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Abstract

We study the widespread, but rarely discussed, tendency of atlas-based segmentation to under-

segment the organs of interest. Commonly used error measures do not distinguish between under- 

and over-segmentation, contributing to the problem. We explicitly quantify over- and under-

segmentation in several typical examples and present a new hypothesis for the cause. We provide 

evidence that segmenting only one organ of interest and merging all surrounding structures into 

one label creates bias towards background in the label estimates suggested by the atlas. We 

propose a generative model that corrects for this effect by learning the background structures from 

the data. Inference in the model separates the background into distinct structures and consequently 

improves the segmentation accuracy. Our experiments demonstrate a clear improvement in several 

applications.

1 Introduction

Atlas-based segmentation exploits knowledge from previously labeled training images to 

segment the target image. In this paper, we focus on multi-atlas segmentation methods that 

map all labeled images onto the target image, which helps to reduce segmentation errors 

[6,8,11]. Label fusion combines the transferred labels into the final segmentation [9]. A 

common tendency of atlas-based segmentation to under-segment has largely been ignored in 

the field. We conjecture that one of the reasons that this phenomenon has not received more 

attention is that common error metrics do not capture the under-segmentation effect. For 

instance, the Dice volume overlap [3] and the Hausdorff distance [4] do not indicate if the 

segmentation is too large or too small. We are only aware of one recent article that addresses 

the spatial bias in atlas-based segmentation [12]. In that work, the bias is approximated by 

spatial convolution with an isotropic Gaussian kernel, modeling the distribution of residual 

registration errors. This model implies under-segmentation of convex shapes and over-

segmentation of concave shapes. To reduce the spatial bias, a deconvolution is applied to the 

label maps. Results were reported for the segmentation of the hippocampus [12].

We present an alternative hypothesis for the bias in segmentation and propose a strategy to 

correct for such bias. First, we quantify the under-segmentation in atlas-based segmentation 

with new volume overlap measures. Our hypothesis ties the under-segmentation to the 

asymmetry of most segmentation setups where we seek to identify a single organ and merge 

all surrounding structures into one large background class. We show that this foreground-

background segmentation strategy exhibits stronger bias than multi-organ segmentation. We 

propose a generative model of the background to correct under-segmentation even if the 
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segmentation labels for multiple organs are not available. The posterior probability 

distribution of the Dirichlet process mixture model yields the splitting of the background 

into several components. Our experiments illustrate that this refined voting scheme 

improves the segmentation accuracy.

2 Under-Segmentation in Multi-atlas Segmentation

In multi-atlas segmentation, the training set includes images  = {I1, …, In} with the 

corresponding manual segmentations  = {S1, …, Sn} and Si(x) ∈ {1, …, η}, where η is the 

number of labels. The objective is to infer segmentation S for a new input image I. 

Probabilistic label maps  = {L1, …, Lη} specify the likelihood of each label l ∈ {1, …, η} 

at location x ∈ Ω in the new image

(1)

The label maps satisfy Σl Ll(x) = 1 and 0 ≤ Ll(x) ≤ 1. For obtaining label likelihood, we 

register all training images  to the test image I, yielding deformation fields {ϕ1, …, ϕn}, 

and define

(2)

Alternatively, probabilistic segmentations Si can be included in the label likelihood, with the 

rest of the analysis unchanged. For majority voting (MV) [6,8], the image likelihood is 

constant, p(I(x)|Ii) ∝ 1. For intensity-weighted (IW) voting [9], also referred to as locally-

weighted voting, the likelihood depends on image intensities

(3)

where σ2 is the variance of the image noise. We obtain the final segmentation Ŝ(x) by 

choosing the most likely label

(4)

For one structure (η=2), we directly compare foreground and background likelihoods to 

obtain the segmentation by identifying image locations x for which Lf(x) > Lb(x), or 

equivalently Lf(x) > 0.5.

2.1 Quantifying Under-Segmentation

Since the Dice volume overlap [3] and the Hausdorff distance [4] do not capture the type of 

segmentation error, we introduce two measures that explicitly quantify the over- and under-
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segmentation. Given the manual segmentation S̄ and the automatic segmentation Ŝ, we 

define

(5)

to quantify over- and under-segmentation, respectively. To examine the problem of under-

segmentation, we compute and report statistics in three different segmentation applications 

using intensity-weighted voting in Fig. 1. The applications target the segmentation of (i) 

nine brain structures in magnetic resonance (MR) images, (ii) left and right parotid glands in 

CT images, and (iii) the left atrium of the heart in magnetic resonance angiography (MRA) 

images. For the brain, we perform foreground-background segmentation by segmenting each 

brain structure separately and merging all other structures into a background label. The 

structures we segment are white matter (WM), gray matter (GM), hippocampus (HC), 

caudate (CA), putamen (PU), pallidum (PA), amygdala (AM), accumbens (AC), ventricles 

(VE). Under-segmentation errors are significantly higher than over-segmentation errors in 

all three applications, suggesting a bias towards under-segmentation in atlas-based 

segmentation.

2.2 Foreground-Background Segmentation Causes Spatial Bias

Our hypothesis for the cause of under-segmentation is the asymmetry in how the foreground 

and background labels are treated by binary classification methods. Merging all surrounding 

structures into background causes this new meta-label to dominate in the voting process 

even if the evidence for the foreground label is stronger than that for any of the surrounding 

structures. We illustrate this phenomenon on the example of the amygdala in Fig. 2. The 

atlas-based segmentation with the foreground-background scheme yields an under-

segmentation (yellow outline). Investigating the votes for one location (black voxel in the 

left image), we observe that labels from several structures are present. Amygdala is assigned 

the highest number of votes and would win the voting in a multi-organ scheme. However, 

merging all other structures into a background label causes the background to win, leading 

to a segmentation error. To further illustrate the impact of merging neighboring structures, 

we examine the drop in the Dice volume overlap as we accumulate more and more 

structures into the background label (Fig. 2, right panel).

To further quantify the difference between foreground-background and multi-organ 

segmentation, we report the under- and over-segmentation statistics for the brain 

segmentation in Fig. 1. In comparison to the foreground-background segmentation, the 

under-segmentation is reduced and most of the significant differences between over- and 

under-segmentation are reduced or eliminated when we use multiple labels. Interestingly, 

the gray matter segmentation changes from under- to over-segmentation, which may be 

attributed to its complex shape. While it is possible for the brain segmentation algorithms to 

use multi-organ schemes because many structures have been delineated in training data, it is 

not possible for many other applications (e.g., left atrium or parotid glands), where no multi-

label training data exists.
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3 Latent Multi-label Model of the Background

We introduce a generative model that estimates latent labels for the background structures 

from the available images. We emphasize that the method does not require multi-label 

training segmentations. We use image intensities of the training data to perform 

unsupervised separation of the background into K components while simultaneously 

estimating the number of components K. Estimated components serve as labels in the voting 

procedure. We assume that image patches Pix = Ii(  (x)), with patch neighborhood , are 

sampled from a Gaussian mixture model (GMM). Since we do not know the number of 

components a priori, we employ a Dirichlet process Gaussian mixture model (DP-GMM) 

[5,10] to account for the potentially infinite number of components. In practice, the number 

of components is determined as part of the inference procedure. Formally, our generative 

model and the corresponding graphical model are as follows

where (μk, Σk) are the mean and covariance of the normal distribution. We choose the 

conjugate Normal-Wishart distribution H with hyperparameter λ as a prior on the parameters 

(μk, Σk) [5]. Mixture weights π follow a stick-breaking process GEM with parameter α [10]. 

Setting Σu = σI, the asymptotic case of σ → 0 yields the DP-means algorithm [7], which is 

an extension of the k-means algorithm that assumes a variable number of clusters during the 

estimation procedure. We compare the performance of k-means, DP-means, GMM, and DP-

GMM in our experiments. For k-means and DP-means, we use k-means++ seeding for 

initialization [1].

Once the inference yields a model with K components, the index zix ∈ {1, …, K} specifies 

the component that generates the patch Pix. Since we only consider background patches, we 

replace the background label Si(x) = b with the component index Si(x) = zix in the voting 

procedure. The labels for the foreground-background segmentation therefore change from 

{f, b} to {f, 1, …, K}. Voting on this updated label set as defined in Eq. (4) yields the 

segmentation.

3.1 Model Inference

The increased model complexity of DP mixture models makes the posterior inference 

difficult. Variational inference algorithms that approximate the result lack convergence 

guarantees. Instead, we use a recently proposed inference scheme based on efficient Markov 

chain Monte Carlo sampling, which shows improved convergence properties [2]. The 

method combines non-ergodic, restricted Gibbs iteration with split-merge moves yielding an 

ergodic Markov chain.

It is not necessary to perform the inference on the entire background region, as it will affect 

the voting only in voxels close to the organ boundary. We restrict the inference to the atlas-

induced region Γ = {x ∈ Ω : 0.1 < Lf(x) < 0.5}, since our procedure does not change the vote 
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of foreground locations. Within this region, we investigate a global and a local approach. 

The global approach considers background patches in the region Γ for all training images, 

= {Pix : x ∈ Γ, Si(x) = b}. The local approach selects patches in a small region R around a 

current location (x) = {Piy : y ∈ R(x), Si(y) = b}. Considering patches in a small region is 

necessary to have more relevant samples for learning the parameters. For the local approach, 

we perform separate inferences for each location on (x), instead of one global inference on 

.

4 Results

We evaluate our approach on three datasets. The first set contains 39 brain MR T1 scans 

with 1mm isotropic resolution and dimensions 256×256×256 that were used to construct the 

FreeSurfer atlas. The second dataset includes 18 CT scans from patients with head and neck 

cancer [11], containing between 80 and 200 axial slices with a slice thickness of 2.5mm. The 

in-plane resolution is 0.9mm, the slice size is 512 × 512 pixels. The third dataset contains 16 

heart MRA images that are electro-cardiogram gated to counteract considerable volume 

changes of the left atrium and contrast-enhanced (0.2 mmol/kg, Gadolinium-DTPA, CIDA 

sequence, TR=4.3ms, TE=2.0ms). The in-plane resolution varies from 0.51mm to 0.68mm 

and slice thickness varies from 1.2mm to 1.7mm with an image resolution of 512 × 512 × 

96. We use intensity-weighted voting for creating baseline label maps that serve as input to 

our algorithm (σ = 10 for brain, σ = 45 for head and neck, σ = 0.5 for heart). We compare to 

the deconvolution with a generalized Gaussian [12], where we sweep kernel parameters for 

each application to determine the best setting. We quantify the segmentation accuracy with 

the Dice volume overlap between manual and automatic segmentation.

We set the patch size  to (3, 3, 3) for brain and (3, 3, 1) for the other two applications to 

account for anisotropy in the data. For the global approach, we evaluate k-means, DP-

means, GMM, and DP-GMM. We set α = 0.1 for DP-GMM and create a new cluster in DP-

means if the distance to a cluster center exceeds 10 times the average distance within a 

cluster. For GMM and k-means, we set the number of clusters to 5. For the local approach, 

we set the region R to (3, 3, 3) and only consider k-means and DP-means because other 

methods become computationally prohibitive. The number of clusters is set to 3 for the local 

approach, as we expect fewer structures to be present at one location.

Fig. 3 reports segmentation results of brain structures with the inference of latent 

background labels using DP-GMM. The under-segmentation is reduced when compared to 

the foreground-background segmentation in Fig. 1. The latent label estimation offers 

improvements in accuracy that are comparable to those of the multi-organ scheme, without 

requiring the multiple organ segmentations for the training set. Fig. 4 illustrates 

segmentation results for the parotid glands and the left atrium, where we experiment with 

different inference methods and add the deconvolution approach to the comparison. We also 

quantify the under-segmentation for the proposed method. We observe that the differences 

between over- and under-segmentation are no longer significant.

Our results demonstrate the advantage of estimating latent background labels over 

foreground-background segmentation. The non-parametric methods based on the Dirichlet 
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process yield a slight additional gain compared to their parametric counterparts. This is a 

consequence of the simultaneous estimation of component membership and number of 

components, which enables dynamic adaptation to the data. The comparison of global and 

local approaches indicates that the performance is application dependent. While local 

approaches perform better for parotid glands, they are slightly worse for the left atrium. Our 

experiments with majority voting are not included in the article but they confirm the 

presented results.

5 Conclusion

We demonstrated that a significant bias exists in atlas-based segmentation that leads to 

under-segmentation. We proposed the asymmetry in foreground-background segmentation 

as a new hypothesis for the cause of this phenomenon. To reduce the domination of the 

voting by the background, we introduced a generative model for the background based on 

the Dirichlet process mixture model. Inference of latent labels yielded partitioning of the 

background. Segmentation results for brain structures, parotid glands, and the left atrium 

illustrated clear improvement in the segmentation quality.
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Fig. 1. 
Statistical analysis of over-segmentation O (left bar) and under-segmentation U (right bar). 

Top: Segmentation of brain structures with foreground-background (left panel) and multi-

organ (right panel) scheme. Left: Segmentation statistics for foreground-background 

segmentation of parotid glands and left atrium. Red line indicates the median, the boxes 

extend to the 25th and 75th percentiles, and the whiskers reach to the most extreme values 

not considered outliers (red crosses). *, **, and *** indicate statistical significance levels at 

0.05, 0.01, and 0.001, respectively.
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Fig. 2. 
Left: Manual segmentation of amygdala is shown in red, the outline of the automatic 

segmentation with foreground-background scheme is shown in yellow. Two middle panels: 

Distribution of votes for the location marked in black in the image on the left. Multi-organ 

segmentation correctly assigns the AM label. The foreground-background segmentation 

assigns the background label, which is an error. Right: Dice volume overlap as a function of 

the number of merged neighboring structures.
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Fig. 3. 
Segmentation statistics for brain data. Left: Over- and under-segmentation for each brain 

structure after inference of latent labels. Right: Improvement offered by multi-organ (left 

bar) and latent label estimation (right bar) over foreground-background segmentation.

Wachinger and Golland Page 10

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 4. 
Segmentation accuracy of parotid glands (top) and left atrium (bottom left). We compare 

global (g-) and local (l-) approaches with intensity-weighted voting (IW) [9] and the 

deconvolution approach (Deconv) [12] as baseline methods. The plot in the bottom right 

shows the over- and under-segmentation statistics after latent label estimation for all three 

structures.
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