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ABSTRACT

We present a Magellan/MIKE high-resolution (R∼35,000) spectrum of the ancient star SD 1313−0019, which
has an iron abundance of Fe H 5.0[ ] = -/ , paired with a carbon enhancement of C Fe 3.0[ ] ~/ . The star was
initially identified by Allende Prieto et al. in the BOSS survey. Its medium-resolution spectrum suggested a higher
metallicity of Fe H 4.3[ ] = -/ due to the Ca II K line blending with a CH feature, which is a common issue related
to the search for the most iron-poor stars. This star joins several other similar stars with Fe H 5.0[ ]  -/ that all
display a combination of low-iron and high-carbon abundances. Other elemental abundances of SD 1313−0019
follow that of more metal-rich halo stars. Fitting the abundance pattern with yields of Population III supernovae
suggests that SD 1313−0019 had only one massive progenitor star with M20 30–  that must have undergone a
mixing and fallback episode. Overall, there are now five stars known with Fe H 5.0[ ]  -/ (1D local
thermodynamic equilibrium abundances). This ever-increasing population of carbon-rich, iron-deficient stars can
potentially constrain nucleosynthesis in Population III stars and their supernova explosions, the formation
mechanisms of the first low-mass stars, and the nature of the first galaxies.

Key words: early universe – Galaxy: halo – stars: abundances – stars: individual (SD 1313–0019) –
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1. INTRODUCTION

The chemical abundances of the most iron-poor stars provide
a record of the nucleosynthesis yields of the first stars that
formed in the universe. By now, ∼20 Milky Way halo stars are
known with Fe H 4.0[ ]  -/ (see, e.g., Frebel & Norris 2015;
Placco et al. 2015), of which five have Fe H 5.0[ ]  -/
(Christlieb et al. 2002; Frebel et al. 2005; Caffau et al. 2011;
Keller et al. 2014; Bonifacio et al. 2015). They are thought to
be second-generation stars from the early universe with just one
massive Population III (hereafter Pop III) first star progenitor
that produced the chemical elements that we can still observe in
their stellar atmospheres today.

These stars have been used to constrain the properties of the
first stars (e.g., Limongi et al. 2003; Meynet et al. 2006; Heger
& Woosley 2010; Tominaga et al. 2014), the formation sites of
early low-mass stars (e.g., Karlsson et al. 2013; Cooke &
Madau 2014; Smith et al. 2015), and their formation
mechanisms (Frebel et al. 2007a; Schneider et al. 2012; Ji
et al. 2014). Moreover, they provide key information on the
production of the first elements that ushered in the chemical
evolution of the universe (Frebel & Norris 2015). Clearly, these
stars are at the heart of stellar archeology and of vital
importance to near-field cosmology. Accordingly, several
efforts are underway to uncover additional most iron-poor
stars (Keller et al. 2007; Caffau et al. 2013; Schlaufman &
Casey 2014; Li et al. 2015), reflecting the wide ranging interest
in these ancient stars. This follows the HK survey (Beers
et al. 1992), the Hamburg/ESO survey (Frebel et al. 2006;
Christlieb et al. 2008), and the Sloan Digital Sky Survey
(SDSS) and Sloan Extension for Galactic Understanding and

Exploration (SEGUE) survey (Aoki et al. 2013; Caffau
et al. 2013; Bonifacio et al. 2015).
We report the detailed chemical abundances of yet another

hyper iron-poor star with Fe H 5.0[ ] = -/ . The low-metallicity
nature of SDSS J131326.89−001941.4 (hereafter SD 1313
−0019) was initially recognized by Allende Prieto et al. (2015)
based on a medium-resolution Baryonic Oscillation Spectro-
scopic Survey (SDSS-BOSS) spectrum with R 2000~ . The
analysis of this spectrum showed the star to have
Fe H 4.3[ ]  -/ and C Fe 2.5[ ] =/ , making SD 1313−0019
an ideal target for high-resolution spectroscopic follow-up
observations to confirm medium-resolution results and deter-
mine additional chemical abundances.

2. OBSERVATIONS

We observed SD 1313−0019 (R.A. = 13h13m26s.89,
decl. = −01°19′41″. 4 (J2000.0), V = 16.9) with the MIKE
spectrograph (Bernstein et al. 2003) on the Magellan-Clay
telescope at Las Campanas Observatory on 2015 June 16 and
17. A 0. 7 slit yields a high spectral resolution of ∼28,000 in
the red and ∼35,000 in the blue wavelength regime. The total
exposure time was 3 hr, although the seeing degraded during
the second half of the observations.
Data reductions were carried out with the MIKE Carnegie

Python pipeline (Kelson 2003).3 The resulting signal-to-noise
ratio per pixel is 45 at ∼4700Å, 40 at ∼5200Å, and 55 at
∼6000Å. Radial velocity measurements yield 274.6 km s−1.
This is consistent with the value of 268 ± 4 km s−1 from the
initial SEGUE spectrum (Allende Prieto et al. 2015) from 2008
July 5, but different from the value of 242 ± 4 km s−1 from the
BOSS spectrum from 2014 March 11. We checked our radial
velocity zero point with observations of G64−12 obtained on
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the same night as SD 1313−0019. Its heliocentric radial
velocity of 443.0 km s−1 agrees extremely well with values in
the literature. As already suggested by Allende Prieto et al.
(2015), our data support SD 1313−0019 being a member of a
binary system, although additional measurements are required
to verify this.

In Figure 1, we show several representative portions of the
spectrum around the Ca II K line at 3933Å, the G-bandhead at
4313Å, and the Mg b lines at 5170Å. We also show the Hα
line in comparison with several other stars.

3. CHEMICAL ABUNDANCE ANALYSIS

3.1. Stellar Parameters

We determined the stellar parameters spectroscopically,
following the procedure outlined in Frebel et al. (2013). For
that, we measured equivalent widths and carried out spectrum
synthesis for blended features and to determine upper limits of
elements with no detected lines using custom-made software
(Casey 2014). The equivalent widths are presented in Table 1.
We used a 1D plane-parallel model atmosphere with
α-enhancement (Castelli & Kurucz 2004) and a version of
the MOOG analysis code that accounts for Rayleigh scattering
(Sneden 1973; Sobeck et al. 2011). The abundances are
computed under the assumption of local thermodynamic
equilibrium (LTE). We derive an effective temperature of
T 5170 Keff = after applying the temperature correction (see
Frebel et al. 2013). We estimate an uncertainty of ∼150 K
given that we only have 37 Fe I lines available.
This is somewhat cooler than the results of Allende Prieto

et al. (2015), who find values ranging from 5250 to 5670 K, but
adopt a value of ∼5300 K. To investigate reasons for these
differences, we visually compared the Balmer line strengths of
SD 1313−0019 in our spectrum to those of stars with a similar
temperature. As can be seen in Figure 1 (bottom panel), the
shape of the Hα line of SD 1313−0019 agrees very well with
those of HE 0107−5240 (T 5100eff = K; Christlieb et al. 2004)
and SM 0313−6708 (T 5125 Keff = ; Keller et al. 2014), but
not with that of the warmer HE 1300+0057 (T 5450 Keff = ;
Frebel et al. 2007b) or the cooler CD−38 245 (T 4800 Keff = ;
Christlieb et al. 2004).
In addition, we repeated our spectroscopic analysis to see if

T 5300 Keff = can be supported. Within our equivalent width
measurement uncertainties, T 5300 Keff = also satisfies the
excitation equilibrium. We thus decided to adopt a temperature of
5200K, rather than 5100 K, following the Balmer line compar-
ison. Both are consistent with our initial spectroscopic result.
Since no Fe II lines were detected, we adopted a surface

gravity from an isochrone. We use one with Fe H 3.0[ ] = -/
(Kim et al. 2002), but one with Fe H 2.0[ ] = -/ , following the
overall metallicity of the star, would essentially give the same
result. Our final stellar parameters are T 5200 150 Keff =  ,

glog 2.6 0.5=  , v 1.8 0.3micr =  km s−1, and Fe H[ ] =/
5.0 0.1-  .

3.2. Chemical Abundances and Measurement Uncertainties

Chemical abundances were determined for 10 elements and
upper limits of an additional 7 elements. The final abundance
ratios [X/Fe] are calculated using the solar abundances of
Asplund et al. (2009). Our final abundances are listed in
Table 2 and shown in Figure 2. We now briefly comment on
each element abundance.
Lithium was not detected. Its upper limit A(Li) 0.8< is

consistent with SD 1313−0019 being at the base of the red
giant branch, having begun to destroy its surface lithium
abundances.
Carbon abundance was determined from the CH G-bandhead

at 4313Å and an additional CH feature at 4323Å, using the
new linelist by Masseron et al. (2014). The best-fit synthetic
spectrum is shown in Figure 1. Due to the relatively unevolved
nature of SD 1313−0019, the carbon abundance does not need
to be corrected for evolutionary status (Placco et al. 2014).

Figure 1. Portions of the Magellan/MIKE spectrum of SD 1313−0019 in
comparison with other iron-poor stars near the Ca II K line at 3933 Å (top),
around the Mg b lines around 5180 Å (second panel), the G-band near 4313 Å
(third panel), and the Hα line (bottom). Some absorption lines are indicated.
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We measured just the 5895Å line of Na, with the other line at
5885Å being distorted. There is excellent agreement between
the blue Mg triplet and green Mg b lines. Only the Al 3961Å
line was used because the other one available, at 3944Å, is too
heavily blended with CH. We obtained an upper limit for Si
from synthesis of the 3905Å line, which is blended with a
molecular CH line. Ca abundances were derived from the Ca I

line at 4226Å and the Ca II K line. The abundances differ by
0.15 dex, with a higher Ca II abundance. With the Ca II K line
having an equivalent width of 390 mÅ, we regard it merely as
confirmation of the Ca I abundance. We also resolve at least one
component of interstellar Ca blueward of the Ca II K line. This
was already noticed by Allende Prieto et al. (2015).
One weak Sc line at 4246Å was tentatively detected, and it

is blended with CH. Ti abundance was determined from two Ti
lines, yielding good agreement. Ni abundance was determined
from three lines. Upper limits for Mn, Co, Zn, Sr, and Ba were
determined from the lines at 4030Å, 3873Å, 4810Å, 4077Å,
and 4554Å, respectively.
Regarding abundance uncertainties, we determined random

measurement uncertainties from the standard deviation when
more than one line was measured, although we adopt a nominal
minimum value of 0.1 dex. For elements with just one line, we
assign uncertainties based on abundance changes due to varying
the continuum placement. These uncertainties are listed in
Table 2. Concerning systematic uncertainties, we re-determined
the abundances after changing each of the stellar parameters by
their uncertainty while holding the others fixed. The total
uncertainties ( rand syss s+ ) for most elements are about 0.2 dex
and 0.4 dex for [C/Fe] given its temperature sensitivity.

4. DISCUSSION

4.1. Origin of the Abundance Signature of SD 1313−0019 and
Other CEMP Stars with Fe H 5.0[ ]  -/

SD 1313−0019 is a hyper iron-poor CEMP star with
C Fe 3.0[ ] =/ . Only four stars are currently known with lower
[Fe/H] values, and only six other stars have [C/Fe] ratios of
C Fe 3.0[ ] / . SD 1313−0019 thus contributes to the 100%
CEMP star fraction at the lowest iron abundances (Placco

Table 1
Equivalent Width Measurements

Element λ (Å) χ (eV) gflog (dex) EW (mÅ) log  (dex)

Li I 6707.7 0.00 0.170 syn <0.80
CH 4313 L L syn 6.44
CH 4323 L L syn 6.34
N (CN)a 3883 L L syn 6.29
Na I 5895.92 0.00 −0.19 9.7 1.61
Mg I 3829.36 2.71 −0.21 47.6 3.17
Mg I 3832.30 2.71 0.27 66.9 3.00
Mg I 3838.29 2.72 0.49 73.6 2.91
Mg I 5183.60 2.72 −0.24 42.4 3.03
Mg I 5172.68 2.71 −0.45 34.5 3.09
Al I 3961.52 0.01 −0.34 20.8 1.34
Si I 3905.52 L L syn <2.72
Ca I 4226.73 0.00 0.24 54.1 1.59
Ca II 3933.66 0.00 0.11 390.1 1.73
Sc II 4246.82 L L syn −1.54
Ti II 3759.29 0.61 0.28 50.5 0.33
Ti II 3761.32 0.57 0.18 47.5 0.32
Mn I 4030.75 0.00 −0.48 <16.6 <0.66
Fe I 3878.57 0.09 −1.38 45.2 2.54
Fe I 3886.28 0.05 −1.08 58.3 2.45
Fe I 3887.05 0.91 −1.14 13.8 2.47
Fe I 3895.66 0.11 −1.67 28.2 2.51
Fe I 3899.71 0.09 −1.52 40.1 2.57
Fe I 3902.95 1.56 −0.44 18.1 2.63
Fe I 3920.26 0.12 −1.73 32.2 2.66
Fe I 3922.91 0.05 −1.63 30.4 2.45
Fe I 4045.81 1.49 0.28 45.7 2.41
Fe I 4063.59 1.56 0.06 31.1 2.42
Fe I 4071.74 1.61 −0.01 27.3 2.47
Fe I 4132.06 1.61 −0.68 8.3 2.51
Fe I 4202.03 1.49 −0.69 12.0 2.56
Fe I 4271.76 1.49 −0.17 28.5 2.50
Fe I 4325.76 1.61 0.01 28.9 2.46
Fe I 4383.55 1.48 0.20 40.5 2.35
Fe I 4404.75 1.56 −0.15 20.2 2.35
Fe I 4415.12 1.61 −0.62 9.8 2.50
Fe I 3840.44 0.99 −0.50 44.1 2.64
Fe I 3841.05 1.61 −0.04 25.7 2.49
Fe I 3856.37 0.05 −1.28 59.2 2.67
Fe I 3859.91 0.00 −0.71 81.4 2.58
Fe I 3490.57 0.05 −1.11 56.0 2.56
Fe I 3758.23 0.96 −0.01 57.9 2.40
Fe I 3763.79 0.99 −0.22 52.4 2.53
Fe I 3767.19 1.01 −0.39 44.8 2.57
Fe I 3787.88 1.01 −0.84 18.5 2.45
Fe I 3815.84 1.48 0.24 44.9 2.46
Fe I 3820.43 0.86 0.16 70.5 2.39
Fe I 3824.44 0.00 −1.36 55.2 2.62
Fe I 3825.88 0.91 −0.02 63.6 2.46
Fe I 3827.82 1.56 0.094 35.7 2.51
Fe I 3618.77 0.99 −0.00 59.5 2.55
Fe I 3647.84 0.92 −0.14 53.6 2.42
Fe I 3719.94 0.00 −0.42 82.6 2.37
Fe I 3743.36 0.99 −0.79 30.2 2.67
Co I 3873.12 0.43 −0.66 <27.4 <1.70
Ni I 3858.30 0.42 −0.95 18.1 1.58
Ni I 3524.54 0.03 0.01 69.8 1.47
Ni I 3807.14 0.42 −1.22 20.0 1.91
Zn I 4810.53 4.08 −0.14 <2.7 <1.45
Sr II 4215.52 0.00 −0.18 <8.0 <−2.41
Ba II 4554.03 0.00 syn <6.8 <−2.60

Note.
a Holding the C abundance fixed at log  (C) = 6.39.

Table 2
Magellan/MIKE Chemical Abundances of SD 1313−0019

Species N log X( ) σ [X/H] [X/Fe]

Li (Syn.) 1 <0.80 L L L
C (Syn.) 2 6.39 0.28 −2.04 2.96
N (Syn.) 1 6.29 0.40 −1.54 3.46
Na I 1 1.61 0.15 −4.63 0.37
Mg I 5 3.04 0.10 −4.56 0.44
Al I 1 1.34 0.30 −5.11 −0.11
Si (Syn.) 1 <2.72 L <−4.79 <0.21
Ca I 1 1.59 0.10 −4.75 0.25
Ca II 1 1.73 0.20 −4.61 0.39
Sc (Syn.) 1 −1.54 0.30 −4.69 0.31
Ti II 2 0.33 0.10 −4.62 0.37
Mn I 1 <0.66 L <−4.77 <0.23
Fe I 36 2.50 0.10 −5.00 0.00
Co I 1 <1.70 L <−3.29 <1.71
Ni I 3 1.65 0.20 −4.57 0.43
Zn I 1 <1.45 L <−3.11 <1.89
Sr II 1 <−2.41 L <−5.28 <−0.28
Ba II 1 <−2.60 L <−4.78 <0.22
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et al. 2014). The carbon present in the birth gas clouds may
have originated in rotating massive stars that ejected strong
stellar winds (e.g., Meynet et al. 2006) in fallback supernovae
(e.g., Tominaga et al. 2014) or by two supernovae (e.g.,
Limongi et al. 2003). See Frebel & Norris (2015) for an
extensive discussion.

Alternatively, mass transfer from an erstwhile AGB binary
companion might be responsible for the observed high [C/Fe]
ratio, given its alleged radial velocity variation. Large amounts
of s-process elements would also be expected, such as
Ba Fe 1.0[ ] >/ , typical for s-process stars (e.g., Placco
et al. 2013). This is, however, currently ruled out by its upper
limit of Ba Fe 0.2[ ] </ .

4.2. Constraining Population III Star Properties

We now present an example analysis of the abundance
pattern of SD 1313−0019 using theoretical model predictions
of supernova yields from single non-rotating massive Pop III
stars. While other yields could also be used, due to space
constraints, we restrict ourselves to the Heger & Woosley
(2010) fallback (S4) models4 that comprise 120 models with
masses from 10 to 100 M, covering explosion energies from

0.3 10 erg51´ to 10 10 erg51´ . For each energy, there are
models with different (fixed) mixing amounts (see Tables 8 and
9 of Heger & Woosley 2010). The mass cut is fixed at all times
and assumed to take place at the base of the oxygen burning
shell, where the piston is placed.
We use their publicly available 2c matching algorithm to

determine which model fits our abundances best. The fitting
algorithm assumes Sc and Cu are lower limits (generally, Sc is
underproduced by the yields), and it ignores Li, Cr, and Zn by
default. For both Sc and Cr, Heger & Woosley (2010) assume
unaccounted for, additional production sites. Any apparent
discrepancy should thus be disregarded.
Results are shown in Figure 3. Fitting the abundance pattern

(top left panel) yields a progenitor mass of M27  and a low
explosion energy of 0.3 10 erg51´ , although the quality of the
fit is only moderate. This could partly be due to our high C and
N abundances. Given that 3D effects for abundances
determined from molecular features (CH, NH, CN) can be
>1 dex, this leaves 1D LTE abundances overestimated
compared to those from 3D or time-averaged ( 3Dá ñ) model
atmospheres (e.g., Magic et al. 2013).
For example, for the CN feature, Spite et al. (2013) found 3D

N abundances to be as much as 2.4 dex lower than 1D values.
Therefore, we modified our C and N abundances to investigate

Figure 2. Abundance ratios ([X/Fe]) as a function of metallicity ([Fe/H]) for various elements detected in SD 1313−0019 (black square) and other halo stars (small
red squares for stars with Fe H 4.0[ ]  -/ , otherwise black crosses; Yong et al. 2013 and references in Placco et al. 2015).

4 Accessible at http://starfit.org.
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potential 3D effects. This follows Placco et al. (2015), who
demonstrate that the quality of the match between the star’s
abundance pattern to the yields is highly sensitive to the N
abundance. To illustrate this issue, the bottom left panel of
Figure 3 shows the abundance pattern with [C/H] and [N/H]
each reduced by 1 dex. There is no change in the progenitor
model, but C and N are now fit well. There is no change for the
remaining elements.

To further illustrate the dependence of the best-fit result on
the N abundance, we reduced [N/H] by 2 dex but kept the
original [C/H] abundance. The progenitor properties changed
only slightly: M20  and 0.6 10 erg51´ and, again, an
improved fit (bottom right panel). This test simulates the Spite
et al. suggestion of a reduced N abundance (when derived from
CN). In fact, a lower N value agrees with the upper limit
derived from NH lines at 3360Å. For completeness, we also
determine the best fit after excluding the N abundance from the
observed pattern (top right panel). The progenitor mass is rather
different then, with M12  in line with findings by Placco
et al. (2015).

We conclude that the progenitor of SD 1313−0019 had a
mass of 20 to M30 , was of low explosion energy, and
experienced a mixing and fallback episode that led to a high
[C/Fe] yield. Future work exploring more details of the mixing
and fallback supernovae or alternate production scenarios
(Limongi et al. 2003; Meynet et al. 2006) may be able to more
closely reproduce the star’s light element abundances.

Another aspect to consider are the observed neutron-capture
element abundances and upper limits in the most iron-poor
stars. With Sr H 5.3[ ] < -/ and Ba H 4.8[ ] < -/ , SD 1313
−0019 possesses extremely low neutron-capture abundances,
which are among the lowest ever observed in halo stars (e.g.,
see Figure 8 in Frebel et al. 2014). Interestingly, these
abundance levels strongly resemble those of the stars in the
Segue 1 ultra-faint dwarf galaxy (Frebel et al. 2014). This
might suggest that SD 1313−0019 formed in a system not too

dissimilar from Segue 1, which is characterized by its uniquely
low neutron-capture element content.
More generally, the low Sr and Ba values of SD 1313−0019

extend the decreasing abundance trends of halo stars with
decreasing [Fe/H] down to Fe H 5.0[ ] = -/ . The upper limits
of [Sr/H] and [Ba/H] suggest that neutron-capture elements
were not made in every first-generation star. This could imply
that neutron-capture processes are mass or rotation dependent
and only happen in certain mass ranges, such as the s-process
in massive rotating low-metallicity stars (Pignatari et al. 2008).
Broadly, this would imply a variety of progenitor masses
because HE 1327−2326, with Fe H 5.6[ ] = -/ , has a much
larger Sr abundance ( Sr H 4.7[ ] ~ -/ ) in contrast to SD 11313
−0019. However, current abundance fitting of supernova
yields only take into account elements up to Zn, and those
results suggest that the progenitors of Fe H 5.0[ ]  -/ stars
have a relatively narrow mass range (Placco et al. 2015).
Additional iron-poor stars and especially more extensive
nucleosynthesis prediction, particularly for neutron-capture
element abundances, are needed to fully understand the
observed signatures. Nevertheless, it is becoming clear that
neutron-capture elements have the potential to strongly
constrain progenitor properties.

4.3. The Formation Sites and Mechanisms
of the First Low-mass Stars

The first Pop II stars formed in either 106~ M minihalos or
108~ M atomic cooling halos. Either formation site is

possible, but if the large observed [C/Fe] ratios originated
from low energy, faint supernovae, this suggests that minihalos
are the preferred formation site of CEMP stars (Cooke &
Madau 2014) or even externally enriched minihalos (Smith
et al. 2015). However, even if several 1051 erg core-collapse
supernovae explode in a single minihalo, hydrodynamic
simulations with cosmological initial conditions have found

Figure 3. Abundance ratios [X/H] of SD 1313−0019 as a function of atomic number. Four variations on the abundances are shown (see the upper right corners). The
solid lines are the best fits for each abundance set using the S4 yields (Heger & Woosley 2010). The resulting model mass and energy are also shown in the upper right
and the remnant mass in the lower left. Arrows represent upper limits. See the text for discussion.
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that metals expelled by Pop III stars are retained and second-
generation stars form (Ritter et al. 2015). Comparing the latter
scenario to models of chemical enrichment suggests that a
majority of Pop III supernovae may have provided the carbon
enhancement in the abundance signatures of the most iron-poor
stars (Ji et al. 2015).

Second-generation star formation may also have occurred
in chemically homogeneous clusters (Bland-Hawthorn
et al. 2010; Ritter et al. 2015), with two low-mass stars from
the same birth gas cloud ending in the stellar halo. In this
context, it is interesting to note the remarkably similar
abundance patterns of SD 1313−0019 and HE 0557−4840
(Norris et al. 2007). They have different C and N abundances,
which could potentially be brought into closer agreement by
future NLTE and/or 3D corrections. However, without
dynamical information, it cannot be excluded that these two
stars formed from distinct supernovae that had produced
similar abundance patterns.

Low-mass star formation may be facilitated by atomic
carbon and oxygen providing a cooling channel for the
primordial gas to sufficiently fragment (Bromm & Loeb 2003).
An alternate channel is dust thermal cooling (e.g., Schneider
et al. 2012). Both mechanisms can be tested with observational
criteria (Frebel et al. 2007a; Ji et al. 2014). The carbon
abundance of SD 1313−0019 is C H 2.0[ ] ~ -/ , easily
satisfying the Dtrans criterion for low-mass star formation
through atomic line cooling (Frebel et al. 2007a). This star also
has a low silicon abundance Si H 4.8[ ]  -/ . If dust in the early
universe was predominantly silicates, it could not have formed
from standard dust cooling (Ji et al. 2014). Only if carbon dust
is able to form or grain growth is important, then dust cooling
could have catalyzed SD 1313−0019ʼs formation (Chiaki
et al. 2015).

4.4. About Future Searches for CEMP Stars
with Fe H 4.0[ ]  -/

While Allende Prieto et al. (2015) found Fe H 4.3[ ] = -/ for
SD 1313−0019 based on a medium-resolution spectrum
(R 2000~ ), we find a significantly lower metallicity even
when taking the effective temperature differences into account.
Using 5378 K, we find Fe H 4.82[ ] = -/ . The Ca II K line, on
which the medium-resolution value was based, is blended with
a double-peaked carbon feature at 3935.5Å. After smoothing
our spectrum to a comparable resolution, we recovered the
quoted equivalent width of 640 mÅ of Allende Prieto et al.
(2015). Our corresponding abundance is Ca H 4.0[ ] ~ -/ ,
which agrees with their Fe H 4.3[ ] = -/ , assuming
Ca Fe 0.3[ ] ~/ .
Since the most iron-poor stars are likely to be carbon

enhanced, they display strong CH features throughout the blue
part of the spectrum, including near the Ca II K line. Examples
include HE 0107−5240 (Christlieb et al. 2002) and SM0313
−6708 (Keller et al. 2014), where the equivalent width of the
combined Ca II K–CH3935.5 feature is about twice that of the
Ca II K line alone (see Figure 1). In fact, the discrepancy
between medium- and high-resolution spectra of nine of the
most iron-poor stars varies from 0.5- to 1.75- dex. It is thus
impossible for this population of stars to obtain an accurate
[Fe/H] estimate from the Ca K II unless this effect is taken into
account.

With an independent C abundance (e.g., from the G-band,
measurable in medium-resolution spectra) and approximate

stellar parameters, it should be possible to predict the
contribution of the CH feature at 3935.5Å and subtract it
from the equivalent width of the Ca II K line. This will become
particularly important for both spectroscopic and narrowband
photometric surveys that contain large amounts of fainter
metal-poor stars that cannot be followed up with high-
resolution spectroscopy. Overestimating the iron abundances
of the most iron-poor stars due to this carbon contamination
would skew the shape of the metallicity distribution function at
its tail end, thus hampering our understanding of the formation
of the earliest long-lived stars as well as the stellar halo of the
Milky Way.
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