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ABSTRACT
Conventional memory systems are organized as a rigid hier-
archy, with multiple levels of progressively larger and slower
memories. Hierarchy allows a simple, fixed design to benefit
a wide range of applications, because working sets settle at
the smallest (and fastest) level they fit in. However, rigid
hierarchies also cause significant overheads, because each
level adds latency and energy even when it does not capture
the working set. In emerging systems with heterogeneous
memory technologies such as stacked DRAM, these overheads
often limit performance and efficiency.

We propose Jenga, a reconfigurable cache hierarchy that
avoids these pathologies and approaches the performance of
a hierarchy optimized for each application. Jenga monitors
application behavior and dynamically builds virtual cache
hierarchies out of heterogeneous, distributed cache banks.
Jenga uses simple hardware support and a novel software
runtime to configure virtual cache hierarchies.

On a 36-core CMP with a 1 GB stacked-DRAM cache, Jenga
outperforms a combination of state-of-the-art techniques by
10% on average and by up to 36%, and does so while saving
energy, improving system-wide energy-delay product by 29%
on average and by up to 96%.

1. INTRODUCTION
Memory accesses often limit the performance and effi-

ciency of current multicores, and the trend towards lean and
specialized cores is placing mounting pressure on the en-
ergy and latency of memory accesses [14, 33]. Consequently,
cache hierarchies are becoming more sophisticated in two key
dimensions. First, cache hierarchies are starting to combine
multiple technologies with disparate tradeoffs, such as SRAM
and stacked DRAM [22, 38]. Second, hierarchies are becom-
ing increasingly distributed and non-uniform (NUCA [35]):
each core enjoys cheap accesses to physically-close cache
banks, but accesses to far-away banks are expensive.

Ideally, these heterogeneous, distributed cache banks should
be managed to approach the performance of application-
specific cache hierarchies that hold working sets at minimum
latency and energy. However, conventional systems are far
from this ideal: they instead implement a rigid hierarchy of
increasingly larger and slower caches, fixed at design time
and managed by hardware. Rigid hierarchies worked well in
the past because systems had few cache levels with widely
different sizes and latencies. However, the differences in
size and latency are smaller in modern systems, and rigid
hierarchies are accordingly less attractive.

For example, consider the tiled multicore in Fig. 1, with
16 MB of distributed on-chip SRAM cache banks and 1 GB of
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Figure 1: A modern multicore with distributed, on-chip
SRAM banks and a 3D-stacked DRAM cache.

distributed stacked DRAM cache banks. Several problems
arise when these banks are organized as a rigid two-level
hierarchy, i.e. with on-chip SRAM as an L3 and stacked DRAM
as an L4. The root problem is that many applications make
poor use of one or more cache levels, and often do not want
hierarchy. For example, an application that scans over a
32 MB array should ideally use a single cache level, sized to
fit its 32 MB working set and placed as close as possible. The
16 MB SRAM L3 in Fig. 1 hurts its performance and energy,
since it adds cache accesses without yielding many hits.

We begin by characterizing the benefits of application-
specific hierarchies over rigid ones (Sec. 2). We find that the
optimal application-specific hierarchy varies widely, both in
the number of levels and their sizes. Rigid hierarchies are
forced to cater to the conflicting needs of diverse applications,
and even the best-performing rigid hierarchy hurts applica-
tions that desire a markedly different configuration, degrading
performance by up to 51% and energy-delay product (EDP)
by up to 81%. Moreover, applications often have a strong
preference for a hierarchical or flat design. Using the right
number of levels yields significant improvements (up to 18%
in EDP). These results hold even with techniques that mitigate
the impact of unwanted hierarchy, such as prefetching and
hit/miss prediction [47].

To exploit this opportunity, we present Jenga, a reconfig-
urable cache architecture that builds single- or multi-level
virtual cache hierarchies tailored to each application (Sec. 3).
Jenga provides four desirable properties: (i) Jenga is flexi-
ble, adopting multi-level hierarchies for hierarchy-friendly
applications, and a single level for hierarchy-averse ones.
(ii) Jenga manages scarce capacity wisely among compet-
ing applications, placing data close to where it is used and
preventing harmful interference. (iii) Jenga continuously
monitors and reconfigures hierarchies, adapting to dynamic
application behavior. And (iv) Jenga is cheap to implement.

Jenga builds on prior work on partitioned NUCA caches [6,
8,36], specifically Jigsaw [6,8], which constructs single-level
virtual caches out of homogeneous SRAM banks (Sec. 4). Jig-
saw performs well in its proposed context. However, it does
not handle heterogeneous banks, cannot construct multi-level
hierarchies, and does not account for the limited bandwidth



of stacked DRAM. Jenga solves these problems through three
novel contributions:
• We design straightforward hardware extensions that let

software define multi-level virtual cache hierarchies, moni-
tor their behavior, and reconfigure them on the fly (Sec. 5).
• We present adaptive hierarchy allocation (Sec. 6.2), which

finds the right number of virtual cache levels and the size
of each level given the demand on the memory system.
• We introduce bandwidth-aware data placement (Sec. 6.3)

to account for limited bandwidth when placing data among
banks, avoiding hotspots that hamper existing techniques
that only consider limited cache capacity.
We evaluate Jenga on a 36-core CMP with 18 MB of on-

die SRAM and 1.1 GB of 3D stacked DRAM. (Jenga works
equally well on other configurations, e.g. “2.5D” DRAMs
connected via an interposer.) Compared to a combination
of state-of-the-art NUCA and stacked DRAM techniques, Jig-
saw and Alloy [47], Jenga improves performance by 10%
on average and by up to 36%. Jenga also reduces energy,
improving system-wide EDP by 29% on average and by up to
96%. By contrast, adding a DRAM cache as a rigid hierarchy
improves performance, but degrades energy efficiency. We
also show that each of our contributions is key to achieve
consistently high performance. We conclude that the rigid,
multi-level organization of current systems is ill-suited to
many applications. Perhaps future memory systems should
not be organized as a rigid hierarchy, but rather as a flexible
memory system with heterogeneity exposed to software.

2. MOTIVATION
Jenga’s reconfigurable cache hierarchy offers two main

benefits. First, Jenga frees the hierarchy from having to
cater to the conflicting needs of different applications. Sec-
ond, Jenga uses hierarchy only when beneficial, and adopts a
appropriately-sized flat organization otherwise. But do pro-
grams really desire widely different hierarchies, and do they
suffer by using a rigid one? And how frequently do programs
prefer a flat design to a hierarchy? To answer these ques-
tions and quantify Jenga’s potential, we first study the best
application-specific hierarchies on a range of benchmarks,
and compare them to the best overall rigid hierarchy.
Methodology: We consider a simple single-core system
running SPEC CPU2006 apps (later sections evaluate multi-
program and multi-threaded workloads). The core has fixed
32 KB L1s and a 128 KB L2. To find the best hierarchy for
each app, we consider both NUCA SRAM L3 and stacked
DRAM L4 caches of different sizes. Latency, energy, and
area are derived using CACTI [43] and CACTI-3DD [10]. Each
SRAM cache bank is 512 KB, and each stacked DRAM vault
is 128 MB, takes the area of 4 tiles, and uses the latency-op-
timized Alloy design [47]. Larger caches have more banks,
placed as close to the core as possible and connected through
a mesh NoC. Sec. 7.1 details our methodology further.

Larger caches are more expensive [24, 25]: Area and static
power increase roughly linearly with size, while access la-
tency and energy scale roughly with its square root [54]. We
evaluate SRAM caches from 512 KB to 32 MB with access la-
tencies from 9 to 45 cycles and energy from 0.2 to 1.7 nJ, and
stacked DRAM caches from 128 MB to 2 GB with access laten-
cies from 42 to 74 cycles and access energies from 4.4 nJ to

6 nJ. Monolithic caches of the same size yield similar figures.
We make the following key observations:

1. The optimal application-specific hierarchy varies widely
in size and number of levels. We sweep all single- and
two-level cache hierarchies, and rank them by system-wide
energy-delay product (EDP), which includes core, cache, and
main memory static and dynamic power. Fig. 2 reports
the best hierarchy for each application. Applications want
markedly different hierarchies: seven out of the 18 memory-
intensive applications we consider prefer a single-level orga-
nization, and their preferred sizes vary widely, especially at
the L3. (Because Alloy is direct-mapped, some apps prefer
larger caches than their working set, e.g. libquantum prefers
256 MB of stacked DRAM for its 32 MB working set.)

512KB L3 1MB L3 2MB L3 4MB L3 8MB L3 128MB L3 256MB L3

No L4

128MB L4

256MB L4

512MB L4

1GB L4

2GB L4
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mcf

h264bzip2

milc

hmmer
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Figure 2: Best application-specific hierarchies (by EDP)
vary greatly in the number of levels and their sizes.

2. Rigid hierarchies sacrifice performance and efficiency.
The rigid hierarchy that maximizes gmean EDP across these
applications consists of a 512 KB SRAM L3 and a 256 MB
DRAM L4. This is logical, since six (out of 18) apps want a
512 KB L3 and seven want a 256 MB L3 or L4. However, Fig. 3
shows that applications that desire a different hierarchy can
do significantly better: up to 81% better EDP and 51% higher
performance. By comparing Fig. 2 and Fig. 3, we see that
the potential benefit is directly correlated to how different the
application-specific hierarchy is from the rigid one.
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Figure 3: EDP and performance improvements of the best
(EDP-optimal) application-specific cache hierarchy over
the best rigid hierarchy (512 KB L3 + 256 MB L4).

Fig. 3 also shows that, with application-specific hierarchies,
performance and EDP are highly correlated. This occurs



because better hierarchies save energy by reducing expensive
off-chip misses, and improving performance also reduces the
contribution of static power to total energy. We will exploit
this correlation by optimizing for performance in Jenga; as
we will show later, this strategy also helps EDP.
3. Applications have strong preferences about hierarchy.
Fig. 2 showed that many applications prefer a single- or a
two-level hierarchy. But is this a strong preference? In other
words, what would we lose by fixing the number of levels?
To answer this question, Fig. 4 reports, for each application,
the EDP of its best application-specific, two-level hierarchy
relative to the EDP of its best single-level, L3-only hierarchy.
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Figure 4: EDP improvement of the best two-level applica-
tion-specific hierarchy over the best single-level one. The
best hierarchy is the better of the two.

Fig. 4 shows that applications often have strong preferences
about hierarchy: 6 out of the 18 applications are hierarchy-
averse, and two-level organizations degrade their EDP by up
to 13%. Others are hierarchy-friendly and see significant EDP
gains, of up to 18%. This shows that fixing the hierarchy
leaves significant performance on the table, and motivates
adaptively choosing the right number of levels.
Putting it all together: Fig. 5 compares the gmean EDP and
performance gains of the best rigid single-level hierarchy (a
128 MB L3), the best rigid two-level hierarchy (a 512 KB L3
plus a 256 MB L4), the best application-specific single-level
cache size (i.e., L3 size with no L4), and the best application-
specific hierarchy (L3 size and L4 size, if present, from Fig. 2).
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Figure 5: Gmean EDP and performance improvements
of rigid 2-level, application-specific 1-level, and best ap-
plication-specific hierarchies.

Overall, hierarchy offers only modest benefits in rigid de-
signs since it is hampered by hierarchy-averse applications:
just 9% improved gmean EDP and 6% performance. In con-
trast, application-specific hierarchies substantially improve
performance and efficiency. Even a single-level cache of
the appropriate size solidly outperforms a rigid hierarchy, by
15% gmean EDP and 11% performance. Building multi-level
hierarchies (when appropriate) yields further improvements,

by 20% gmean EDP and 13% gmean performance. This moti-
vates the need for virtual cache hierarchies.

SRAM bank
(512 KB)

Stacked DRAM
(256 MB / vault) Virtual L2 cache

Virtual L1 cache

Figure 6: A 36-core Jenga system running four applica-
tions. Jenga gives each a custom virtual cache hierarchy.

3. JENGA OVERVIEW
Fig. 6 shows a 36-tile Jenga system running four applica-

tions. Each tile has a core, a private cache hierarchy (L1s and
L2), and a 512 KB SRAM bank. There are four stacked DRAM
vaults. Jenga builds a custom virtual cache hierarchy out of
the shared cache banks (i.e., 512 KB SRAM banks and stacked
DRAM vaults, excluding private caches) for each application
according to how it accesses memory. Letters show where
each application is running (one per quadrant), colors show
where its data is placed, and hatching indicates the second
virtual hierarchy level, when present.

Jenga builds a single-level virtual cache for two apps.
omnet (lower-left) uniformly accesses a small working set,
so it is allocated a single-level virtual cache in nearby SRAM
banks. This placement caches its working set at minimum
latency and energy. Misses from omnet go directly to main
memory, and do not access stacked DRAM. Similarly, mcf
(upper-left) uniformly accesses its working set, so it is also al-
located a single-level virtual cache—except its working set is
much larger, so its data is placed in both SRAM banks and the
nearest DRAM vault. Crucially, although mcf’s virtual cache
uses both SRAM and stacked DRAM, it is still accessed as a
single-level cache, and misses go directly to main memory.

Jenga builds two-level virtual hierarchies for the other apps.
astar (upper-right) accesses a small working set intensely
and a larger working set less so, so Jenga allocates its local
SRAM bank as the first level of its hierarchy (VL1), and its
closest stacked DRAM vault as the second level (VL2). astar
thus prefers a hierarchy similar to the best rigid hierarchy in
Sec. 2, although this is uncommon (Fig. 2). Finally, bzip2
has similar behavior, but with a much smaller working set.
Jenga also allocates it a two-level hierarchy—except placed
entirely in SRAM banks, saving energy and latency over the
rigid hierarchy that uses stacked DRAM.

Later sections explain Jenga’s hardware mechanisms that
control data placement and its OS runtime that chooses where
data should be placed. We first review relevant prior work in
multicore caching and heterogeneous memory technologies.



4. BACKGROUND AND RELATED WORK
Non-uniform cache access (NUCA) architectures: NUCA
techniques [35] reduce the latency and energy of large caches.
Static NUCA (S-NUCA) [35] spreads data across all banks
with a fixed line-bank mapping, and exposes a variable bank
access latency. S-NUCA is simple, but only reduces latency
and energy by a constant factor. Dynamic NUCA (D-NUCA)
schemes improve on S-NUCA by adaptively placing data close
to the requesting core [3,4,5,9,11,12,23,29,41,45,55] using
a mix of placement, migration, and replication techniques.
D-NUCAs and hierarchy: D-NUCAs often resemble a hierar-
chical organization, using multiple lookups to find data, and
suffer from similar problems as rigid hierarchies. Early D-
NUCAs organized banks as a fine-grain hierarchy [5,35], with
each level consisting of banks at a given distance. However,
these schemes caused excessive data movement and thrash-
ing [5]. Later techniques adopted coarser-grain hierarchies,
e.g., using the core’s local bank as a private level and all banks
as a globally shared level [17,41,55], or spilling lines to other
banks and relying on a global directory to access them [45].
Finally, Cho and Jin [12], Awasthi et al. [3], R-NUCA [23]
and Jigsaw [6] do away with hierarchy entirely, adopting a
single-lookup design: at a given time, each line is mapped to
a fixed cache bank, and misses access main memory directly.

In systems with non-uniform SRAM banks, single-lookup
NUCAs generally outperform multiple-lookup NUCAs [6, 8,
23]. This effect is analogous to results in Sec. 2: multiple-
lookup D-NUCAs suffer many of the same problems as rigid
hierarchies, and single-lookup D-NUCAs eliminate hierarchy.
The key challenge in single-lookup designs is balancing off-
chip and on-chip data movement, i.e. giving enough capacity
to fit the working set at minimum latency and energy. In
other words, single-lookup D-NUCAs try to find the best-sized,
single-level hierarchy (Fig. 5). In particular, Jigsaw [6, 8] ad-
dresses this problem by letting software define virtual caches.

However, as we have seen in Sec. 2, systems with hetero-
geneous memory technologies introduce a wider tradeoff in
latency and capacity. Thus, hierarchy is sometimes desirable,
so long as it is used only when beneficial.
Stacked DRAM: Prior work has proposed using stacked DRAM
as either OS-managed memory [1,16,31,53] or an extra layer
of cache [18, 30, 39, 47]. When used as a cache, the main
challenge is its high access latency.

Much recent work has focused on the structure of cache
arrays. Several schemes [18, 30, 39, 40] place tags in SRAM,
reducing latency at the cost of SRAM capacity. Alloy [47]
uses a direct-mapped organization with tags adjacent to data,
reducing latency at the cost of additional conflict misses.
Jenga abstracts away details of array organization and is
orthogonal to these techniques. While our evaluation uses
Alloy caches, Jenga should also apply to other DRAM cache
architectures and memory technologies.

Some prior work reduces the overhead of hierarchy. Dy-
namic cache bypassing [30, 34] will not install lines at spe-
cific levels when they are predicted non-reused. However,
these schemes must still check each level for correctness,
wasting considerable energy and bandwidth (contrast with
omnet in Sec. 3, which bypasses stacked DRAM entirely).
Similarly, hit/miss prediction [47] reduces miss penalty by
speculatively issuing main memory accesses in parallel with

lookups. These techniques improve performance, but are
wasteful on mispredictions and also must check all levels
for correctness. Jenga complements these techniques (we
use hit/miss prediction in our evaluation), but improves upon
them by eliminating hierarchy when it is not useful.

5. JENGA HARDWARE
Jenga consists of hardware and software components. In

hardware, Jenga extends Jigsaw [6,8] in straightforward ways
to support DRAM cache banks and multi-level virtual hierar-
chies. We now present these hardware components, empha-
sizing differences from Jigsaw at the end of the section. Sec. 6
presents Jenga’s OS runtime.
Overview: Jenga hardware provides four facilities. First, it
lets software organize collections of cache banks into virtual
cache hierarchies (VHs) with one or more levels. Second,
Jenga hardware lets software map data pages to those virtual
hierarchies. All accesses to a page then go through the virtual
hierarchy. Third, Jenga hardware provides monitors that
gather the miss curves of each virtual hierarchy. Fourth,
Jenga hardware provides fast reconfiguration mechanisms.

Fig. 7 shows the tiled CMP we use to present Jenga. Each
tile has a core, a directory bank, and an SRAM cache bank.
The CMP also has distributed stacked DRAM vaults. Jenga
also supports other configurations, e.g. “2.5D” systems that
connect stacked DRAM vaults via an interposer (Sec. 7.6).
Virtual hierarchies: To dynamically adapt the memory sys-
tem, Jenga allows software to define many virtual hierarchies
cheaply (several per thread), sized at fine granularity and
placed among physical cache banks. Jenga supports virtual
hierarchies of one or two levels, called VL1 and VL2 respec-
tively. (Recall that Jenga operates in the shared cache banks—
VL1 and VL2 are different from each core’s private L1s and L2.)
Furthermore, to support more VHs than physical banks, each
bank can be optionally partitioned. Partitioning lets multiple
VHs share a single physical bank without interference.

In our evaluation, we partition SRAM but do not partition
stacked DRAM. This is for two reasons: (i) SRAM capacity
is scarce and highly contended, but stacked DRAM is not,
and (ii) high associativity is expensive in DRAM caches [47],
making partitioning more costly.

The key hardware support is the virtual hierarchy table
(VHT), a small structure that provides a configurable layer of
indirection between a line’s address and its physical location.
Jenga also makes minor changes to other system components.
Mapping data to banks: Software maps data to VHs using
the virtual memory system. Each page table entry is extended
with a VH id. On a private cache miss, the core uses the line
address and its VH id to find its VL1 bank and (possibly) VL2
bank, using the virtual hierarchy table (VHT), shown in Fig. 8.

Each of the VHT entries consists of two arrays of N bank
ids each; one array for the VL1 configuration, and another
for the VL2 configuration. As shown in Fig. 8a, to find the
bank and bank partition ids the address is hashed, and the
hash value (mod N) selects the bucket. Having more buckets
than physical banks allows Jenga to spread accesses across
bank partitions in proportion to their capacities. For example,
Fig. 8c shows a VL1 consisting of bank partitions X and Y. X
is 128 KB and Y is 384 KB (3× larger). By setting one-fourth
of VHT entries in the VL1 descriptor to X and three-fourths to
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Figure 8: The virtual hierarchy table (VHT) finds the VL1 and VL2 banks for each private
cache miss. Jenga sets VHT entries to spread accesses evenly across virtual cache capacity.

Y, Y receives 3× more accesses than X. Thus, together X and
Y behave like a 512 KB cache [6, 7].

Because VHT accesses are narrow (12 bits at 36 tiles), Jenga
accesses the VHT in parallel with every private L2 access so
that misses can be routed to their VL1 bank immediately.
Fig. 8b shows how the VHT controls the directory, VL1, and
VL2 banks traversed on each access.
Types of VHs: Jenga’s OS-level runtime creates one thread-
private VH per thread, one per-process VH for each process,
and a global VH. Data used by a single thread is mapped to
its thread-private VH; data used by multiple threads in the
same process is mapped to the per-process VH; and data used
by multiple processes is mapped to the global VH. Pages are
reclassified efficiently [6] (e.g., when a thread-private page is
accessed by another thread, it is remapped to the per-process
VH), though in steady state this happens rarely.
Coherence: Unlike Jigsaw, which uses in-cache directories,
Jenga uses separate directory banks to track the contents of
private caches. Separate directories are much more efficient
when the system’s shared cache capacity greatly exceeds its
private capacity. However, this requires a careful mapping of
lines to directory banks to keep latency low.

Jenga maintains coherence using two invariants. First,
private cache misses check the directory before accessing the
VL1. This ensures private caches stay coherent. Second, in
the shared levels, lines do not migrate in response to accesses.
Instead, between reconfigurations, all accesses to the same
line follow the same path (i.e., through the same VL1 and
VL2 banks). For example, in Fig. 7, if a line maps to the top-
right SRAM bank, accesses to that line will go to that bank
regardless of which core issued the access. This mapping only
changes infrequently, when the VH is reconfigured. Having
all accesses to a given address follow the same path maintains
coherence automatically. In particular, note that no directory
lookups are needed between VL1 and VL2 accesses.

To reduce directory latency, Jenga assigns a directory bank
near the VL1 bank. For example, in Fig. 7, VL1 accesses
that map to the SRAM cache bank in the top-right tile also
use the top-right tile’s directory bank; accesses to VL1 DRAM
banks use directory banks near the DRAM bank’s TSVs. This
optimization is critical to Jenga’s scalability and performance:
if directories were mapped statically, then directory latency
would increase with system size and eliminate most of Jenga’s
benefit. Instead, this dynamic directory mapping means that
access latency is determined only by working set size and
does not increase with system size [15].

Finally, pages known to be private to a single thread do not

need coherence and skip the directory entirely.
Monitoring: Jenga uses utility monitors [46] to gather the
miss curve of each VH. Miss curves allow finding the right
virtual hierarchies without trial and error. A small fraction
(∼1%) of VHT accesses are sampled into these monitors. We
use geometric monitors (GMONs) [8], set-associative struc-
tures that sample unevenly across ways to achieve both large
coverage and fine resolution with a moderate number of ways.
Reconfiguration support: Periodically (every 100 ms), Jenga
software changes the configuration of some or all VHs. Hard-
ware support makes reconfigurations efficient [8]. Directory
and cache banks walk their tag arrays and invalidate lines
whose location has changed. To avoid pausing cores while
this happens, each core copies the VH descriptors into the
shadow descriptors, and updates the primary VH descriptors.
While banks are invalidating old entries, accesses that miss
in the line’s new bank also check the old bank using shadow
descriptors. When all banks finish their invalidations, cores
stop checking old locations. The shadow descriptors are thus
only in use briefly during reconfiguration (e.g., for a few ms
every 100 ms), and a single set of shadow descriptors suffices.
Overheads: In our implementation, each VH descriptor has
N = 128 buckets and takes 384 bytes, 192 per virtual level
(128 2×6-bit buckets, for bank and bank partition ids). A
VHT has 3 entries, as each thread only accesses 3 different
VHs. Each of the 3 entries has two descriptors (shadow de-
scriptors, shown in Fig. 8), making the VHT ∼2.4 KB. We use
8 KB GMONs, and have two monitors per tile. In total, Jenga
adds ∼20 KB per tile, less than 720 KB for a 36-tile CMP, 4%
overhead over the SRAM cache banks.
Jenga extensions over Jigsaw hardware: Much of Jenga’s
hardware is similar to Jigsaw. The main extensions are:
• Jenga supports two-level virtual cache hierarchies.
• Jenga supports partitioned or unpartitioned cache banks.
• Jenga uses non-inclusive caches and separate, dynamically-

mapped directory banks, which are more efficient than
in-cache directories given large DRAM cache banks.

6. JENGA SOFTWARE
Periodically (e.g., every 100 ms), Jenga’s software runtime

reconfigures virtual hierarchies to minimize data movement.
Each reconfiguration consists of four steps, shown in Fig. 9:
1. Read miss curves from hardware monitors.
2. Divide cache capacity into one- or two-level virtual cache

hierarchies (Sec. 6.2). This algorithm returns the number
of levels and size of each level, but does not compute where
they are placed.
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3. Place each virtual cache hierarchy in cache banks, account-
ing for the limited bandwidth of stacked DRAM (Sec. 6.3).

4. Initiate a reconfiguration by updating the VHTs.
The resulting Jenga runtime is cheap, taking 450 lines of code
and 0.4% of system cycles (Sec. 6.4).

Jenga makes major extensions to Jigsaw’s runtime to sup-
port hierarchies and cope with limited stacked DRAM band-
width. We begin by briefly reviewing Jigsaw’s algorithms.

6.1 Jigsaw Algorithms

Cache size

La
te

n
cy

 →

Total
Miss
Access

Figure 10: Access latency
broken into cache access la-
tency (increasing) and miss
latency (decreasing).

Jigsaw chooses virtual
cache sizes to minimize end-
to-end access latency [8].
Fig. 10 shows that latency
consists of two components:
time spent on cache misses,
which decreases with cache
size; and time spent ac-
cessing the cache, which
increases with cache size
(larger virtual caches must
use further-away banks). Sum-
ming these yields the total
access latency curve of the
virtual cache. Jigsaw uses these curves to allocate capacity
among virtual caches, trying to minimize total latency with
the Peekahead algorithm [6]. Since the same trends hold for
energy, Jigsaw also reduces energy and improves EDP.

Jigsaw constructs the miss latency curve from the hardware
miss curve monitors. The miss latency at a given cache size
is just the expected number of misses (read directly from
monitor) times the memory latency.

Jigsaw constructs the cache access latency curve using
the system configuration. Fig. 11 shows how. Starting from
each tile (e.g., top-left in figure), Jigsaw sorts banks in order
of access latency, including both network and bank latency.
This yields the marginal latency curve; i.e., how far away the
next closest capacity is at every possible size. The marginal
latency curve is useful because its average value from 0 to s
gives the average access latency to a cache of size s.

After sizing virtual caches, the last step is to place virtual
caches in physical cache banks. Jigsaw places data in two
passes. First, virtual caches take turns greedily grabbing
capacity in their most favorable banks. Second, virtual caches
trade capacity to move more-intensely accessed data closer
to where it is used, reducing access latency [8].
Jenga-SINGLE: Even without major changes, Jigsaw’s algo-
rithms can already outperform rigid hierarchies on most apps.
We call this scheme Jenga-SINGLE, which uses Jigsaw’s al-
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Figure 11: Jenga models access latency by sorting capac-
ity according to latency, producing the marginal latency
curve that yields the latency to the next available bank.
Averaging this curve gives the average access latency.

gorithms to build single-level virtual caches out of SRAM
and stacked DRAM. Jenga-SINGLE is the simplest scheme that
exploits the opportunity presented in Sec. 2: As we saw, the
best-sized cache often outperforms the best rigid two-level hi-
erarchy. We find that Jenga-SINGLE suffices for applications
that are hierarchy-averse or do not stress memory bandwidth.

Jenga-SINGLE places working sets near applications, using
whatever bank types are most appropriate. In other words,
Jenga-SINGLE just treats stacked DRAM vaults as a different
“flavor” of cache bank—there is no hierarchy beyond the
private caches. For example in Fig. 6, Jenga-SINGLE would
place omnet’s working set in nearby SRAM, avoiding stacked
DRAM, and spread mcf’s across SRAM and stacked DRAM.

Jenga-SINGLE requires trivial changes to Jigsaw’s software:
First, we must model banks with different access latencies
and capacities, i.e. SRAM banks vs. stacked DRAM vaults.
Second, we must model the network latency to TSVs (or inter-
poser I/Os in “2.5D” systems). That is, stacked DRAM vaults
are also NUCA, and in fact a stacked DRAM vault can have
lower latency than far-away SRAM banks. Fig. 11 already
incorporates these extensions by accounting for the latency
and capacity of stacked DRAM in the marginal latency curve.

6.2 Virtual Hierarchy Allocation
Jenga-SINGLE works well for many apps, but for memory-

intensive or hierarchy-friendly applications, there is room
for improvement. Jenga extends Jigsaw to build two-level
hierarchies for hierarchy-friendly applications, significantly
improving performance and EDP for these apps.

Jenga decides whether to build a single- or two-level hi-
erarchy by modeling the latency of each and choosing the
lowest. For two-level hierarchies, Jenga must decide the size
of both the first (VL1) and second (VL2) levels. The tradeoffs
in the two-level model are complex [54]: A larger VL1 re-
duces misses, but increases the latency of both the VL1 and
VL2 since it pushes the VL2 to further-away banks. The best
VL1 size depends on the VL1 miss penalty (i.e., the VL2 access
latency), which depends on the VL2 size. And the best VL2
size depends on the VL1 size, since VL1 size determines the
access pattern seen by the VL2. The best hierarchy is the one
that gets the right balance. This is not trivial to find.

Jenga models the latency of a two-level hierarchy using
the standard formulation:

Latency = Accesses×VL1 access latency
+ VL1 Misses×VL2 access latency
+ VL2 Misses×Memory latency

We model VL2 misses as the miss curve at the VL2 size. This is



VL1
 Size

 →
Total Size →

←
 La

te
n
cy

One level
Two levels

Total Size →

La
te

n
cy

 →

One level
Best two level

Total Size →

La
te

n
cy

 →

Use one level
Use two levels
VL1 Size

V
L1

 S
iz

e
 →

(a) Full hierarchy model (b) Choose best VL1 (c) Choose best hierarchy

Figure 12: Jenga models the latency of each virtual hierarchy with one or two levels.
(a) Two-level hierarchies form a surface, one-level hierarchies a curve. (b) Jenga then
projects the minimum latency across VL1 sizes, yielding two curves. (c) Finally, Jenga
uses these curves to select the best hierarchy (i.e., VL1 size) for every size.

Jenga-Single Jenga-BW
0.0

0.2

0.4

0.6

0.8

1.0

S
ta

ck
ed

 D
R

A
M

B
an

dw
id

th
 U

til
iz

at
io

n

Figure 13: Distribution of
bandwidth across DRAM vaults
on lbm. Jenga-SINGLE suffers
from hotspots, while Jenga-BW
doesn’t.

a conservative, inclusive hierarchy model. In fact, Jenga uses
non-inclusive caches, but modeling non-inclusion is difficult.
Alternatively, Jenga could use exclusive caches, in which
the VL2 misses would be reduced to the miss curve at the
combined VL1 and VL2 size. However, exclusion adds traffic
between levels [51], a poor tradeoff with stacked DRAM.

The VL2 access latency is modeled similarly to the access
latency of a single-level virtual cache (Fig. 11). The differ-
ence is that rather than averaging the marginal latency starting
from zero, we average the curve starting from the VL1 size
(since the VL2 is placed after the VL1).

Fig. 12 shows how Jenga builds hierarchies. Jenga starts
by evaluating the latency of two-level hierarchies, building
the latency surface that describes the latency for every VL1
size and total size (Fig. 12a). Next, Jenga projects the best
(i.e., lowest latency) two-level hierarchy along the VL1 size
axis, producing a curve that gives the latency of the best
two-level hierarchy for a given total cache size (Fig. 12b).
Finally, Jenga compares the latency of single- and two-level
hierarchies to determine at which sizes this application is
hierarchy-friendly or -averse (Fig. 12c). This choice in turn
implies the hierarchy configuration (i.e. VL1 size for each
total size), shown on the second y-axis in Fig. 12c.

With these changes, Jenga models the latency of a two-
level hierarchy in a single curve, and thus can use the same
partitioning algorithms as in prior work [6, 46] to allocate
capacity between virtual hierarchies. The allocated sizes
imply the desired configuration (the VL1 size in Fig. 12c),
which Jenga finally places as described in Sec. 6.3.
Efficient implementation: Evaluating every point on the
surface in Fig. 12a is too expensive. Instead, Jenga evaluates
a few well-chosen points. Our insight is that there is little rea-
son to model small changes in large cache sizes. For example,
the difference between a 100 MB and 101 MB cache is often
inconsequential. Sparse, geometrically spaced points can
achieve nearly identical results with much less computation.

Rather than evaluating every configuration, Jenga first com-
putes a list of candidate sizes to evaluate. It then only evalu-
ates configurations with total size or VL1 size from this list.
The list is populated by geometrically increasing the spacing
between points, while being sure to include points where the
marginal latency changes (Fig. 11).

Ultimately, our implementation at 36 tiles allocates >1 GB
of cache capacity by evaluating just ∼60 candidate sizes per
VH. This yields a mesh of ∼1600 points in the two-level
model. Our sparse model performs within 1% of an impracti-

cal, idealized model that evaluates the entire latency surface.

6.3 Bandwidth-Aware Data Placement
The final improvement Jenga makes is to account for band-

width usage. In particular, stacked DRAM has limited band-
width compared to SRAM. Since Jenga-SINGLE ignores differ-
ences between banks, it produces pathologies for some apps
that access large working sets intensely.

The simplest approach to account for limited bandwidth
is to dynamically monitor bank access latency, and then use
these monitored latencies in the marginal latency curve. How-
ever, monitoring does not solve the problem, it merely causes
hotspots to shift between DRAM vaults at each reconfigura-
tion. Keeping a moving average can reduce this thrashing,
but since reconfigurations are relatively infrequent, averaging
makes the system unresponsive to changes in load.

We conclude that a proactive approach is required. Jenga
achieves this by placing data incrementally, accounting for
queueing effects at stacked DRAM on every step with a simple
M/D/1 queue latency model. This technique, called Jenga-
BW, eliminates hotspots on individual stacked DRAM vaults,
reducing queuing delay and improving performance.
Incremental placement: Optimal data placement is an NP-
hard problem. Virtual caches vary greatly in how sensitive
they are to placement, depending on their access rate, the
size of their allocation, and which tiles access them, etc..
Accounting for all possible interactions during placement is
challenging. We observe, however, that the main tradeoffs are
the size of the virtual cache, how frequently it is accessed, and
access latency at different cache sizes. We design a heuristic
that accounts for these tradeoffs.

Jenga places data incrementally. At each step, one virtual
cache gets to place some of its data in its most favorable
bank. Jenga selects the virtual cache that has the highest
opportunity cost, i.e. the one that suffers the largest latency
penalty if it cannot place its data in its most favorable bank.
This opportunity cost captures the cost (in latency) of the
space being given to another virtual cache.

Fig. 14 illustrates a single step of this algorithm. The op-
portunity cost is approximated by observing that if a virtual
cache does not get its favored allocation, then its entire al-
location is shifted further down the marginal latency curve.
This shift is equivalent to moving a chunk of capacity from
its closest available bank to the bank just past where its al-
location would fit. This heuristic accounts for the size of the
allocation and distance to its nearest cache banks.
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Figure 14: Jenga reduces total access latency by considering two factors when placing a chunk of capacity: (i) how far
away the capacity will have to move if not placed, and (ii) how many accesses are affected (called the intensity).

For example, the step starts with the allocation in Fig. 14a.
In Fig. 14b and Fig. 14c, each virtual cache (A and B) sees
where its allocation would fit on chip. Note that it does not
actually place this capacity, it just reads its marginal latency
curve (e.g., Fig. 11). It then compares the distance from its
closest available bank to the next available bank (∆d, arrows),
which gives how much additional latency is incurred if it does
not get to place its capacity in its favored bank.

However, this is only half of the information needed to
approximate the opportunity cost. We also need to know
how many accesses pay this latency penalty. This is given
by the intensity I of accesses to the virtual cache, computed
as its access rate divided by its size. We approximate the
opportunity cost as: ∆L≈ I×∆d.

In Fig. 14d, Jenga chooses to place a chunk of B’s allo-
cation since B’s opportunity cost is larger than A’s. Fig. 14
places a full bank at each step; our Jenga implementation
places at most 1/16th of a bank per step.
Bandwidth-aware placement: To account for limited band-
width, we update the latency to each bank at each step. This
may change which banks are closest (in latency) from dif-
ferent tiles, changing where data is placed in subsequent
iterations. Jenga thus spreads accesses across multiple DRAM
vaults, equalizing their access latency.

We update the latency using a simple M/D/1 queueing
model. Jenga models SRAM banks having unlimited band-
width, and DRAM vaults having 50% of peak bandwidth (to
account for cache overheads [13], bank conflicts, suboptimal
scheduling, etc.). Though more sophisticated models could
be used, this model is simple and avoids hotspots.

Jenga updates the bank’s latency on each step after data
is placed. Specifically, placing capacity s at intensity I con-
sumes s× I bandwidth. The bank’s load ρ is the total band-
width divided by its service bandwidth µ . Under M/D/1,
queuing latency is ρ/(2µ× (1−ρ)) [21, 44]. After updating
the bank latency, Jenga sorts banks for later steps. Re-sorting
is cheap because a single bank moves by at most a few places.

Fig. 13 shows a representative example of how Jenga-BW
balances accesses across DRAM vaults on lbm. Each bar
plots the access intensity to different DRAM vaults in Jenga-
SINGLE (green) and Jenga-BW (yellow). Jenga-SINGLE leads
to hotspots, overloading some vaults while others are idle,
whereas Jenga-BW evenly spreads accesses across vaults. As
a result, Jenga-BW improves performance by 10%, energy
by 6%, and EDP by 17%. Similar results hold for other apps
(e.g., omnet and xalanc, Sec. 7.5).

Cores

36 cores, x86-64 ISA, 2.4 GHz, Silvermont-like
OOO [32]: 8B-wide ifetch; 2-level bpred with
512×10-bit BHSRs + 1024×2-bit PHT, 2-way
decode/issue/rename/commit, 32-entry IQ and ROB,
10-entry LQ, 16-entry SQ; 371 pJ/instruction,
163 mW/core static power [37]

L1 caches 32 KB, 8-way set-associative, split D/I, 3-cycle latency;
15/33 pJ per hit/miss [43]

L2 caches 128 KB private per-core, 8-way set-associative,
inclusive, 6-cycle latency; 46/93 pJ per hit/miss [43]

Coherence MESI, 64 B lines, no silent drops; sequential consistency

Global NoC
6×6 mesh, 128-bit flits and links, X-Y routing, 3-cycle
pipelined routers, 1-cycle links; 63/71 pJ per router/link
flit traversal, 12/4 mW router/link static power [37]

SRAM
banks

18 MB, one 512 KB bank per tile, 4-way 52-candidate
zcache [48], 9-cycle bank latency, Vantage
partitioning [49]; 240/500 pJ per hit/miss, 28 mW/bank
static power [43]

Stacked
DRAM
banks

1152 MB, one 128 MB vault per 4 tiles, Alloy with MAP-I
DDR3-3200 (1600 MHz bus), 128-bit bus, 16 ranks, 8
banks/rank, 2 KB row buffer; 4.4/6.2 nJ per hit/miss,
88 mW/vault static power [10]

Main
memory

4 DDR3-1600 channels, 64-bit bus, 2 ranks/channel, 8
banks/rank, 8 KB row buffer; 20 nJ/access, 4 W static
power [42]

DRAM
timings

tCAS=8, tRCD=8, tRTP=4, tRAS=24, tRP=8, tRRD=4,
tWTR=4, tWR=8, tFAW=18 (all timings in tCK; stacked
DRAM has half the tCK as main memory)

Table 1: Configuration of the simulated 36-core CMP.

6.4 Overheads
Jenga’s configuration runtime, including both VH alloca-

tion and bandwidth-aware placement, takes less than 450
lines of C++ and completes in just 40 Mcycles, or 0.4% of
system cycles at 36 tiles. It also scales nearly in proportion
to system size, taking 0.3% of system cycles at 16 tiles.

7. EVALUATION
7.1 Experimental Methodology
Modeled system: We perform microarchitectural, execution-
driven simulation using zsim [50], and model a 36-core CMP
with on-chip SRAM and stacked DRAM caches, as shown in
Fig. 7. Each tile has one lean 2-way OOO core similar to
Silvermont [32] with private L1 instruction and data caches
and a unified L2. Table 1 details the system’s configuration.

We compare seven different cache organizations: (i) Our
baseline is an S-NUCA SRAM L3 without stacked DRAM. (ii) We
add a stacked DRAM Alloy cache with MAP-I hit/miss predic-
tion [47]. These organizations represent rigid hierarchies.

The next two schemes use Jigsaw to partially relax the rigid
hierarchy. Specifically, we evaluate a Jigsaw L3 both (iii) with-



1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
E

D
P

 v
s.

 S
-N

U
C

A

 7 12

astar bzip2 cactus calculix gcc gems gobmk h264 hmmer lbm leslie libqntm mcf milc omnet sphinx3 xalanc zeus

S-NUCA Alloy Jigsaw JigAlloy Jenga

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

gmean

(a) Energy-delay product.

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

S
pe

ed
up

 v
s.

 S
-N

U
C

A

3.
5

3.
6

astar bzip2 cactus calculix gcc gems gobmk h264 hmmer lbm leslie libqntm mcf milc omnet sphinx3 xalanc zeus

S-NUCA Alloy Jigsaw JigAlloy Jenga

1.0

1.1

1.2

1.3

1.4

1.5

1.6

gmean

(b) Weighted speedup.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
ne

rg
y 

vs
. S

-N
U

C
A

astar

S A Ji JA Je
n

bzip2

S A Ji JA Je
n

cactus

S A Ji JA Je
n

calculix

S A Ji JA Je
n

gcc

S A Ji JA Je
n

gems

S A Ji JA Je
n

gobmk

S A Ji JA Je
n

h264

S A Ji JA Je
n

hmmer

S A Ji JA Je
n

lbm
S A Ji JA Je
n

leslie

S A Ji JA Je
n

libqntm

S A Ji JA Je
n

mcf

S A Ji JA Je
n

milc

S A Ji JA Je
n

omnet

S A Ji JA Je
n

sphinx3

S A Ji JA Je
n

xalanc

S A Ji JA Je
n

zeus

S A Ji JA Je
n

Static Core Net SRAM Stacked DRAM Off-chip DRAM

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

mean

S A Ji JA Je
n

(c) Energy breakdown.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
ra

ffi
c 

vs
. S

-N
U

C
A

astar

S A Ji JA Je
n

bzip2

S A Ji JA Je
n

cactus

S A Ji JA Je
n

calculix

S A Ji JA Je
n

gcc

S A Ji JA Je
n

gems

S A Ji JA Je
n

gobmk

S A Ji JA Je
n

h264

S A Ji JA Je
n

hmmer

S A Ji JA Je
n

lbm

S A Ji JA Je
n

leslie

S A Ji JA Je
n

libqntm

S A Ji JA Je
n

mcf

S A Ji JA Je
n

milc
S A Ji JA Je
n

omnet

S A Ji JA Je
n

sphinx3

S A Ji JA Je
n

xalanc

S A Ji JA Je
n

zeus

S A Ji JA Je
n

L2↔SRAM
L2↔3D DRAM

SRAM↔SRAM
SRAM↔3D DRAM

SRAM↔Mem
3D DRAM↔Mem

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

mean

S A Ji JA Je
n

(d) Traffic breakdown.

Figure 15: Simulation results on 36 concurrent copies SPEC CPU2006 apps (rate mode).

out stacked DRAM and (iv) with an Alloy L4 (we call this
combination JigAlloy). Hence, SRAM adopts an application-
specific organization, but the stacked DRAM (when present)
is still treated as a rigid hierarchy. (We have also evaluated
R-NUCA [23] in the L3, and as in prior work [6, 8] it performs
worse than Jigsaw.)

Finally, we evaluate Jenga variants: (v) Jenga-SINGLE,
which does not build hierarchies; (vi) Jenga-BW, which ac-
counts for limited stacked DRAM bandwidth; and (vii) Jenga,
which also builds two-level hierarchies when beneficial.

All organizations that use Alloy employ MAP-I memory
access predictor [47]. When MAP-I predicts a cache miss,
main memory is accessed in parallel with the stacked DRAM
cache. Jenga uses MAP-I to predict misses to VL2s in SRAM
as well as DRAM.

Jigsaw and Jenga use Vantage [49] to partition SRAM cache
banks. Since stacked DRAM capacity is abundant, Jenga does
not partition stacked DRAM.
Workloads: Our workload setup mirrors prior work [8]. We
simulate mixes and copies of SPEC CPU2006 apps. We use
the 18 SPEC CPU2006 apps with ≥5 L2 MPKI (Fig. 15) and
fast-forward all apps in each mix for 20 B instructions. We
use a fixed-work methodology and equalize sample lengths
to avoid sample imbalance, similar to FIESTA [26]. We first
find how many instructions each app executes in 1 B cycles
when running alone, Ii. Each experiment then runs the full
mix until all apps execute at least Ii instructions, and consider

only the first Ii instructions of each app to report performance.
We simulate multithreaded SPEC OMP2012 apps that are sen-

sitive to improvement in cache hierarchy (those with at least
5% performance difference across schemes). We instrument
each app with heartbeats that report global progress (e.g.,
when each timestep or transaction finishes) and run each app
for as many heartbeats as the baseline system completes in
1 B cycles after the start of the parallel region.

We use weighted speedup [52] as our performance metric,
and EDP improvement (Per f ·Energybase/Per fbase ·Energy) to summa-
rize performance and energy gains. We use McPAT 1.3 [37] to
derive the energy of cores, NoC, and memory controllers at
22 nm, CACTI [43] for SRAM banks at 22 nm, CACTI-3DD [10]
for stacked DRAM at 45 nm, and Micron DDR3L datasheets [42]
for main memory. We report energy consumed to perform
a fixed amount of work. This system is implementable in
195 mm2 with typical power consumption of 60 W in our
workloads, consistent with area and power of scaled Silver-
mont-based systems [28, 32].

7.2 Multi-programmed repeats
Fig. 15 shows results when running 36 copies of each SPEC

CPU2006 app on the 36-tile CMP. Fig. 15a shows that Jenga
achieves the highest EDP, improving by 2.3× and up to 12×
over the S-NUCA baseline (on omnet). Jenga improves gmean
EDP over JigAlloy by 29% and up to 96% (on libquantum).
These gains come from being both faster and more efficient:
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Figure 16: Results on 20 mixes of 36 randomly-chosen SPEC CPU2006 apps: (a) EDP and (b) weighted speedup distribu-
tions, and (c) average energy and network traffic by component. Results are relative to the S-NUCA L3 baseline.

Fig. 15b shows that Jenga improves performance over S-
NUCA by up to 3.6×%/gmean 52%, and over JigAlloy by up
to 36%/gmean 9%; and Fig. 15c shows that Jenga improves
energy over S-NUCA by up to 70%/gmean 34%, and over
JigAlloy by up to 38%/gmean 15%.

Vs. S-NUCA and Alloy, Jenga shows that reconfigurable
caches significantly outperform conventional, rigid hierar-
chies. Vs. Jigsaw, Jenga shows that expanding virtual caches
across heterogeneous memories further reduces data move-
ment. Finally, vs. JigAlloy, Jenga shows that a reconfigurable
hierarchy can make much better use of heterogeneity and
non-uniform access latency than a rigid one.

Fig. 15d gives traffic breakdowns that help explain these
benefits. Each bar shows the NoC traffic broken down by
source-destination pairs, e.g. traffic from the L2 to stacked
DRAM or from SRAM to memory. Jigsaw greatly reduces L2-
to-SRAM traffic because it places data in nearby cache banks.
Alloy greatly reduces the traffic to memory, because stacked
DRAM captures most working sets. JigAlloy combines these
benefits, but actually adds traffic on average vs. Jigsaw due
to stacked DRAM misses that access both stacked DRAM and
main memory. Since stacked DRAM accesses are cheaper
than main memory, this is usually a good tradeoff.

However, Jenga reduces traffic further by skipping SRAM
or stacked DRAM entirely when they are not beneficial. Since
Jenga eliminates hierarchy, it also eliminates SRAM-to-stacked
DRAM traffic. L2 accesses instead go directly to stacked
DRAM, when it is beneficial (e.g., libquantum). Likewise,
applications that do not benefit from stacked DRAM simply
do not access it (e.g., astar). Some other applications (e.g.
gems) use both SRAM and DRAM as their single-level virtual
caches and thus benefit more from heterogeneous memories
than rigid hierarchy.

Comparing schemes, note that Alloy and JigAlloy some-
times consume more energy than their SRAM-only counter-
parts (gems, libquantum, milc). In contrast, Jenga saves
energy, since it only uses banks when they are beneficial.
Prior dynamic bypassing schemes must check all levels for
correctness, so they do not provide these benefits (Sec. 4).

7.3 Multi-programmed mixes
Figs. 16a shows the distribution of EDP and weighted

speedups over 20 mixes of 36 randomly-chosen memory-
intensive SPEC CPU2006 apps. Each line shows the speedup of
a single scheme over the S-NUCA baseline. For each scheme,
workload mixes (the x-axis) are sorted according to the im-

provement achieved. Hence these graphs give a concise sum-
mary of performance, but do not give a direct comparison
across schemes for a particular mix.

Jenga improves EDP on all mixes over the S-NUCA baseline,
by up to 3.5×/gmean 2.7×, over Alloy by 2.3×/2.0×%, over
Jigsaw by 88%/61%, and over JigAlloy by 31%/25%.

Jenga improves EDP because it is both faster and more effi-
cient than prior schemes. Jenga improves weighted speedup
over S-NUCA by up to 2.2×/gmean 73%, over Alloy by 55%/42%,
over Jigsaw by 46%/31%, and over JigAlloy by 16%/10%.

Fig. 16b compares the average energy and network traffic
across mixes for each scheme. Jenga reduces energy by 33%
over the S-NUCA baseline, by 31% over Alloy, by 15% over
Jigsaw, and by 12% over JigAlloy.

Jenga reduces network traffic by 63% over S-NUCA, by
69% over Alloy, by 30% over Jigsaw, and by 37% over JigAl-
loy. Whereas Alloy relies on speculative parallel accesses to
reduce latency, Jenga use stacked DRAM only when it is ben-
eficial. Fig. 16b shows that Alloy reduces energy and traffic
to main memory, but these gains are essentially replaced by
added energy and traffic to stacked DRAM. In contrast, Jenga
intelligently manages the placement of data in stacked DRAM
and so only uses stacked DRAM when beneficial.
7.4 Multi-threaded applications

Jenga’s benefits carry over to multi-threaded apps, shown
in Fig. 17. Jenga improves EDP by up to 4.2×/gmean 65%,
over Alloy by 2×/51%, over Jigsaw by 3×/36%, and over
JigAlloy by 60%/27%. Jenga improves performance over S-
NUCA by up to 2.1×/gmean 29%, over Alloy by 35/11%, over
Jigsaw by 82/14%, and over JigAlloy by 35%/6%. Jenga’s en-
ergy savings on multi-threaded apps exceed its performance
improvements: Jenga reduces energy by 22% over the S-
NUCA baseline, by 24% over Alloy, by 12% over Jigsaw, and
by 15% over JigAlloy.

Multi-threaded applications add an interesting dimension,
as data is either thread-private or shared among threads.
Jigsaw improves performance by placing private data near
threads (e.g., md). Alloy helps applications that do not fit
in SRAM (e.g., mgrid, smithwa, swim). JigAlloy combines
these benefits (e.g., smithwa, swim), but Jenga performs best
by placing data intelligently across SRAM and stacked DRAM.
7.5 Jenga Analysis
Factor analysis: Fig. 18 shows the performance of state-
of-the-art rigid hierarchies (JigAlloy) and different Jenga
variants on repeats of SPEC CPU2006. Overall, Jenga-SINGLE
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Figure 17: Simulation results for SPEC OMP2012 applica-
tions on several rigid hierarchies and Jenga.

0.75

0.80

0.85

0.90

0.95

1.00

1.05

S
pe

ed
up

 v
s.

 J
en

ga

lbm omnet xalanc
0.90

0.92

0.94

0.96

0.98

1.00

astar bzip2 calculix gcc

JigAlloy Jenga-Single Jenga-BW Jenga

0.90

0.92

0.94

0.96

0.98

1.00

gmean

Figure 18: Performance of different Jenga techniques.

suffices for most apps, but bandwidth-aware placement and
hierarchy are important to avoid pathologies on the applica-
tions shown.

Jenga-BW avoids bandwidth hotspots and significantly out-
performs Jenga-SINGLE on memory-intensive apps. Jenga-
BW improves performance on lbm, omnet, and xalanc, by
8%, 17%, and 8%, respectively.

Virtual hierarchies further improve results for the few
hierarchy-friendly apps: astar, bzip2, calculix, and gcc
(the system has insufficient capacity for 36 copies of libquan-
tum and milc). Jenga improves performance by 7%, 4%, 5%,
and 8% over Jenga-BW respectively. Without building two-
level hierarchies, Jenga-BW would underperform JigAlloy on
astar and calculix.

The gmean improvements are modest because Jenga-SINGLE
suffices for most apps: Jenga improves gmean performance
over Jenga-SINGLE by 4% and over Jenga-BW by 1%, but
Jenga-SINGLE by itself outperforms JigAlloy by 5%.

On mixes, Jenga-BW and Jenga improve gmean EDP by 3%
over Jenga-SINGLE. Mixes have very diverse miss curves, so
multi-level VHs provide little benefit over a single-level vir-
tual cache: since VL1s are accessed more intensely than VL2s,
with diverse access patterns it is almost always the case that
some app’s VL1 benefits more from capacity than other apps’
VL2s, and VL2s are rarely allocated—which speaks to the

inefficiency of building a rigid hierarchy for all applications.
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Figure 19: Speedup and traffic breakdown on micro-
benchmarks. (Legends in Figs. 15 and 18)

Hierarchy-friendly case study: Repeats of SPEC CPU2006
apps are often insensitive to hierarchy, but this is not true of all
applications. For example, cache-oblivious algorithms [20]
generally benefit from hierarchies because of their inherent
recursive structure. To study how Jenga helps such applica-
tions, we evaluate three benchmarks: btree, whcih performs
random lookups on binary trees of two sizes (S, 100K nodes,
13 MB; and L, 1M nodes, 130 MB); dmm, a cache-oblivious
matrix-matrix multiply on 1K×1K matrices (12 MB foot-
print); and fft, which uses cache-oblivious FFTW [19] to
compute the 2D FFT of a 512×512 signal (12 MB footprint).

Fig. 19 shows the performance and traffic breakdown for
those benchmarks with different cache architectures. Jenga
builds a two-level hierarchy entirely in SRAM for btree-S,
dmm and fft, improving EDP up to 51%, performance by
up to 13%, and energy by up to 25% over JigAlloy. For
btree-L, Jenga places the second level in stacked DRAM, and
improves EDP by 62% and performance by 11% over JigAlloy.
These apps benefit from hierarchy: vs. Jenga-SINGLE, Jenga
improves EDP by 20%, performance by 10%, and energy by
8%. These results demonstrate the need for reconfigurable
hierarchies for common applications.

rate-p rate-e rate-edp mix-p mix-e mix-edp

Jenga 1.55 1.51 2.32 1.74 1.50 2.71
Jigsaw + Alloy 1.40 1.27 1.75 1.60 1.35 2.26

Jigsaw [6, 8] 1.16 1.24 1.40 1.32 1.27 1.67
Alloy [47] 1.21 1.02 1.23 1.24 1.05 1.35

Table 2: Improvements in performance, energy, and EDP
of various schemes over S-NUCA on a 2.5D DRAM system.

7.6 Other System Architectures
We also evaluate Jenga under different a DRAM cache ar-

chitecture to show that Jenga is effective across different
packaging technologies. Specifically, we model a “2.5D”,
interposer-based DRAM architecture with 4 vaults located at
chip edges, totaling 2 GB and 200 GBps of bandwidth, similar
to AMD Fiji [2] and NVIDIA Pascal [27] packaging. Table 2
shows the gmean improvement of different schemes over S-
NUCA in performance, energy, and EDP under the interposer-
based system. Jenga has similar improvements in energy,
performance, and EDP as it does in a 3D stacked system.

8. CONCLUSION
Forthcoming memory technologies provide abundant ca-

pacity at high bandwidth. However, unless they are managed
effectively, their added latency and energy will limit sys-
tem performance. Rigid hierarchies have inherent flaws in



this regard. We have presented Jenga, a system that builds
application-specific virtual cache hierarchies out of hetero-
geneous, distributed cache banks with different packaging
techniques. Jenga uses heterogeneous caches when they are
beneficial, and avoids their overheads when they are not.
As a result, Jenga significantly improves performance and
efficiency over the state of the art.
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