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Abstract

Aims—To investigate swept-source optical coherence tomography (OCT) angiography in the 

optic nerve head (ONH) and parafoveal regions in patients with multiple sclerosis (MS).

Methods—Fifty-two MS eyes and 21 healthy control (HC) eyes were included. There were two 

MS subgroups: 38 MS eyes without an optic neuritis (ON) history (MS −ON), and 14 MS eyes 

with an ON history (MS +ON). The OCT images were captured by high-speed 1050 nm swept-

source OCT. The ONH flow index (FI) and parafoveal FI were quantified from OCT angiograms.

Results—The mean ONH FI was 0.160±0.010 for the HC group, 0.156±0.017 for the MS−ON 

group, and 0.140±0.020 for the MS+ON group. The ONH FI of the MS+ON group was reduced 

by 12.5% compared to HC eyes (p=0.004). A higher percentage of MS+ON eyes had abnormal 
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ONH FI compared to HC patients (43% vs 5%, p=0.01). Mean parafoveal FIs were 0.126±0.007, 

0.127±0.010, and 0.129±0.005 for the HC, MS−ON, and MS +ON groups, respectively, and did 

not differ significantly among them. The coefficient of variation (CV) of intravisit repeatability 

and intervisit reproducibility were 1.03% and 4.53% for ONH FI, and 1.65% and 3.55% for 

parafoveal FI.

Conclusions—Based on OCT angiography, the FI measurement is feasible, highly repeatable 

and reproducible, and it is suitable for clinical measurement of ONH and parafoveal perfusion. 

The ONH FI may be useful in detecting damage from ON and quantifying its severity.

INTRODUCTION

Multiple sclerosis (MS), characterised by demyelination, axonal injury and gliosis, 

inflammation, and diffuse axonal degeneration throughout the central nervous system, is 

generally considered an inflammatory autoimmune disease.1 Optic neuritis (ON), a common 

feature of MS, may affect blood perfusion of the larger ocular vessels and possibly damage 

visual acuity.2 Vascular abnormalities, which may be caused by the abnormal function of 

cerebral endothelial cells, may play an important role in the formation of MS lesions and 

disease progression.3 Several studies have reported that vascular abnormalities, such as 

ischaemic stroke and global cerebral hypoperfusion, exist in patients with MS, and patients 

with MS with vascular risk factors have a more rapid disability progression than those who 

do not.45 However, characterisation of cerebral blood flow can be challenging. Studying the 

circulation of the optic nerve head (ONH) and parafoveal areas of the eye in MS patients 

may provide insight into the role of the more global vascular changes in the pathogenesis of 

MS.

Different methods have been used to detect the ocular blood perfusion in clinical practice 

and experimental research. Fluorescein angiography (FA) and indocyanine green 

angiography provide qualitative evaluation of retinal and choroidal circulation, but do not 

provide objective quantitative measurements.67 Although laser Doppler flowmetry (LDF) 

and laser speckle flowgraphy (LSFG) can measure retinal blood flow, the results are too 

variable to be used in clinical diagnosis.89 MRI ocular blood flow measurement has low 

spatial resolution and long acquisition time, is susceptible to movement artefacts, is limited 

by assumptions in the blood flow calculation, and has relatively high costs.10 Ultrasound 

colour Doppler imaging (CDI) can provide independent haemodynamic measurements of 

the retinal and uveal vascular beds, but due to limited resolution, it cannot provide precise 

measurements of retinal microcirculation.11

As a non-invasive imaging technique, optical coherence tomography (OCT) has been 

commonly used worldwide for clinical diagnosis of some ocular diseases. Moreover, OCT 

has also been explored in a research capacity in MS. Using commercial OCT, it has been 

demonstrated that retinal structure defects occur in MS patients, such as thinning of the 

retinal nerve fibre layer (RNFL) and the combined retinal ganglion cell and inner plexiform 

layers.12 These changes are due to retrograde axonal degeneration of the optic nerve axons 

after clinically apparent and subclinical ON, and possibly due to primary neurodegenerative 

pathology. OCT technology can provide retinal structural information and also blood 
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perfusion information in some retinal diseases. Doppler OCT has been able to obtain precise 

measurement of total retinal blood flow calculated from the Doppler frequency shift of 

backscattered light. While appropriate for large vessels around ONH, Doppler OCT is not 

sensitive enough to accurately measure the low velocities of small vessels.13

Recently, we developed a method of measuring local circulation using high-speed OCT to 

perform quantitative angiography. Using the split-spectrum amplitude-decorrelation 

angiography (SSADA) algorithm, ONH perfusion can be quantified.14 The purpose of this 

study was to measure the microcirculation in the ONH and parafoveal retinal regions of MS 

eyes with and without a history of ON compared with healthy control (HC) eyes, and to 

investigate the retinal haemodynamic changes in MS. To the best of our knowledge, this is 

the first study using OCT angiography in MS.

METHODS

Study population

This study was performed at the Casey Eye Institute at the Oregon Health & Science 

University (OHSU, Portland, Oregon, USA). The research protocols were approved by the 

institutional review boards and carried out in accordance with the tenets of the Declaration 

of Helsinki. Written informed consent was obtained from each subject after explanation of 

the nature of this study.

The HC subjects were part of the Advanced Imaging for Glaucoma Study (AIGS). Their 

inclusion criteria were a normal Humphrey Swedish Interactive Threshold Algorithm 

(SITA) 24-2 standard visual field within 95% limits of the normal reference, intraocular 

pressures (IOP) of less than 21 mm Hg in both eyes, glaucoma hemifield test within 97% 

limits, normal appearing ONH and RNFL, central corneal thickness of more than 500 μm, an 

open anterior chamber angle as observed by gonioscopy, and no history of ocular or 

systemic corticosteroid use (http://www.AIGStudy.net).

All patients with MS were referred by the MS Center of Oregon at OHSU. All patients with 

MS fulfilled the 2005 panel MS criteria. Disability was assessed by the self-reported 

Expanded Disability Status Scale score (EDSS) and the physician-rated European Database 

for Multiple Sclerosis (EDMUS) Grading Gcale. MS inclusion criteria were physician-

confirmed diagnosis of MS (any subtype acceptable, eg, relapsing-remitting, secondary 

progressive, primary progressive), age 18–70 years old, able to comply with study 

procedures (transfer to a chair), and corrected visual acuity of at least 20/200 in either eye. 

Exclusion criteria were intravenous or oral steroids in the prior 30 days, MS exacerbation in 

the prior 60 days, evidence on ophthalmological exam within the last year of other ocular 

diseases or pathology that would confound the assessment (eg, glaucoma, diabetic or 

hypertensive retinal disease, amblyopia, etc.), previous intraocular surgery except for 

uncomplicated cataract extraction with posterior chamber intraocular lens implantation, 

inability to cooperate with OCT scanning, or refractive error greater than +3 or −7 dioptres. 

A medical history of ON prior to enrolment was determined by self-report and physician 

report, and confirmed by record review. Patients with an ongoing attack of ON in either eye 

were excluded from this study.
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MS eyes were categorised into two groups. Patients without ON were placed in the MS−ON 

group, and those with ON were placed in the MS+ON group.

OCT data acquisition and processing

The prototype high-speed swept-source OCT system operated at an axial scan speed of 100 

KHz using 1050 nm wavelength laser (Axsun Technologies, Billerica, Massachusetts, USA) 

with a tuning range of 100 nm. The image resolution was 5.3 μm axially and 18 μm laterally.

A 3×3×3 mm three-dimensional (3D) volumetric scan centred on the ONH/fovea was 

captured for blood flow measurements. In horizontal priority (x-fast) scans, the beam is 

moved horizontally (x dimension) to form a 3 mm-long line scan for cross-sectional imaging 

(B-scan). Each B-scan contains 200 spots (axial scans). At each vertical (y) position, eight 

consecutive B-scans were captured in order to detect motion. The B-scan is then shifted 

slightly to a new position along the slow (vertical) axis. A total of 200 slow-axis locations 

were sampled to form a 3D data cube. A total of 1600 B-scans were acquired in 

approximately 3.5 s. In vertical priority (y-fast) scans, the role of the x and y axes were 

reversed. Four 3D scans, comprising two horizontal priority (x-fast) scans and two vertical 

priority (y-fast) scans were obtained in one session.

The SSADA algorithm was used to distinguish flowing blood from static tissue.14 As seen 

in real-time OCT reflectance images, the amplitude of signal backscattered from non-static 

tissue varies rapidly over time.14 By calculating the decorrelation of signal amplitude from 

consecutive B-scans, a contrast between static and moving tissue is created. Blood vessels 

are characterised by motion-induced decorrelation in the lumen. The faster blood particles 

move across the laser beam, the higher is the decorrelation of the detected signals within a 

velocity range set by the scan parameters. Thus, decorrelation is approximately linear to 

flow velocity, that is, the distance travelled by red blood cells flowing across the light beam 

per unit time.15 However, beyond a saturation velocity that is defined by the time interval 

between consecutive OCT B-scans, the decorrelation increases more slowly with velocity 

and eventually reaches an upper boundary.15

Eye motion causes two types of artefacts in SSADA. First, motion between consecutive B-

scans at the same nominal position causes decorrelation that can appear as flow. Second, 

motion between B-scan positions distorts the transverse position of scans along the slow 

scan axis. To correct the first type of motion error, B-scans with very large (saccadic) bulk 

motion artefacts were removed. Furthermore, decorrelation due to bulk tissue motion was 

calculated by histogram analysis and subtracted from each cross-sectional SSADA frame.14 

To correct the second type of motion artefact, we used an image registration algorithm that 

registered four orthogonal raster-scanned volumes.16 Motion correction was first performed 

on the structural OCT data. The motion correction algorithm generated 3D displacement 

fields that map A-scans from the input volumes into a common motion-corrected space. The 

same displacement fields were applied to the decorrelation (flow) data to produce motion-

corrected flow data volumes. Flow data from four input volumes were weighted and merged, 

improving the signal-to-noise ratio in the flow signal, and reducing the flow measurement 

variation due to local flow changes caused by the cardiac cycle.
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To measure ONH perfusion, cross-sectional registered intensity images and flow images 

were summarised and viewed as an en face maximum projection. The elliptical boundary 

was manually delineated on the en face intensity images and transferred to the OCT 

angiogram for disc region segmentation. The ONH flow index (FI) was defined as the 

average flow signal (decorrelation value) within the whole ONH. To measure parafoveal 

retinal perfusion, retinal circulation was segmented along the boundary set at retina pigment 

epithelium in intensity images and separately projected into en face view. The fovea was 

manually centred at the avascular zone on the OCT angiogram. The parafoveal retinal FI 

was defined as the average flow signal within the annular zone of 0.6 to 2.6 mm diameter 

around the foveal centre (figure 1).14 The central 0.6 mm diameter area (foveal avascular 

zone) of normal controls was used to determine the noise floor. The decorrelation values 

above noise floor are flow signals from either large vessels (bright signals in figure 1) or 

capillaries (weak signals in figure 1), and used for the calculation of FI. FI is a 

dimensionless parameter between 0 and 1. Due to the non-linear relationship between 

decorrelation and flow velocity, the FI mainly measured the area (or calibre) of large vessels 

and the area (or vessel density) and velocity of capillaries.

Repeatability and reproducibility

Intravisit repeatability of the ONH and parafoveal FIs were calculated from three patients 

with HC with three sets of scans within a single visit by a single operator. Intervisit 

reproducibility of the ONH and parafoveal FIs was calculated from three patients with HC 

with three sets of scans obtained on three separate visits by the same operator.

Statistical analysis

Statistical analyses were performed with commercial software (SPSS V.13.0; SPSS, 

Chicago, Illinois, USA). The coefficient of variation (CV) was calculated to assess 

repeatability and reproducibility of the ONH and parafoveal FIs. Best corrected visual acuity 

(BCVA) was converted to a log of the minimum angle of resolution (logMAR) for statistical 

analysis, and two-tailed independent sample t tests were used to compare the mean logMAR 

BCVA values of each group. The Mann–Whitney U test was used to analyse the FI 

differences between each group. The χ2 test was performed to compare the percentile 

differences between groups. All the tests had a significance level of 5%.

RESULTS

A total of 36 patients with MS (70 eyes) and 27 patients with HC (one eye for each patient, 

27 eyes) were studied. For all patients, 24 eyes were excluded due to low signal strength (8 

eyes), failed 3D registration (6 eyes), poor scan centration (10 eyes) for either ONH or 

macula scans. Therefore, 35 patients with MS (52 eyes) and 21 patients with HC (21 eyes) 

were included in the final analysis (table 1). Patients with HC tended to be older than the 

patients with MS, but were well matched for IOP and visual acuity. Patients with MS −ON 

were slightly older with shorter disease duration than the patients with MS +ON. The two 

MS subgroups were well matched for disability (EDSS, EDMUS), visual acuity and IOP.
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Typical examples of ONH angiograms and macular retinal angiograms for HC and MS 

groups showed notable attenuation of ONH circulation in the MS+ON group (figure 1). The 

mean ONH FI in MS+ON group was significantly lower than the HC and MS−ON groups 

(p=0.004 for both), while there was no significant difference between the HC and MS−ON 

groups (p=0.924; figure 2). There were no significant differences in the mean parafoveal FIs 

among the three groups.

Using the normative distribution of FI in the HC group, FI values were classified as within 

normal limits, borderline, or abnormal (table 2). Abnormal values were defined as those 

more than −2.33 SDs below the mean (1st percentile cutoff for normal distribution). 

Borderline values were defined as those between 1.65 and 2.33 SD below the mean 

(between 1st and 5th percentile cutoffs). A significantly higher percentage of MS+ON eyes 

had an abnormally low ONH FI compared to HC eyes (43% vs 5%, p=0.01). Twenty-one 

per cent of MS−ON eyes also had an abnormally reduced ONH FI (p=0.198). In the MS

−ON group, the parafoveal FI was within the normal range for all eyes except one, thus, 

there were no significant differences among the three groups (table 2).

Three HC eyes were scanned to assess intravisit repeatability and intervisit reproducibility 

of repeated measurements by pooled CV. The repeatability and reproducibility were 1.03% 

and 4.53% for ONH FI, and 1.65% and 3.55% for parafoveal FI, respectively. The 

intersubject variability of ONH and parafoveal FIs, which was evaluated by the CV in 21 

HC eyes, was 6.3% and 7.7%, respectively.

DISCUSSION

As interest in the contribution of vascular disease to MS and ON pathophysiology is 

growing, we used OCT angiography to examine the ONH and retinal microcirculation 

changes in MS eyes with or without ON history. Our results showed that the ONH FI of MS 

+ON eyes was significantly lower than the values of the HC group and the MS −ON group. 

We also found that the MS +ON eyes had a significantly higher percentage of abnormally 

low ONH FI than the HC eyes. Moreover, ~21% of MS −ON eyes, despite a normal visual 

acuity, showed abnormal low ONH FI.

There are several possible reasons for the decreased blood perfusion in ONH of MS patients. 

First, MS damages and reduces the number of nerve fibres in the optic nerve, ONH and 

RNFL which, in turn, reduces metabolic activities. The reduced metabolic load lowers blood 

flow via autoregulatory mechanisms. MS is associated with a loss of peripapillary RNFL, a 

structural marker of axonal degeneration, using structural OCT system.17 Fisher et al12 

found that MS +ON eyes demonstrated the greatest reduction in RNFL thickness, while MS 

−ON eyes had a lesser degree of RNFL reduction, when compared to disease-free control 

eyes. Our finding of the greatest loss of ONH FI in MS +ON eyes is consistent with this 

work. Second, there could be primary vascular dysfunctions, such as the endothelial 

abnormalities that have been noted in the brains of patients with MS.3–5

No significant differences in parafoveal FI were found among the three groups in this study. 

MS and ON are associated with macular ganglion cell loss, therefore, this result was 
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unexpected, especially in contrast with the reduction in ONH FI. A possible explanation is 

that MS and ON only affect the innermost retinal layers, therefore, the middle retinal layers 

still had sufficient functionality to maintain autoregulation of macular blood flow in the 

normal range. Another explanation is that MS and ON often cause only minimal damage to 

foveal function, as evidenced by only 12% (6 eyes) of MS eyes having reduction in BCVA 

of two or more lines. Our results suggest that parafoveal FI is a relatively insensitive way to 

detect the damage caused by MS. Yet another possible explanation is that MS produces 

primary vascular dysfunctions in the optic nerve, which does affect the retina.

There are several other techniques that can detect decreased ONH perfusion in MS and ON 

patients. Using FA, Duker et al18 showed that ON is associated with delayed venous filling 

accompanied by venous dilation and tortuosity. Using colour Doppler ultrasonography, 

Modrzejewska et al19 found that the reduction of blood flow parameters in the central retinal 

artery and short posterior ciliary artery occurred in the ON-affected eyes and the fellow 

eyes. Using CDI, Akarsu et al20 also demonstrated that MS +ON was associated with 

impaired retrobulbar haemodynamics. Conversely, Hradilek et al21, also using CDI, failed to 

find an orbital haemodynamic difference between eyes with chronic ON and the control 

group.

Compared with the techniques mentioned above, OCT angiography is more repeatable, more 

reproducible, and less variable. It has been reported that 24 h reproducibility of LDF and 

CDI were between 1.6% and 18.5% CV.22 For LSFG, the inter-session reproducibilities of 

retinal veins and arteries were 8.4 ±5.6% and 10.9±9.9% CV.23 Using modified laser 

speckle technology, the ONH blood velocity reproducibility with 1 min and 24 h intervals 

were 11.7% and 13%, respectively.24 Likewise, intersubject variability of HC patients were 

much higher in MRI (~33%), LDF (17~21%), and LSFG (~38.4%) compared to OCT 

angiography (~7%).102425 The higher repeatability and reproducibility suggests that OCT 

angiography may be more suitable than other imaging techniques for detecting and 

monitoring of abnormal ONH and parafoveal perfusion changes.

OCT angiography requires high scan speed. Therefore, a prototype OCT system with higher 

speed (100 kHz) than commercially available OCT instruments was used in this study. The 

next generation of commercial OCT systems with 70 kHz speed are fast enough for OCT 

angiography. Therefore, this new method of assessing ONH circulation could be easily 

accessible in the near future. Although MRI is still needed to detect the characteristic white 

matter lesions in the brain and establish MS diagnosis, OCT evaluation of optic nerve 

structure and perfusion could be a relatively low-cost method for quantifying the damage 

caused by MS.

The current study had some limitations. The study sample size was relatively small. Some 

(~15%) eyes were excluded due to weak signal (media opacity, dry eye, poor beam focusing 

or position), failed 3D registration (excessive eye motion or blink), or poor scan centration. 

Therefore, the technique requires careful operator technique and some patient selection. 

Further studies with histopathological or other correlations are necessary to help understand 

the mechanisms of the changes of ONH microcirculation. However, our results are 

promising.
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In conclusion, OCT angiography with the SSADA algorithm is highly repeatable and 

reproducible for FI measurement of the ONH and parafoveal regions. It was able to detect 

reduction of ONH perfusion in a significant portion of MS patients with or without a history 

of ON. Additional studies will explore further the structure-function-perfusion relationships 

in MS to help determine if perfusion can provide early insights into MS pathology and 

progression. This new technology may be useful in the detection and monitoring of optic 

nerve damage caused by MS and ON.
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Figure 1. 
En face optical coherence tomography angiograms of the optic nerve head (ONH) and 

macula in representative healthy control group (HC; A1, A2), multiple sclerosis without 

optic neuritis group (MS−ON; B1, B2), and multiple sclerosis with optic neuritis group (MS

+ON; C1, C2). In the ONH angiograms (A1–C1), the flow index (FI) was averaged over the 

whole ONH (solid red circles). In comparison with the HC and MSON examples, the whole 

ONH microvascular network in MS+ON eye showed attenuation. In the macula retinal 

angiograms (A2–C2), the parafoveal FI was averaged over an annulus between diameters 

0.6 mm (red circle) and 2.6 mm (yellow dotted circle). The parafoveal microvascular 

network in these examples showed no clear differences.
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Figure 2. 
Box plots showing the optic nerve head (ONH) flow index (FI) (A) and the parafoveal FI 

(B) in healthy control (HC), MS −ON, and MS +ON groups. The median (dark bold line), 

IQR (box) and the whole range of values (whiskers) are shown. Mann–Whitney U tests 

showed significant reduction in the ONH FI of the MS +ON group compared to HC and MS 

−ON groups (p values shown in panel A). MS, multiple sclerosis, NS, non-significant; n, 

number of eyes.
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Table 1

Characteristics of the study groups

Group (patients/eyes)

HC (21/21) MS −ON (25/38) MS +ON (10/14)

Age (yrs) 50±9.6 47±12.7 40±8.9

High-contrast LogMAR BCVA 0.01±0.1 0.04±0.1 0.01±0.1

Low-contrast LogMAR BCVA none 0.65±0.2 0.72±0.2

EDSS n/a 3.8±1.7 3.2±1.9

EDMUS n/a 2.5±2.0 3.0±2.0

IOP (mm Hg) 15±2.3 15±3.1 14±2.2

MS duration (yrs) n/a 12±8.4 17±10.4

BCVA, best corrected visual acuity; EDMUS, European Database for Multiple Sclerosis Grading Scale; EDSS, Expanded Disability Status Scale; 
HC, healthy control; IOP, intraocular pressure; MAR, minimum angle of resolution; MS, multiple sclerosis; MS+ON, MS with history of ON; MS
−ON, MS without history of ON; n/a, not applicable; ON, optic neuritis.
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