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Hard-spin mean-field theory has recently been applied to Ising magnets, correctly yielding the absence and
presence of an interface roughening transition respectively in d = 2 and d = 3 dimensions and producing the
ordering-roughening phase diagram for isotropic and anisotropic systems. The approach has now been extended
to the effects of quenched random pinning centers and missing bonds on the interface of isotropic and anisotropic
Ising models in d = 3. We find that these frozen impurities cause domain boundary roughening that exhibits
consecutive thresholding transitions as a function of interaction anisotropy. For both missing-bond and pinning-
center impurities, for moderately large values of the anisotropy, the systems saturate to the “solid-on-solid” limit,
exhibiting a single universal curve for the domain boundary width as a function of impurity concentration.
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I. INTRODUCTION

Hard-spin mean-field theory [1,2] has recently been applied
to Ising magnets, correctly yielding the absence and presence
of an interface roughening transition respectively in d = 2
and d = 3 dimensions and producing the ordering-roughening
phase diagram for isotropic and anisotropic systems [3]. The
approach is now extended to the effects of quenched random
pinning centers and missing bonds on the interface of isotropic
and uniaxially anisotropic Ising models in d = 3. We find that
these frozen impurities cause domain boundary roughening
that exhibits consecutive thresholding transitions as a function
of interaction anisotropy. We also find that, for both missing-
bond and pinning-center impurities, for moderately large
values of the anisotropy, the systems saturate to the “solid-on-
solid” limit, exhibiting a single universal curve for the domain
boundary width as a function of impurity concentration.

II. THE ANISOTROPIC d = 3 ISING MODEL WITH
IMPURITIES AND HARD-SPIN MEAN-FIELD THEORY

A. The d = 3 anisotropic Ising model

The d = 3 anisotropic Ising model is defined by the
Hamiltonian

−βH = Jxy

xy∑
〈ij〉

sisj + Jz

z∑
〈ij〉

sisj , (1)

where at each site i of a cubic lattice, the spin takes on the
values si = ±1. The first sum is over the nearest-neighbor pairs
of sites along the x and y spatial directions and the second
sum is over the nearest-neighbor pairs of sites along the z

spatial direction. The system has ferromagnetic interactions
Jxy,Jz > 0, periodic boundary conditions in the x and y

directions, and oppositely fixed boundary conditions at the
two terminal planes in the z spatial direction, which yields
a domain boundary within the system when in the ordered
phase. Thus, the system is generally uniaxially anisotropic.
We systematically study the anisotropic Jxy �= Jz as well as
the isotropic Jxy = Jz cases.

B. Method: Hard-spin mean-field theory

In our current study, hard-spin mean-field theory [1,2],
which has been qualitatively and quantitatively successful in
frustrated and unfrustrated, equilibrium and nonequilibrium
magnetic ordering problems [3–17], including recently the
interface roughening transition [3], is used to study the
roughening of an interface by quenched random pinning center
sites or missing bonds. The self-consistency equations of
hard-spin mean-field theory [2] are

mi =
∑
{sj }

[( ∏
j

1 + mjsj

2

)
tanh

(∑
j

Jij sj

)]
, (2)

where mi = 〈si〉 is the local magnetization at site i, the sum
{sj } is over all possible values of the spins sj at the nearest-
neighbor sites j to site i, and mj are the magnetizations at the
nearest-neighbor sites. These coupled equations for all sites are
solved by local numerical iteration, in a 10 × 10 × 10 system.

III. DOMAIN BOUNDARY WIDTHS

A. Determination of the domain boundary width

In our study, the domain boundary is roughened in two
ways: (1) Magnetic impurities are included in the system by
pinning randomly chosen sites to si = +1 or to si = −1. The
impurity concentration p in this case is the ratio of the number
of pinned sites to the total number of sites. The numbers of
+1 and −1 pinned sites are fixed to be equal, to give both
domains an equal chance to advance over its counter. (2)
Missing bonds are created by removing randomly chosen
bonds. In this case, the concentration p is given by the ratio
of the number of removed bonds to the total number of bonds
when none is missing.

The domain boundary width is calculated by first consid-
ering each yz plane. The boundary width in each yz plane is
calculated by counting the number of sites, in the z direction,
between the two furthest opposite magnetizations in the plane
(Fig. 1). This number is averaged over all the yz planes. The
result is then averaged over 100 independent realizations of
the quenched randomness. We have checked that our results
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FIG. 1. A yz plane at temperature 1/Jxy = 0.1. Filled and empty
circles respectively represent the calculated local magnetizations with
mi > 0 and mi < 0. The left side is for the pure system, p = 0.
The right side is calculated with quenched random pinning centers
with concentration p = 0.24. Islands that are disconnected from
the pinned z boundary plane of their own sign (typically occurring
around an opposite pinning center deep inside a bulk phase) do not
enter the interface width calculation and are not shown here. Thus,
the disconnected pieces seen in this figure are actually part of an
overhang, connected to the corresponding z boundary plane via the
other yz planes. The dashed lines delimit the domain boundary and
the separation between these dashed lines gives the domain boundary
width in this yz plane. The same procedure for determining the
interface width is also applied to the missing bond systems.

are robust with respect to varying the number of independent
realizations of the quenched randomness, as shown below.

B. Impurity effects on the domain boundary width

Our calculated domain boundary widths, as a function of
impurity (i.e., missing bond or pinned site) concentration p at
temperature 1/Jxy = 0.1, are shown in Fig. 2. The different
curves are for different interaction anisotropies Jz/Jxy . In the
lower panel for pinning-center impurity, the domain boundary
roughens with the introduction of infinitesimal impurity, for all
anisotropies: The curves have finite slope at the pure system.
In the upper panel for missing-bond impurity, the domain
boundary roughens with the introduction of infinitesimal
impurity for strongly coupled planes Jz/Jxy > 2.5, whereas
for weakly coupled planes Jz/Jxy < 2.5, it is seen that
infinitesimal or small impurity has essentially no effect on
the flat domain boundary. In the latter cases, the curves reach
the pure system with zero slope.

For both missing-bond and pinning-center impurities, for
moderately large values of Jz/Jxy , we find (Figs. 2 and 3) that
the systems saturate to the Jz/Jxy → ∞ “solid-on-solid” limit
[18]. Thus, the systems exhibit a single universal curve for the
domain boundary width as a function of impurity concentra-
tion, onwards from all moderately large values of Jz/Jxy .

C. Successive roughening thresholds

A bunching of the curves is visible, in the domain-boundary
width curves in Fig. 2, especially in the upper panel for
missing-bond impurity. This corresponds to a thresholded
domain boundary roughening, controlled by the interaction
anisotropy. This effect is also visible in Fig. 3, by the steps

FIG. 2. (Color online) Calculated domain boundary widths ver-
sus impurity concentration p for different anisotropy Jz/Jxy values,
at temperature 1/Jxy = 0.1. In the upper panel, the horizontal axis
p is the ratio of the number of missing bonds to the total number
of bonds when none is missing. In the lower panel, the horizontal
axis p is the ratio of the number of pinned sites to the total number
of sites. In the upper panel for missing bonds, from the bottom to
the top curves, the anisotropies are Jz/Jxy = 0.1 to 5.0 with 0.1
intervals and Jz/Jxy = 5.5 to 10 with 0.5 intervals. The dashed
curves are calculated with the predicted threshold anisotropy values
of Jz/Jxy = 1,2,3,4,5. In the lower panel for pinning centers, the
anisotropies are Jz/Jxy = 0.5 to 2.5 with 0.1 intervals. The dashed
curves are calculated with the predicted threshold anisotropy values
of Jz/Jxy = 1,2. Beyond Jz/Jxy � 5 and 2.3, respectively for missing
bonds and pinning centers, the system saturates to the Jz/Jxy → ∞
“solid-on-solid” limit, exhibiting a single universal curve for the
domain boundary width as a function of impurity concentration, for
all Jz/Jxy � 5 and Jz/Jxy � 2.3 respectively.

in the curves which give the domain boundary widths as
a function of the interaction anisotropy Jz/Jxy for different
impurity concentrations p, at temperature 1/Jxy = 0.1. We
have checked that our results are robust with respect to varying
the number of independent realizations of the quenched
randomness. This is shown in Fig. 4.

Thresholded domain boundary roughening can be under-
stood by considering the effect of increasing the anisotropy.
We first discuss the case of missing-bond impurity. Upon
increasing Jz, for what value of Jz will a spin flip, e.g., from +1
to −1, thereby increasing the domain boundary width (directly
and/or by inducing a flip cascade)? Increasing Jz can flip a
spin and increase the width only if one of its bonds in the
±z direction is missing and the nonmissing bond connects to
a −1 spin. This flip will then happen for Jz = (q − q ′)Jxy ,
where (q,q ′) are the numbers of xy neighbors bonded to
the flipping spin that are, respectively, +1, −1. The possible
values are (q,q ′) = (4,0),(3,0),(2,0),(1,0),(3,1),(2,1), giving
the threshold values of Jz/Jxy = 1,2,3,4, in fact calculation-
ally seen in the top panels of Figs. 2 and 3. Furthermore, the
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FIG. 3. (Color online) Calculated domain boundary widths ver-
sus anisotropy Jz/Jxy , at temperature 1/Jxy = 0.1. The consecutive
curves, bottom to top, are for impurity concentration values of
p = 0.04 to 0.72 (top panel) and 1 (bottom panel) with 0.04 intervals.
These values of p are noted next to the curves. In the upper panel, p is
the ratio of the number of missing bonds to the total number of bonds
when none is missing. In the lower panel, p is the ratio of the number
of pinned sites to the total number of sites. The curves show the
deviations from the isotropic case Jz/Jxy = 1 (vertical dash-dotted
line) in the directions of strongly coupled planes Jz/Jxy > 1 or
weakly coupled planes Jz/Jxy < 1. The predicted threshold values
are shown with the vertical dash-dotted and dashed lines and are well
reproduced by the calculated widths. It is clearly seen to the right of
this figure that beyond Jz/Jxy � 5 and 2.3, respectively for missing
bonds and pinning centers, the system saturates to the Jz/Jxy → ∞
“solid-on-solid” limit, exhibiting a single universal value for the
domain boundary width as a function of impurity concentration, for
all Jz/Jxy � 5 and Jz/Jxy � 2.3 respectively.

simultaneous flip of two neighboring spins gives the threshold
value of Jz/Jxy = 5, also calculationally seen in the top panels
of Figs. 2 and 3. Beyond Jz/Jxy = 5, the system saturates to
the Jz/Jxy → ∞ solid-on-solid limit [18], exhibiting a single
universal curve for the domain boundary width as a function
of impurity concentration, for all Jz/Jxy � 5.

We now discuss the case of pinned-site impurity. We again
consider the effect of increasing Jz and investigate the value
of Jz that will flip the spin, e.g., from +1 to −1, thereby
increasing the domain boundary width (again, directly and/or
by inducing a flip cascade). Increasing Jz can flip this spin only
if both of its neighbors in the ±z direction are −1, with one of
these being part of a disconnected island seeded by a pinning
center. This flip will then happen for 2Jz = (q − q ′)Jxy , where

FIG. 4. (Color online) Calculated domain boundary widths ver-
sus impurity concentration p for different anisotropy Jz/Jxy values,
at temperature 1/Jxy = 0.1. These curves are obtained by averaging
over 100 (left panels) and 120 (right panels) independent realizations
of the quenched randomness. In the upper panel, the horizontal axis p

is the ratio of the number of missing bonds to the to the total number
of bonds when none is missing. In the lower panel, the horizontal
axis p is the ratio of the number of pinned sites to the total number of
sites. In the upper panel for missing bonds, from the bottom to the top
curves, the anisotropies are Jz/Jxy = 0.1 to 5.0 with 0.1 intervals. The
dashed curves are calculated with the predicted threshold anisotropy
values of Jz/Jxy = 1,2,3,4,5. In the lower panel for pinning centers,
the anisotropies are Jz/Jxy = 0.5 to 2.3 with 0.1 intervals. The dashed
curves are calculated with the predicted threshold anisotropy values of
Jz/Jxy = 1,2. Comparison of the left and right panels shows that our
results are robust with respect to varying the number of independent
realizations of the quenched randomness.

again q and q ′ are the numbers of xy neighbors bonded to the
flipping spin that are, respectively, +1 and −1. The possible
values are (q,q ′) = (4,0),(3,1), giving the threshold values
of Jz/Jxy = 1,2, calculationally seen in the bottom panels of
Figs. 2 and 3. Beyond Jz/Jxy � 2.3, the system saturates to
the Jz/Jxy → ∞ solid-on-solid limit [18], exhibiting a single
universal curve for the domain boundary width as a function
of impurity concentration, for all Jz/Jxy � 2.3.

In a similar vein, in the limit of xy planes weakly coupled
due to low Jz/Jxy and high concentration of missing bonds, the
domain boundary gains by the intermediacy of sending over-
hangs in the lateral x and y directions, eventually covering the
whole system via randomly magnetized xy planes. In this case,
the spin is flipped by the effect of Jxy upon decreasing Jz. This
flip occurs at 2Jz = (q − q ′)Jxy , where (q,q ′) has to be such
that Jz/Jxy is low. Thus, (q,q ′) = (2,1). [Other pairs of values,
(3,0) and (1,0), do not contribute to this spread of overhangs.]
Indeed, in Fig. 3, a rise in the domain for decreasing Jz < 0.5
is seen at high missing bond concentration.

The curves in Fig. 3 are domain boundary widths that
are affected by complicated (due to the random geometric

062131-3
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FIG. 5. (Color online) Calculated local magnetization magni-
tudes 〈|mi |〉 averaged across the system versus impurity concentration
p for different anisotropy Jz/Jxy values, at temperature 1/Jxy = 0.1.
In the upper panel, the horizontal axis p is the ratio of the number
of missing bonds to the to the total number of bonds when none is
missing. In the lower panel, the horizontal axis p is the ratio of the
number of pinned sites to the total number of sites. In each panel,
the dashed curve corresponds to the isotropic case Jz/Jxy = 1. The
full curves are for the anisotropic cases. Some of the Jz/Jxy values
for the anisotropic cases are indicated next to the corresponding
curves. Note that the average magnetization magnitude curve of the
isotropic case constitutes an upper boundary to the curves of the
anisotropic cases for the missing bonds system (upper panel).
The average magnetization magnitude curve of the isotropic case
constitutes a lower boundary to the curves of the anisotropic cases
for the pinning center system (lower panel). This is understandable
by the fact that missing bonds weaken the connectivity and therefore
the magnetization of the system, whereas pinning centers constitute a
strong aligning field to their neighboring spins. In curves in the lower
panel, the deviation from the isotropic case is symmetric, so that each
curve corresponds to two values of the anisotropy Jz/Jxy which are
above and below the isotropic case Jz/Jxy = 1.

distribution of the impurities) cascades of flips of groups of
spins, occurring continuously as the interaction anisotropy

is changed. The arguments given above are for single-spin
flips, which strongly affect the boundary width at the specific
anisotropy ratios.

We note that since in this system the interactions acting on
a given spin si can be competing, due to the presence of the
interface or of a neighboring pinning center, all of the local
magnetizations mi = 〈si〉, where the averaging is thermal, are
not saturated even at low temperatures. Such an effect has
been seen down to zero temperature in other systems with
competing interactions, as for example shown in Fig. 3 of
Ref. [19]. In our present study, the calculated magnitudes of
the local magnetizations averaged across our current system,
〈|mi |〉, are given in Fig. 5 and show this unsaturation.

IV. CONCLUSION

The effects of quenched random pinning centers and
missing bonds on the interface of isotropic and uniaxially
anisotropic Ising models in d = 3 have been investigated by
hard-spin mean-field theory. We find that the frozen impurities
cause domain boundary roughening that exhibits consecutive
thresholding transitions as a function of interaction anisotropy
Jz/Jxy . The numerical results, showing the thresholding
transitions as the bunching of domain boundary width versus
impurity concentration curves (Fig. 2) and steps in the domain
boundary width versus anisotropy curves (Fig. 3) agree with
our spin-flip arguments at the interface. The threshold effect
should be fully observable in experimental magnetic samples
with good crystal structure and point impurities. For both
missing-bond and pinning-center impurities, for moderately
large values of Jz/Jxy , the systems saturate to the Jz/Jxy → ∞
solid-on-solid limit, thus exhibiting a single universal curve
for the domain boundary width as a function of impurity
concentration, onwards from all moderately large values
of Jz/Jxy .
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