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We derive a compact matrix expression for the linear thermal expansion coefficients (TECs) for a general
orthorhombic system which relates elastic properties and integrated quantities based on deformation and mode
dependent Grüneisen parameters and mode dependent heat capacities. The density of Grüneisen parameters
�(ν) as a function of frequency ν, weighted by the number of phonon modes, is introduced and found to
be illuminating in interpreting the TEC results. Using density functional perturbation theory and Grüneisen
formalism for thermal expansion, we illustrate the general usefulness of this method by calculating the linear and
volumetric TECs of a low-symmetry orthorhombic compound antimony sulfide (Sb2S3), which belongs to a large
class of technologically and fundamentally important materials. Even though negative Grüneisen parameters are
found for deformations in all three crystal directions, the �(ν) data rule out the occurrences of negative TECs
at all temperatures. Sb2S3 exhibits a large thermal expansion anisotropy where the TEC in the b direction can
reach as high as 13 × 10−6 K−1 at high temperatures, about two and seven times larger than the TECs in the c

and a direction, respectively. Our work suggests a general and practical first-principles approach to calculate the
thermal properties of other complicated low-symmetry systems.
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I. INTRODUCTION

Metal chalcogenides comprise an important class of semi-
conductors for optoelectronics, photovoltaics, and thermo-
electrics [1–5]. Recently, Raman spectroscopies and pump
probe experiments on examples such as Bi2S3 and Sb2S3

have demonstrated the importance of phonons in modulating
fundamental scattering processes [5,6]. Even though phonon
dispersions have been reliably obtained for some of these
materials [5,7], a first-principles study of the anharmonic
effects due to phonon-phonon scatterings that account for
thermal conductivities and thermal expansion coefficients
(TECs) has been lacking. This could be attributed to the fact
that metal chalcogenides have a relatively large primitive cell
and a low-symmetry orthorhombic structure with three lattice
parameters, in contrast to some of the well-studied cubic
structures with a single lattice parameter [8,9]. TECs may
routinely be calculated using a direct minimization approach
within the quasiharmonic approximation [10]. However, for
metal chalcogenides, huge computational costs are needed
to perform many phonon calculations to locate a free-energy
minimum at a given temperature in the three-dimensional lat-
tice parameter space. Moreover, even if a direct minimization
approach could be carried out, it may be difficult to understand
the underlying physics without investigating fundamental
quantities such as the Grüneisen parameters, elastic constants,
heat capacities, and mean-square displacements (MSDs).

Here we should mention a recent first-principles approach
that is based on the vibrational self-consistent-field to calculate
TECs [11]. In another work [12], a nonequilibrium Green’s-
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function method is used to calculate TECs of carbon nanotubes
and graphene with a force-field potential.

II. METHODOLOGY

In this paper we adopt the Grüneisen formalism
[13–15] to predict the thermal properties of a low-symmetry
orthorhombic system with a first-principles method. To the best
of our knowledge it is the first time a first-principles thermal
expansion study has been done on a crystal that is characterized
by three lattice parameters. We find that the linear TECs of an
orthorhombic system in the a, b, and c directions, denoted
by α1, α2, and α3, respectively, at a temperature T may be
described by a matrix equation:

α = 1

�
C−1I, (1)

where αT = (α1,α2,α3), � is the equilibrium volume of the
primitive cell, and C−1 is the elastic compliance matrix
[16] with matrix elements Cij being the elastic constants.
A component Ii(T ) of the vector I = (I1,I2,I3)T is given
by Ii(T ) = �

(2π)3

∑
λ

∫
BZ γi,λkc(νλk,T ) dk where the integral

is over the first Brillouin zone (BZ). A phonon mode with
frequency νλk is labeled by a mode index λ and a wave vector
k. The heat capacity of a phonon mode with frequency ν at
temperature T is c(ν,T ) = kBr2/ sinh2 r , with r = hν/2kBT .
h and kB are the Planck and Boltzmann constants, respectively.
The mode Grüneisen parameters γi,λk = −ν−1

λk ∂νλk/∂εi mea-
sure the relative change of phonon frequencies νλk as a result
of deformations applied to the crystal characterized by strain
parameters εi .

To illustrate the usefulness of our method, we carry out
density functional theory calculations using the plane-wave
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basis QUANTUM ESPRESSO suite [17] on Sb2S3, an example
of metal chalcogenides with a small direct band gap of
1.5 eV. The local-density approximation is used to describe
the exchange correlation. Pseudopotentials based on the
Rappe-Rabe-Kaxiras-Joannopoulos [18] approach as found
in the “atomic code” of the standard QUANTUM ESPRESSO

distribution are used. A large cutoff energy of 60 Ry is used
throughout and a Monkhorst-Pack mesh of 4 × 12 × 4 is used
for k-point sampling. Atomic relaxation is stopped when the
forces on all the atoms are less than 1 meV/Å. We use the
nonsymmorphic space group Pnma to describe Sb2S3 with
20 atoms in a primitive cell, of which 5 are inequivalent. We
obtain a0 = 11.021 Å, b0 = 3.797 Å, and c0 = 10.783 Å, in
good agreement with experimental values [19]. The phonon
modes are calculated using the density functional perturbation
theory [20]. Phonon calculations are carried out on a q mesh of
2 × 4 × 2, which is equivalent to a 2 × 4 × 2 supercell force-
constant [21] phonon calculation, the efficacy of which has
been confirmed [7]. We note that the results do not appreciably
change when we use a larger q mesh of 3 × 6 × 3. For the q

mesh of 2 × 4 × 2, dynamical matrices have to be calculated
at 12 irreducible q points. For a general q point, one has to loop
through 60 irreducible representations, each of which requires
a number of self-consistent-field calculations. Interestingly,
the seemingly high-symmetry point � has a relatively large
number of irreducible representations of 60, which incurs more
computation costs compared to, say, a diamond crystal with
only 2 irreducible representations at �. The 12-q points cor-
respond to a total of 471 irreducible representations. Ignoring
the cost for convergence tests, we already need to handle a
minimum of 7 × 471 = 3297 irreducible representations to
carry out a central-difference scheme for a, b, and c directions
(note that we need to perform a set of phonon calculations
on the equilibrium structure). The cost analysis also suggests
even larger computational resources will be required if one
wishes to carry out a full direct minimization study based on
the quasiharmonic approximation in finding the free-energy
minimum at each temperature in the three-dimensional search
space of {a,b,c}. At the end of self-consistent-consistent cal-
culations, all dynamical matrices are collected and interatomic
force constants are obtained by an inverse Fourier transform.
The Brillouin-zone sampling for the integrated quantities Ii (T )
is over a large mesh of 15 × 45 × 15. We perform standard
elastic constants calculations [22,23] to obtain (C11, C12,
C13, C22, C23, C33) = (133.19, 36.45, 55.99, 141.08, 67.14,
119.09) GPa.

III. RESULTS AND DISCUSSIONS

We apply strains of ε = ±0.005 (strains of ε = ±0.010
do not change the results appreciably) to obtain the central-
difference Grüneisen parameters in the a, b, and c directions.
By using the change in the dynamical matrix resulting from a
finite deformation to the crystal and with the help of first-order
perturbation theory, we can determine the change of frequency
for each phonon mode to obtain the Grüneisen parameters. The
results of γi,λk are shown in Fig. 1. It is noticed that along the
high-symmetry directions the degeneracy of the Grüneisen
parameters is preserved. There are some bands that have large
values (say, >4) of Grüneisen parameters. By performing a
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FIG. 1. (Color online) Grüneisen parameters γi,λk along the high-
symmetry directions for orthorhombic Sb2S3, for i = 1, 2, and 3,
corresponding to deformations due to strains e1, e2, and e3, are shown
in (a), (b), and (c), respectively. The coordinates of X, S, R, T , and
Z can be found in Ref. [7]. The corresponding plain densities of
Grüneisen parameters are shown on the right.

k-point sampling over the BZ, we calculate the plain density of
Grüneisen parameters gi(γ ) = �

(2π)3

∑
λ

∫
BZ δ(γ − γi,λk) dk,

results of which are shown in the right panels of Fig. 1.
The gi(γ ) plots show that large Grüneisen parameters are not
highly populated. Interestingly, gi(γ ) show some population
of negative Grüneisen parameters, especially for g3(γ ), which
may lead to negative TECs if these negative parameters
correspond to low-frequency modes. In the literature, one can
use the average Grüneisen parameters [9] or the scattered
γ -ν plot [24] to display this information. However, here
we propose a quantity called the density of Grüneisen
parameters �i(ν), weighted by the number of phonon modes,
defined as �i(ν) = �

(2π)3

∑
λ

∫
BZ δ(ν − νλk)γi,λk dk to capture

the collective effects of Grüneisen parameters and phonon
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FIG. 2. (Color online) (a) The mode dependent heat capacity as a
function of phonon frequency ν for three representative temperatures.
(b) Density of Grüneisen parameters.
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FIG. 3. (Color online) The linear TECs of Sb2S3 as functions of
temperature. The insets show the integrated quantities Ii(T ) and the
volumetric TEC.

frequencies. Apart from its direct physical meaning, �i(ν)
also allows a second equivalent expression for Ii(T ), which is∫ νmax
νmin �i(ν)c(ν,T ) dν. The densities of Grüneisen parameters

�i(ν) are shown in Fig. 2(b), where the negative Grüneisen
parameters are confined to phonon frequencies of around
290 cm−1. These phonons are not excited at low tempera-
tures [see Fig. 2(a) for the dependence of c(ν,T ) on ν for
representative temperatures of 3, 30, and 300 K].

The results of the linear and volumetric thermal expansion
coefficients are shown in Fig. 3. Except for α3 beyond
150 K, all TECs are monotonically increasing functions
of temperature. Ii(T ) (shown in an inset of Fig. 3) also
exhibits a largely similar temperature dependence. Despite
the occurrences of negative Grüneisen parameters as shown
in Fig. 1, all linear and volumetric TECs are positive. At
high temperatures, the effect of phonon modes with negative
Grüneisen parameters is canceled out by the more highly
populated phonon modes at lower frequencies with positive
Grüneisen parameters, thus eliminating the possibility of
negative TECs at any temperature. The high-temperature limits
are α1 = 1.86, α2 = 13.0, and α3 = 5.28 × 10−6 K−1, and the
volumetric TEC is 20.14 × 10−6 K−1. The small TEC of α1

among all other TECs is consistent with the fact that I1(T )
is smaller than I2(T ) and I3(T ), in addition to the fact that
C11 is comparable to C22 but larger than C33. To the best
of our knowledge, experimental TEC data of Sb2S3 are not
readily available for a direct comparison. However, we note
that Stoffel et al. [24] have demonstrated that the volumetric
TEC of trigonal Sb2Te3 using a quasiharmonic approximation
is accurate up to 300 K where the mean-square displacements
(MSDs) of Sb2Te3, shown in the inset of Fig. 4, compare
rather well with that of Sb2S3. Therefore we believe our TEC
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FIG. 4. (Color online) MSDs of five inequivalent atoms of Sb2S3

as functions of temperature. The inset shows the comparison of the
MSDs of representative atoms in Sb2S3 and a reference trigonal
system of Sb2Te3. The MSD for the j th atom is [25] calculated

from 〈u2
j 〉 = �

(2π )3

∑
λ

∫
BZ

h|ej (λ,k)|2 coth r

8π2Mj νλk
dk with r = hνλk/2kBT and

ej (λ,k) the eigenvector for the j th atom of mass Mj .

results on Sb2S3 are reasonable below 40 K. We note that
the MSDs of Sb2Te3 at higher temperatures (which are not
available in Ref. [24]) may provide a better estimate on the
temperature below which our TEC results are valid. At low
temperatures below 100 K, Fig. 4 shows that the three S atoms
have larger MSDs than Sb, consistent with the fact that S has a
smaller mass compared to Sb. At high temperatures, however,
the MSDs of Sb atoms are larger than that of the S atoms.

IV. SUMMARY

In summary we have extended the Grüneisen formalism
to treat a low-symmetry structure of orthorhombic antimony
sulfide. Using this approach, we applied just six deformations
to the crystal to obtain the Grüneisen parameters, thus avoiding
the huge computation requirement for a direct minimization
based on the quasiharmonic approximation. Even though
negative Grüneisen parameters were found, there are no
negative TECs at all temperatures since these parameters are
associated with high-frequency modes at around 290 cm−1. It
is expected that a similar approach could be used to address
TECs of other low-symmetric systems such as those with
monoclinic crystal structure.
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