon test on heterozygosity of individual

elements), but discriminative power increased significantly as the sample size grew (22).

We estimated the proportion of the human genome under constraint (PUC) after correcting

for background selection (Fig. S9), and found remarkable agreement between our orthogonal

metrics (Fig. 4A). We estimate that an additional 137 Mb (4%) of the human genome is

under lineage-specific purifying selection (Table S6), consistent with a recent cross-species

extrapolation (28).

Our results suggest that almost half of human constraint lies outside mammalian-conserved

regions, even though the strength of human constraint is higher in conserved elements.

Protein-coding constraint occurs primarily in conserved regions while regulatory constraint

is primarily lineage-specific (Fig. S10), as proposed during mammalian radiation (29).

While differences in activity between mammals (10–11) can be interpreted as lack of

functional constraint (30), our results suggest instead that turnover in activity is

accompanied by turnover in selective constraint. A minority of new regulatory elements lie

in recently-acquired primate specific regions (5) but the bulk lies in mammalian-aligned

regions that provided raw materials for regulatory innovation.

Genome-wide association studies suggest that 85% of disease-associated variants are non-

coding (8), a fraction similar to the proportion of human constraint we estimate lies outside

protein-coding regions (Table S6). This suggests that mutations outside conserved elements
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play important roles in both human evolution and disease, and that large-scale experimental

assays in multiple individuals, cell types and populations can provide a means to their

systematic discovery.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
(A) Only a small fraction (purple) of biochemically-active regions (red) overlaps conserved

elements (blue). (B) Active regions (red) show reduced heterozygosity relative to inactive

regions outside conserved elements (white), suggesting lineage-specific purifying selection

(black arrow). Conserved elements that lack activity (blue) show increased human

heterozygosity relative to active conserved regions (purple), suggesting recent loss of

selective constraint (white arrow). (C–D) Comparison of mean heterozygosity for

ENCODE-annotated elements (red) vs. non-ENCODE elements (black) and active

chromatin (green) vs. inactive (blue) shows a consistent reduction at varying genetic

distances from exons (C) and varying expected background selection (D), confirming the

heterozygosity reduction is due to purifying selection. Shaded regions represent a 95%

confidence interval on the mean heterozygosity assuming independence between bases.
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Fig. 2.
Mean frequency of derived alleles (vertical bar) relative to samples of similar size

(distribution) from the specified background for previous annotations (grey), ENCODE

(blue) and chromatin states (red). Sizes of regions are shown.
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Fig. 3.
Average heterozygosity for bound regulatory motif instances (x-axis) and non-bound

regulatory motif instances (y-axis), evaluated in non-conserved regions of the genome to

estimate lineage-specific constraint. Shown are all transcription factors with at least 30 kb of

bound instances (red points). Numbers in parentheses indicate number of bound and number

of non-bound instances, respectively.
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Fig. 4.
Estimated proportion of bases under constraint (PUC) in human using SNP density (x-axis)

and DAF (y-axis), across previously-annotated elements (squares) and newly-annotated

ENCODE elements (circles), in both conserved (blue) and non-conserved (black) regions.

Error bars denote 95% confidence intervals on the estimates. Each metric was linearly

scaled between 0% for non-ENCODE non-conserved regions and 100% for conserved non-

degenerate coding positions in each background selection bin separately (Fig. S8)

Ward and Kellis Page 9

Science. Author manuscript; available in PMC 2014 July 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


