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Abstract—Advanced sensing and surveillance technologies
often collect traffic information with high temporal and spatial
resolutions. The volume of the collected data severely limits the
scalability of online traffic operations. To overcome this issue,
we propose a low-dimensional network representation where
only a subset of road segments is explicitly monitored. Traffic
information for the subset of roads is then used to estimate and
predict conditions of the entire network. Numerical results show
that such approach provides 10 times faster prediction at a loss
of performance of 3% and 1% for 5 and 30 minutes prediction
horizons, respectively.

Index Terms—Low-dimensional models, traffic prediction.

I. INTRODUCTION

Intelligent Transportation Systems (ITS) collect real-time
traffic information from various sources such as probe
vehicles, smartphone devices and infrastructure based traffic
sensors. With advancements in sensor technology, traffic data
(e.g., volume and speed) can be recorded on a large scale
and with high temporal resolution. Recorded data is frequently
used for historical analysis and traffic management operations
such as network monitoring, transportation planning and
congestion avoidance applications [1]. These applications
heavily rely on fast and accurate assessment of current
(estimation) and future (prediction) network states.

To model the road network, existing studies explicitly
address each road segment in that network. For large traffic
networks and online applications such an approach may
not be feasible. To overcome this problem we focus on
low-dimensional network models where only a subset of road
segments needs to be explicitly monitored.

In this study, we use column-based (CX) matrix
decomposition to express the original network in terms of
a small subnetwork. We refer to the small subnetwork as
the compressed state of the original network. We learn the
relationship between compressed and original (uncompressed)
network by analyzing the recorded data in offline manner. In
this way, we can represent the traffic network as a product
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of two low-rank matrices: (i) the subnetwork data and (ii)
the corresponding relationship matrix. We refer to this as
CX compression scheme. The CX compression scheme is
a stepping stone to compressed sensing and compressed
prediction applications.

In the case of compressed sensing we aim to infer the
present state of the entire network from the current traffic
state of the subnetwork [2]. We use the training data (collected
offline) to infer the relationship matrix. To assess the network
state we multiply the data from the subnetwork, obtained from
the testing set, with the relationship matrix, inferred from the
training data set. Our underlying assumption is that traffic
variables often vary smoothly across the traffic network [3].

In the matter of compressed prediction we apply the
CX-based method to infer the future state of the network.
First, we explicitly predict traffic state for the subnetwork
using traditional prediction algorithms. Then we multiply the
predicted data of the subnetwork with the relationship matrix,
inferred from the training data set. Similarly to compressed
sensing we rely on the observation that traffic conditions tend
to follow distinct patterns and traffic parameters often vary
smoothly [3], [4].

For our analysis, we consider the city-scale traffic
network in Singapore, comprising 17,967 road segments. The
numerical results show that the proposed methods can infer the
current and future states of the network, while substantially
improving the processing speed of the underlying modeling
algorithm. The reduction in computational time is proportional
to the compression ratio, i.e., the ratio of the number of links
in the subnetwork and the total number of links.

The paper is structured as follows. In Section II we
briefly review relevant literature. In Section III we introduce
the column based (CX) matrix decomposition method. In
Section IV we present three applications of the CX matrix
decomposition methods in the realm of traffic modeling:
compression, compressed sensing, and compressed prediction.
In Section V we describe the traffic data set analyzed in this
paper. In Section VI we provide and discuss results for our
experiments. In Section VII we summarize our contributions
and suggest topics for future research.

II. RELATED WORK

In this paper we propose a novel low-dimensional
network model to improve the scalability of estimation and
prediction operations in ITS. Low-dimensional representation
of large traffic data sets is traditionally obtained by Principal
Component Analysis (PCA) [3], [5], [6]. PCA provides an
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effective low-dimensional representation in terms of latent
variables and corresponding basis vectors. However, these
latent variables are hard to interpret. Moreover, even if we
obtain the basis vectors from historical data, we still need to
collect data from all sensors during online operation. Due to
this reason, PCA is often used for offline operations such as
compression and data preprocessing [6].

Simulation (model) and data driven approaches are
traditionally used to perform traffic estimation and
prediction [7], [8]. Simulation approaches can be used
for traffic management operations at various levels of network
granularity [7], [9], [10]. For large areas, macroscopic
and mesoscopic simulation tools (e.g., DYNAMIT) have
been adopted to build custom models, relying on historical
speed-density link relationships for that specific network [10].
In recent years, large volumes of collected data have served
for extensive model calibration of traffic dynamics. Extensive
calibration enhances the credibility of built simulation
models. However, such models are not generic and cannot be
translated from one network to another in a straightforward
manner. An alternative is to consider data driven methods.
These methods offer greater flexibility due to their generic
structure. Consequently, these methods are used to develop
highly accurate traffic estimation and prediction models [8],
[11], [12]. In all of these studies, data-driven techniques
explicitly predict traffic variables at each link in the observed
network. For large traffic networks this approach may not be
possible. By contrast, we wish to consider a more practical
option where only a subset of links is explicitly monitored.

III. COLUMN BASED (CX) DECOMPOSITION

The column based (CX) method has recently found
applications in many fields such as text processing, finance
and biology [13]–[15]; it uses only a subset of the columns
to reconstruct the entire data matrix. In our previous study,
we applied the column and row (CUR) based method to
impute a matrix of traffic data from a few columns (links)
and few rows (time instances) of that matrix [16]. Since the
CUR method occasionally requires traffic data for the entire
network, it cannot be applied for compressed prediction. The
CX-based method instead does not have this requirement. In
the following, we will briefly review the CX-based method.

Definition 1: Let A ∈ Rm×n be a given matrix. Let
C ∈ Rm×c be a matrix consisting of c columns of the
matrix A. The column-based (CX) matrix approximation Â
of A is defined as Â = CX, where X ∈Rc×n is a matrix that
expresses every column of A in terms of the basis provided
by the columns of C [17].

A. Column selection

In order to select the best subset of columns, for a
given size c, one needs to test all possible combinations.
However, the computational complexity of this brute-force
approach is O(nc) [13]. Due to this complexity, testing all
possible choices of c columns is typically not practical. To
alleviate this problem, several randomized algorithms have
been proposed [17], [18]. In our numerical experiments,
the SVD sampling method yields the best reconstruction
accuracy [16]. The SVD sampling algorithm assigns higher

selection probability to the road segments with larger traffic
speed variations [16]. This algorithm calculates the Euclidean
norm of top k right singular vectors of matrix A ∈ Rm×n to
assign a score Eai to each column [17]. This score (Eai ) is then
converted into a probability Pai and further used to sample the
columns:

Pai =
1
k

Eai =
1
k

k

∑
j=1

v2
i j ∀ i = 1, ...n, (1)

where vi j is the i-th coordinate of j-th right singular vector.

B. Relationship matrix

For the sampled column matrix C ∈ Rm×c, we compute
the relationship matrix X ∈ Rc×n, which will allow us to
represent the columns of matrix A∈Rm×n in terms of columns
of the matrix C [17]. The matrix X can be regarded as an
extrapolation matrix that maps the subnetwork associated with
C to the entire network represented by A. For given matrices
C and A, we compute the matrix X as X = C+A, where C+

is Moore-Penrose pseudo-inverse of matrix C [19].
IV. CX-BASED METHOD FOR TRAFFIC APPLICATIONS

In this section, we discuss how CX based method can
be used to perform compression, compressed sensing, and
compressed prediction of traffic data. For this purpose, we
consider the traffic data in the form of a matrix A ∈ Rm×n

where the columns of the matrix {ai}n
i=1 contain traffic data

from different roads {si}n
i=1. Rows represent time instances

{ti}m
i=1 at which the traffic data is recorded. Each matrix

cell (ai j) shows the numerical value of an observed traffic
variable (e.g., speed, volume) at location s j during the
interval of time (ti − T, ti) where T is the sampling period
(e.g., 5 or 15 minutes). Therefore, the i-th row vector
αi = [z(s1, ti)...z(sn, ti)] of A contains the traffic state for the
entire network at a particular time ti. Similarly, the j-th column
vector a j = [z(s j, t1)...z(s j, tm)]T of A contains the observed
condition at location s j during the entire recording period.
Hence, we can write traffic data matrix as A = [a1 ... an].
For the sake of simplicity, we use subscripts h, p and f in
the rest of the paper to denote historical, present and future
values, respectively.

A. Compression

Suppose that the matrix Ch contains the observed traffic
states of the c specific locations in the network, such that
{c1, ...,cc} ⊆ {a1, ...,an}. Then, we can approximate the data
matrix Ah as Âh = ChXh, where the matrix Xh contains the
relationships between the traffic condition at different locations
in the network. Hence, instead of storing the large matrix Ah,
we store the two smaller matrices Ch and Xh. The compression
ratio (CR) of such low-dimensional approximation is given by:

CRh =
mn

mc+ cn
. (2)

Column based (CX) compression scheme leads to simple
network representation. Although such compression scheme
does not outperform PCA, still it could be useful for
online traffic monitoring operations [16]. In the following we
discuss two attractive applications of CX-based compressed
representation, namely compressed sensing and compressed
prediction.



B. Compressed sensing

So far, we have assumed that the matrix Xh is stored
together with Ch leading to the compression of matrix Ah.
In this scenario, the matrix Xh is computed for a given data
matrix Ah and a column matrix Ch. Alternatively, one may
precompute a matrix Xh and re-use the same matrix to infer
A for any given C. Although we still need data from all the
links to precompute Xh, this operation can easily be performed
offline. Hence, during online operations, the system would
only require data from a small number of sensors. We refer
to this scenario as compressed sensing. It is noteworthy that
low-dimensional PCA models can not be used for compressed
sensing since PCA requires data from all sensors for both
offline and online operations.

The underlying assumption of the proposed method is
that the traffic conditions are stationary, so that a fixed
matrix X allows us to accurately reconstruct the original data
matrix A from C [3], [4]. Therefore, we can estimate the
present network state (α̂ i

p) as α̂ i
p = ci

pXh ∀i = k, ...m, where
α̂ i

p ∈ R1×n is a row vector which represents the current state
of the entire network for test data (i = k, ...m). Row vector
ci

p ∈ R1×c contains the information about current traffic
conditions at c specific locations in the network. Matrix Xh is
the relationship matrix, learned from a training data set. We
define the compression ratio for compressed sensing as ( n

c ).
Large traffic networks contain a diverse set of road

segments. We want to explore whether homogeneous
subnetworks can improve the overall performances of
compressed sensing. We divide the traffic network into s
mutually exclusive subnetworks such that αp = [α1...αs] where
αi ∈ R1×ni ∀i= 1, ...s. Then, we perform compressed sensing
for each subnetwork separately. At last, we merge the results
of the clustered subnetworks to infer the traffic state of the
entire network. Although different choices of temporal and/or
spatial clustering can be applied, we consider simple clustering
based on different road categories in this study.

The overall performance of the proposed compressed
sensing method is sensitive to the “compressibility” of
the network and “non-stationarity” in the traffic data. For
compression, we represent the traffic data as a product of two
low-rank matrices, i.e., the subnetwork data matrix and the
most appropriate relationship matrix. As the compression is
lossy, we expect the reconstructed matrix Âh to be different
from the original matrix Ah. The issue of non-stationarity
is due to the fact that matrix Xh is inferred from training
(historical) data instead of the current data. The matrix Ap
(Ap = [αk

p...αm
p ]

T ) is not available, and the goal is to infer
that matrix by extrapolating the matrix Cp (Cp = [ck

p...cm
p ]

T )
according to the CX decomposition. Obviously, the matrix
Xp cannot be extracted from the current data Ap, since the
matrix Ap is not available. Instead we determine Xh from
training data set. Since traffic is not perfectly stationary,
this approximation will induce an additional reconstruction
error. We refer to it as the error due to non-stationarity of
traffic spatial relationships. To quantify this error, let us call
B = CpXp the reconstruction of the data matrix Ap, assuming
the latter is available to compute the CX decomposition.
The reconstruction Âp (Âp = [α̂k

p...α̂m
p ]

T ) in the scenario
of compressed sensing is less accurate, since we need to
replace Xp (determined from the test data matrix Ap) by Xh
(determined from training data matrix Ah). The mean squared

error (MSE) incurred for compressed sensing can be written
as:

1
rn

∥Ap − Âp∥2
F =

1
rn

∥(Ap −CpXp)− (CpXh −CpXp)∥2
F , (3)

=
1
rn

∥(Ap −B)− (Âp −B)∥2
F , (4)

=
1
rn

( m

∑
i=k

n

∑
j=1

(ai j −bi j)
2 +

m

∑
i=k

n

∑
j=1

(âi j −bi j)
2

−2
m

∑
i=k

n

∑
j=1

(ai j −bi j)(âi j −bi j)
)
,

(5)

where r = (m−k+1) represents the number of time instances
in test data matrix Ap. The first component of the error
corresponds to the compressibility of the network and the
second component is due to the non-stationarity of spatial
patterns within the network (see (5)). The third component
of the error refers to the correlations between aforementioned
error components (see (5)). To make this interpretation more
explicit, we rewrite (5) as:

MSEest = MSEcom +MSEns −2ξest, (6)
where ξest is correlation coefficient between compressibility
and non-stationarity. We will analyze the behavior of these
errors for different compression ratios in Section VI.
C. Compressed prediction

In the previous section, we inferred the condition of the
entire traffic network by observing traffic conditions at a
small subset of links. Here we will extend this approach to
prediction; we aim to predict the state of the entire traffic
network from the predicted state of a small subset of links.
We recall that low-dimensional models generated by PCA can
not be utilized for this task since PCA requires information
for all links in the network. Instead, we use state-of-the-art
algorithm to predict the traffic speed only for a selected
subset of locations. Then, we utilize the proposed method to
extrapolate the predictions to the rest of the network using
the precomputed relationship matrix. This can be written as
α̂ i

f = ĉi
f Xh, ∀i = k, ...m, where ĉi

f ∈ R1×c is the row vector
containing the predicted values of the traffic variable at the
selected locations and ith time instance, α̂ i

f ∈R1×n contains the
predictions for all locations at ith time instance, and Xh is the
relationship matrix. If the predictions ĉi

f would be identical to
the true values ci

f , then the problem boils down to compressed
sensing, which we discussed in the previous section. In
practice, however, the predictions have some inaccuracies.
Therefore, we can write ci

f = ĉi
f + ∆ci where ∆ci represents

the prediction error for the subnetwork at time i. Furthermore,
let D = C f Xh be the estimated network profile, during the
entire observational period, without any prediction error in
C f (C f = [ck

f ...c
m
f ]

T ). Then, the MSE between predicted Â f

(Â f = [α̂k
f ...α̂

m
f ]

T ) and true future values A f (A f = [αk
f ...α

m
f ]

T )
can be written as:

1
rn

∥A f − Â f ∥2
F =

1
rn

∥(A f −C f Xh)− (Ĉ f Xh −C f Xh)∥2
F , (7)

=
1
rn

∥(A f −D)− (Â f −D)∥2
F , (8)

=
1
rn

( m

∑
i=k

n

∑
j=1

(ai j −di j)
2 +

m

∑
i=k

n

∑
j=1

(âi j −di j)
2

−2
m

∑
i=k

n

∑
j=1

(ai j −di j)(âi j −di j)
)
,

(9)

where the first component of the error corresponds to the
non-stationarity of spatial patterns within the network and the



Fig. 1: Left: City-scale network of Singapore with 17,967 road segments of
different categories, from freeways to local feeders. Right: Corresponding
input data matrix.

second component is due to inaccurate predictions. The third
component of the error shows the correlations between these
two error components. We refer to (9) as MSE for compressed
prediction. We rewrite (9) in more explicit form:

MSEtotal = MSEest +MSEpred −2ξpred, (10)
where ξpred refers to correlation between non-stationarity and
predictability. By substituting (6) in (10), we obtain:

MSEtotal =MSEcom+MSEns+MSEpred−2ξest−2ξpred. (11)

Hence, the total error of compressed prediction can be
decomposed into four error components: (i) error due to
compression; (ii) error due to changes in spatial relationships
(non-stationarity); (iii) error due to inaccurate predictions;
(iv) correlations among the previous error components.

Compressed prediction provides significant reduction in
computational complexity by explicitly predicting the traffic
variables for only a small subset of road segments in the
network. Compressed prediction involves two computations:
(i) prediction of the traffic conditions at representative
locations in the network and (ii) extrapolation of the predicted
values to the entire network. In the former, the computational
complexity depends on the underlying prediction algorithms,
and is proportional to the number of locations c in the
subnetwork. The second step (extrapolation) requires a
single matrix-vector multiplication with complexity O(cn). In
practice, the predictions at each link in the subnetwork are
computationally complex. By contrast, the extrapolation can
be executed much faster. Therefore, by performing prediction
only for a small subnetwork, the computational complexity
can be drastically reduced.

V. EXPERIMENTAL SETUP

We consider the nationwide traffic network in Singapore
which contains diverse types of roads (see Fig.1). The variable
of interest is the average traffic speed, i.e., the average speed
of all vehicles which traverse a link during the given sampling
interval of 5 minutes. The data set contains the average speed
at each link of the transportation network for a period of three
months (August - October 2011). We selected 17967 links
which had less than 5% of missing values. We performed
imputation by applying the Low Dimensional CP Weighted
OPTimization (LDCP-WOPT) imputation method as it is able
to deal with the large data set [20], [21].

We represent the data set in the form of a matrix
as explained in Section IV. For compressed sensing and
compressed prediction, we need training data to: (i) determine
the subnetwork of c links, corresponding to the matrix C (see
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Fig. 2: Performance of the proposed approach for different applications.

blue rectangle in Fig. 1) ; (ii) learn relationships between
the subnetwork, as defined in (i), and the entire network;
(iii) train the predictors. To this end, we use the speed
data of the months August and September, 2011 (see red
rectangle in Fig. 1). The remaining data is used to evaluate
the performance of compressed sensing and compressed
prediction (see green rectangle in Fig. 1). For compressed
prediction, we predict traffic variable at specific locations
using a baseline predictor (see blue shaded squares in Fig. 1).
We apply SVR (support vector regression) for prediction, since
it is commonly used [8], [11], [12], [22]. In the baseline case,
we apply SVR to each link individually. We refer to this
case as uncompressed prediction. In compressed prediction,
we apply SVR only to a subnetwork and next extrapolate the
predictions to the entire network.

We use percent root mean distortion (PRD) error to
evaluate the reconstruction error of low-dimensional models.
The percent root mean distortion (PRD) quantifies the
reconstruction error:

PRD(%) =
∥ A−CX ∥F

∥ A ∥F
. (12)

We use the mean squared error (MSE) to assess the impact of
several error components on the overall error. MSE is defined
as:

MSE =
1

mn
∥A−CX∥2

F . (13)

VI. RESULTS

First we investigate the CX-based method for the
compression of traffic data. We apply SVD sampling strategy
to find the appropriate set of columns. We repeat sampling
five times and report the average reconstruction accuracy. Our
benchmark is PCA, as it is considered as the optimal linear
transformation. Fig. 2a shows the compression performance
of the proposed and baseline methods. As expected, PCA
outperforms the proposed method in terms of compression
error. However, as we pointed out earlier, the low-dimensional
model obtained by PCA cannot be applied for compressed
estimation and prediction, since it requires data from all links.
By contrast, the low-dimensional models generated by the CX
method are perfectly suitable for both applications, which is
the main advantage of our approach compared to PCA.

An important question about the proposed CX-based
method is whether the sampling scheme leads to subnetworks
that are stable over time. To assess the stability of the
subnetwork generated by the SVD sampling method, we
applied this method to each of the three months (August,
September, October, 2011) of traffic data separately. For



Aug. Sep. Oct.

Aug. 100 93.88 92.26

Sep. 93.88 100 92.82

Oct. 92.26 92.82 100

(a) k = 10% of all roads

Aug. Sep. Oct.

Aug. 100 93.61 91.67

Sep. 93.61 100 92.14

Oct. 91.67 92.14 100

(b) k = 25% of all roads

Aug. Sep. Oct.

Aug. 100 94.65 93.12

Sep. 94.65 100 93.49

Oct. 93.12 93.49 100

(c) k = 50% of all roads
TABLE I: Overlap (%) among the k links with the highest selection probability (calculated by the SVD sampling method) in the three months of data.

each month, we sort the road segments in descending order
according to the assigned probability by the SVD sampling
method. Hence, the most representative roads are at the top
of these lists. Next we select the first k links of each list,
with k corresponding to 10%, 25%, and 50% of the links
in the network. If the subnetwork is stable across time, the
three short lists of top-k links should have many links in
common. The results of this analysis are summarized in
Table I, where the percentage of common links is provided. As
it can be seen from this Table, most links in the subnetwork are
consistently selected for all three months, suggesting that the
SVD sampling method results in a subnetwork that is stable
over time.

We now investigate the case of compressed sensing. We
aim to reconstruct the average speed at each link in the entire
network by collecting data from a small subset of roads. The
relationship matrix Xh is determined from the training set (data
from Aug-Sep, 2011), and the reconstruction error is assessed
on the test set (data from October, 2011). Fig. 2b shows
the reconstruction accuracy of the proposed method for three
different approaches: In the first approach we select the subset
of road segments according to SVD sampling scheme (see
solid line in Fig. 2b). In the second approach we cluster the
network according to the category of the road. For each cluster,
we select the subset of the road segments using SVD sampling
scheme. Then, we perform compressed sensing for each cluster
separately (see dashed line in Fig. 2b). In the third approach
we use the identical set of roads as defined in the second
approach to perform network estimation. Unlike in the second
approach, we do not perform any clustering here (see dotted
line in Fig. 2b). Intuitively, the difference between the second
and the third approach shows the gain obtained by network
clustering. Fig. 2b indicates that applying the compressed
sensing method to different road categories leads to better
estimation performance for the entire network. As expected,
the reconstruction accuracy of all three approaches increases
with the size of subnetwork. Let us now investigate the error
of compressed sensing in more details. In our analysis, we
consider the subset of links as defined in SVD scheme without
clustering.

The overall compressed sensing (estimation) error is
caused by information loss due to compression of traffic
data and changes in traffic behavior between training and
testing periods. Table II shows the MSE of the individual
error components, the correlation between the two errors
components and the total MSE, for different compression
ratios. As it can be seen from Table II the non-stationarity of
the traffic data is the main contributor to the estimation error.
As expected, the error associated with the compressibility of
traffic data increases with the compression ratio. Furthermore,

2 4 6 8 10

MSE (Comp) 0.01 2.18 7.27 11.95 15.93

MSE (Ns) 19.77 29.07 31.20 29.23 27.35

ξ (Corr) 0.00 0.00 0.00 0.00 0.00

Total MSE 19.78 31.25 38.47 41.18 43.28

TABLE II: MSE of the proposed method for application of compressed
sensing and for different compression ratios.
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Fig. 3: Prediction performance of the proposed and traditional methods.

Table II also shows that there is no correlation between
compressibility and non-stationarity of traffic data.

The third application of the proposed CX-based method is
traffic prediction. In compressed prediction, we use the future
state of small subset of roads to predict future traffic condition
for the whole network. We also consider the traditional
(baseline) approach where the speed for each road segment
is explicitly predicted. Fig. 3 depicts the prediction accuracy
of the proposed and traditional methods for different prediction
horizons and various compression ratios. As expected, the
compressed method has slightly larger PRD error than the
traditional approach. This additional error decreases with
decreasing compression ratio. Also, the additional error
decreases for large prediction horizons (see Fig. 3b). Naturally,
it is difficult to predict for larger horizons even with traditional
approach (see dashed line in Fig. 3b). Hence, in such cases
the error due to prediction tends to become the dominant
component.

We decompose the MSE of compressed prediction into
estimation and prediction components. Table III shows the
contribution of these two error components as well as the
correlation between them for 5 minute prediction horizon. As
it can be seen from Table III, the estimation error increases
with the compression ratio. This increase in estimation error
is mainly due to non-stationarity of the error component
(see Table II). Table III shows that the prediction error tends
to be dominant for smaller compression ratio, i.e., when
significant portion of the network is explicitly predicted. From
Table III, we can also see that there is some correlation
between the two error components.

The proposed approach of compressed prediction provides
substantial reduction in computational complexity by explicitly
predicting the variables at a small representative set, followed



2 4 6 8 10

MSE (EST) 19.78 31.25 38.47 41.18 43.28

MSE (SVR) 33.73 28.23 24.15 20.95 18.61

ξ (Corr) 5.80 6.01 5.52 4.83 4.42

Total MSE 41.91 47.46 51.58 52.47 53.05

TABLE III: The MSE error of the proposed method for application of
compressed prediction and for different compression ratios.

Compression Ratio 2 4 6 8 10

SVR 45.82 22.91 15.27 11.45 9.16

Matrix multiplication 0.33 0.24 0.15 0.12 0.11

Total 46.15 23.15 15.42 11.57 9.27

Complexity Savings 49.6% 74.7% 83.2% 87.4% 89.9%

TABLE IV: Computation time (in seconds) of the compressed method for
5 minute prediction horizon. The traditional approach requires 91.63 sec to
perform prediction for the whole network.

by (fast and efficient) extrapolation to the entire network.
This reduction in computation time is obtained at the expense
of a small increase in the prediction error (see Fig 3). The
computation times for the compressed and traditional methods
are reported in Table IV. For the purpose of benchmarking, we
tested the compressed and uncompressed prediction algorithms
on 2.67 GHz MacPro server on a single core with 32GB
of random-access memory (RAM). We assume that training
phases are performed offline for both methods. Prediction time
for compressed method involves the time to predict traffic
variable for a subset of links and time required to perform
network wide extrapolation. As Table IV shows, the latter
can be neglected. Consequently, the required computation
time for compressed prediction is proportional to the number
of the road segments in C. Consequently, the reduction in
computational complexity is approximately proportional to the
compression ratio (see Table IV).

VII. CONCLUSIONS

In this paper we utilized column based (CX)
low-dimensional models to enhance the scalability of
compressed sensing and compressed prediction. We
decomposed the compressed prediction error into several
components and investigated the relationship between them.
Our numerical results show that the proposed method
significantly reduces the computational cost at the expense of
a negligible increase in prediction error.

In future work, we will explore whether other column
selection techniques can lead to better performance of
compressed prediction. Also, we will investigate how
compressed prediction can be applied in conjunction with
routing, in order to optimize routes taking future traffic
conditions into account.
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