
Staring into the Abyss: An Evaluation of
Concurrency Control with One Thousand Cores

Xiangyao Yu George Bezerra
MIT CSAIL MIT CSAIL

yxy@csail.mit.edu gbezerra@csail.mit.edu

Andrew Pavlo Srinivas Devadas Michael Stonebraker
Carnegie Mellon University MIT CSAIL MIT CSAIL

pavlo@cs.cmu.edu devadas@csail.mit.edu stonebraker@csail.mit.edu

ABSTRACT
Computer architectures are moving towards an era dominated by
many-core machines with dozens or even hundreds of cores on a
single chip. This unprecedented level of on-chip parallelism intro-
duces a new dimension to scalability that current database manage-
ment systems (DBMSs) were not designed for. In particular, as the
number of cores increases, the problem of concurrency control be-
comes extremely challenging. With hundreds of threads running in
parallel, the complexity of coordinating competing accesses to data
will likely diminish the gains from increased core counts.

To better understand just how unprepared current DBMSs are for
future CPU architectures, we performed an evaluation of concur-
rency control for on-line transaction processing (OLTP) workloads
on many-core chips. We implemented seven concurrency control
algorithms on a main-memory DBMS and using computer simula-
tions scaled our system to 1024 cores. Our analysis shows that all
algorithms fail to scale to this magnitude but for different reasons.
In each case, we identify fundamental bottlenecks that are indepen-
dent of the particular database implementation and argue that even
state-of-the-art DBMSs suffer from these limitations. We conclude
that rather than pursuing incremental solutions, many-core chips
may require a completely redesigned DBMS architecture that is
built from ground up and is tightly coupled with the hardware.

1. INTRODUCTION
The era of exponential single-threaded performance improve-

ment is over. Hard power constraints and complexity issues have
forced chip designers to move from single- to multi-core designs.
Clock frequencies have increased for decades, but now the growth
has stopped. Aggressive, out-of-order, super-scalar processors are
now being replaced with simple, in-order, single issue cores [1].
We are entering the era of the many-core machines that are pow-
ered by a large number of these smaller, low-power cores on a sin-
gle chip. Given the current power limits and the inefficiency of
single-threaded processing, unless a disruptive technology comes
along, increasing the number of cores is currently the only way that
architects are able to increase computational power. This means

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 3
Copyright 2014 VLDB Endowment 2150-8097/14/11.

that instruction-level parallelism and single-threaded performance
will give way to massive thread-level parallelism.

As Moore’s law continues, the number of cores on a single chip
is expected to keep growing exponentially. Soon we will have hun-
dreds or perhaps a thousand cores on a single chip. The scalability
of single-node, shared-memory DBMSs is even more important in
the many-core era. But if the current DBMS technology does not
adapt to this reality, all this computational power will be wasted on
bottlenecks, and the extra cores will be rendered useless.

In this paper, we take a peek at this dire future and examine what
happens with transaction processing at one thousand cores. Rather
than looking at all possible scalability challenges, we limit our
scope to concurrency control. With hundreds of threads running in
parallel, the complexity of coordinating competing accesses to data
will become a major bottleneck to scalability, and will likely dwin-
dle the gains from increased core counts. Thus, we seek to com-
prehensively study the scalability of OLTP DBMSs through one of
their most important components.

We implemented seven concurrency control algorithms in a main
memory DBMS and used a high-performance, distributed CPU sim-
ulator to scale the system to 1000 cores. Implementing a system
from scratch allows us to avoid any artificial bottlenecks in existing
DBMSs and instead understand the more fundamental issues in the
algorithms. Previous scalability studies used existing DBMSs [24,
26, 32], but many of the legacy components of these systems do not
target many-core CPUs. To the best of our knowledge, there has not
been an evaluation of multiple concurrency control algorithms on a
single DBMS at such large scale.

Our analysis shows that all algorithms fail to scale as the number
of cores increases. In each case, we identify the primary bottle-
necks that are independent of the DBMS implementation and ar-
gue that even state-of-the-art systems suffer from these limitations.
We conclude that to tackle this scalability problem, new concur-
rency control approaches are needed that are tightly co-designed
with many-core architectures. Rather than adding more cores, com-
puter architects will have the responsibility of providing hardware
solutions to DBMS bottlenecks that cannot be solved in software.

This paper makes the following contributions:
• A comprehensive evaluation of the scalability of seven con-

currency control schemes.
• The first evaluation of an OLTP DBMS on 1000 cores.
• Identification of bottlenecks in concurrency control schemes

that are not implementation-specific.
The remainder of this paper is organized as follows. We begin

in Section 2 with an overview of the concurrency control schemes

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78065251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:yxy@csail.mit.edu
mailto:gbezerra@csail.mit.edu
mailto:pavlo@cs.cmu.edu
mailto:devadas@csail.mit.edu
mailto:stonebraker@csail.mit.edu


used in our evaluation. Section 3 describes the components of our
study. We present our analysis in Sections 4 and 5, followed by a
discussion of results in Section 6. Finally, we survey related work
in Section 7 and discuss future research directions in Section 8.

2. CONCURRENCY CONTROL SCHEMES
OLTP database systems support the part of an application that in-

teracts with end-users. End-users interact with the front-end appli-
cation by sending it requests to perform some function (e.g., reserve
a seat on a flight). The application processes these requests and then
executes transactions in the DBMS. Such users could be humans on
their personal computer or mobile device, or another computer pro-
gram potentially running somewhere else in the world.

A transaction in the context of one of these systems is the exe-
cution of a sequence of one or more operations (e.g., SQL queries)
on a shared database to perform some higher-level function [17]. It
is the basic unit of change in a DBMS: partial transactions are not
allowed, and the effect of a group of transactions on the database’s
state is equivalent to any serial execution of all transactions. The
transactions in modern OLTP workloads have three salient charac-
teristics: (1) they are short-lived (i.e., no user stalls), (2) they touch
a small subset of data using index look-ups (i.e., no full table scans
or large joins), and (3) they are repetitive (i.e., executing the same
queries with different inputs) [38].

An OLTP DBMS is expected to maintain four properties for each
transaction that it executes: (1) atomicity, (2) consistency, (3) iso-
lation, and (4) durability. These unifying concepts are collectively
referred to with the ACID acronym [20]. Concurrency control per-
mits end-users to access a database in a multi-programmed fashion
while preserving the illusion that each of them is executing their
transaction alone on a dedicated system [3]. It essentially provides
the atomicity and isolation guarantees in the system.

We now describe the different concurrency control schemes that
we explored in our many-core evaluation. For this discussion, we
follow the canonical categorization that all concurrency schemes
are either a variant of two-phase locking or timestamp ordering pro-
tocols [3]. Table 1 provides a summary of these different schemes.

2.1 Two-Phase Locking
Two-phase locking (2PL) was the first provably correct method

of ensuring the correct execution of concurrent transactions in a
database system [6, 12]. Under this scheme, transactions have to
acquire locks for a particular element in the database before they
are allowed to execute a read or write operation on that element.
The transaction must acquire a read lock before it is allowed to read
that element, and similarly it must acquire a write lock in order to
modify that element. The DBMS maintains locks for either each
tuple or at a higher logical level (e.g., tables, partitions) [14].

The ownership of locks is governed by two rules: (1) different
transactions cannot simultaneously own conflicting locks, and (2)
once a transaction surrenders ownership of a lock, it may never
obtain additional locks [3]. A read lock on an element conflicts
with a write lock on that same element. Likewise, a write lock on
an element conflicts with a write lock on the same element.

In the first phase of 2PL, known as the growing phase, the trans-
action is allowed to acquire as many locks as it needs without re-
leasing locks [12]. When the transaction releases a lock, it enters
the second phase, known as the shrinking phase; it is prohibited
from obtaining additional locks at this point. When the transac-
tion terminates (either by committing or aborting), all the remain-
ing locks are automatically released back to the coordinator.

2PL is considered a pessimistic approach in that it assumes that
transactions will conflict and thus they need to acquire locks to

2P
L

DL_DETECT 2PL with deadlock detection.
NO_WAIT 2PL with non-waiting deadlock prevention.
WAIT_DIE 2PL with wait-and-die deadlock prevention.

T
/O

TIMESTAMP Basic T/O algorithm.
MVCC Multi-version T/O.
OCC Optimistic concurrency control.
H-STORE T/O with partition-level locking.

Table 1: The concurrency control schemes evaluated in this paper

avoid this problem. If a transaction is unable to acquire a lock for an
element, then it is forced to wait until the lock becomes available.
If this waiting is uncontrolled (i.e., indefinite), then the DBMS can
incur deadlocks [3]. Thus, a major difference among the different
variants of 2PL is in how they handle deadlocks and the actions
that they take when a deadlock is detected. We now describe the
different versions of 2PL that we have implemented in our evalua-
tion framework, contrasting them based on these two details:

2PL with Deadlock Detection (DL_DETECT): The DBMS mon-
itors a waits-for graph of transactions and checks for cycles (i.e.,
deadlocks) [19]. When a deadlock is found, the system must choose
a transaction to abort and restart in order to break the cycle. In prac-
tice, a centralized deadlock detector is used for cycle detection. The
detector chooses which transaction to abort based on the amount of
resources it has already used (e.g., the number of locks it holds) to
minimize the cost of restarting a transaction [3].

2PL with Non-waiting Deadlock Prevention (NO_WAIT): Un-
like deadlock detection where the DBMS waits to find deadlocks
after they occur, this approach is more cautious in that a transac-
tion is aborted when the system suspects that a deadlock might oc-
cur [3]. When a lock request is denied, the scheduler immediately
aborts the requesting transaction (i.e., it is not allowed to wait to
acquire the lock).

2PL with Waiting Deadlock Prevention (WAIT_DIE): This is a
non-preemptive variation of the NO_WAIT scheme technique where
a transaction is allowed to wait for the transaction that holds the
lock that it needs if that transaction is older than the one that holds
the lock. If the requesting transaction is younger, then it is aborted
(hence the term “dies”) and is forced to restart [3]. Each trans-
action needs to acquire a timestamp before its execution and the
timestamp ordering guarantees that no deadlocks can occur.

2.2 Timestamp Ordering
Timestamp ordering (T/O) concurrency control schemes gener-

ate a serialization order of transactions a priori and then the DBMS
enforces this order. A transaction is assigned a unique, monotoni-
cally increasing timestamp before it is executed; this timestamp is
used by the DBMS to process conflicting operations in the proper
order (e.g., read and write operations on the same element, or two
separate write operations on the same element) [3].

We now describe the T/O schemes implemented in our test-bed.
The key differences between the schemes are (1) the granularity
that the DBMS checks for conflicts (i.e., tuples vs. partitions) and
(2) when the DBMS checks for these conflicts (i.e., while the trans-
action is running or at the end).

Basic T/O (TIMESTAMP): Every time a transaction reads or mod-
ifies a tuple in the database, the DBMS compares the timestamp
of the transaction with the timestamp of the last transaction that
reads or writes the same tuple. For any read or write operation,
the DBMS rejects the request if the transaction’s timestamp is less
than the timestamp of the last write to that tuple. Likewise, for a
write operation, the DBMS rejects it if the transaction’s timestamp
is less than the timestamp of the last read to that tuple. In TIMES-



TAMP, a read query makes a local copy of the tuple to ensure re-
peatable reads since it is not protected by locks. When a transaction
is aborted, it is assigned a new timestamp and then restarted. This
corresponds to the “basic T/O” algorithm as described in [3], but
our implementation uses a decentralized scheduler.

Multi-version Concurrency Control (MVCC): Under MVCC,
every write operation creates a new version of a tuple in the database [4,
5]. Each version is tagged with the timestamp of the transaction
that created it. The DBMS maintains an internal list of the versions
of an element. For a read operation, the DBMS determines which
version in this list the transaction will access. Thus, it ensures a
serializable ordering of all operations. One benefit of MVCC is that
the DBMS does not reject operations that arrive late. That is, the
DBMS does not reject a read operation because the element that it
targets has already been overwritten by another transaction [5].

Optimistic Concurrency Control (OCC): The DBMS tracks
the read/write sets of each transaction and stores all of their write
operations in their private workspace [28]. When a transaction
commits, the system determines whether that transaction’s read set
overlaps with the write set of any concurrent transactions. If no
overlap exists, then the DBMS applies the changes from the trans-
action’s workspace into the database; otherwise, the transaction is
aborted and restarted. The advantage of this approach for main
memory DBMSs is that transactions write their updates to shared
memory only at commit time, and thus the contention period is
short [42]. Modern implementations of OCC include Silo [42] and
Microsoft’s Hekaton [11, 29]. In this paper, our algorithm is simi-
lar to Hekaton in that we parallelize the validation phase and thus
is more scalable than the original algorithm [28].

T/O with Partition-level Locking (H-STORE): The database is
divided into disjoint subsets of memory called partitions. Each
partition is protected by a lock and is assigned a single-threaded
execution engine that has exclusive access to that partition. Each
transaction must acquire the locks for all of the partitions that it
needs to access before it is allowed to start running. This requires
the DBMS to know what partitions that each individual transac-
tion will access before it begins [34]. When a transaction request
arrives, the DBMS assigns it a timestamp and then adds it to all
of the lock acquisition queues for its target partitions. The execu-
tion engine for a partition removes a transaction from the queue
and grants it access to that partition if the transaction has the oldest
timestamp in the queue [38]. Smallbase was an early proponent of
this approach [22], and more recent examples include H-Store [27].

3. MANY-CORE DBMS TEST-BED
Since many-core chips do not yet exist, we performed our anal-

ysis through Graphite [30], a CPU simulator that can scale up to
1024 cores. For the DBMS, we implemented a main memory OLTP
engine that only contains the functionality needed for our experi-
ments. The motivation for using a custom DBMS is two fold. First,
we can ensure that no other bottlenecks exist other than concur-
rency control. This allows us to study the fundamentals of each
scheme in isolation without interference from unrelated features.
Second, using a full-featured DBMS is impractical due to the con-
siderable slowdown of simulators (e.g., Graphite has an average
slowdown of 10,000×). Our engine allows us to limit the experi-
ments to reasonable times. We now describe the simulation infras-
tructure, the DBMS engine, and the workloads used in this study.

3.1 Simulator and Target Architecture
Graphite [30] is a fast CPU simulator for large-scale multi-core

systems. Graphite runs off-the-shelf Linux applications by creat-

Host	  Machines	  Target	  Mul2core	  Application 

core	  

core	  

core	  

core	  

core	  

core	  

core	  

core	  

core	  

core	  

core	  

core	  

Figure 1: Graphite Simulator Infrastructure – Application threads are
mapped to simulated core threads deployed on multiple host machines.

Figure 2: Target Architecture – Tiled chip multi-processor with 64 tiles
and a 2D-mesh network-on-chip. Each tile contains a processing core, L1
and L2 caches, and a network switch (SW).

ing a separate thread for each core in the architecture. As shown
in Fig. 1, each application thread is attached to a simulated core
thread that can then be mapped to different processes on separate
host machines. For additional performance, Graphite relaxes cy-
cle accuracy, using periodic synchronization mechanisms to model
instruction-level granularity. As with other similar CPU simulators,
it only executes the application and does not model the operating
system. For this paper, we deployed Graphite on a 22-node cluster,
each with dual-socket Intel Xeon E5-2670 and 64GB of DRAM.

The target architecture is a tiled multi-core CPU, where each tile
contains a low-power, in-order processing core, 32KB L1 instruc-
tion/data cache, a 512KB L2 cache slice, and a network router.
This is similar to other commercial CPUs, such as Tilera’s Tile64
(64 cores), Intel’s SCC (48 cores), and Intel’s Knights Landing (72
cores) [1]. Tiles are interconnected using a high-bandwidth, 2D-
mesh on-chip network, where each hop takes two cycles. Both the
tiles and network are clocked at 1GHz frequency. A schematic of
the architecture for a 64-core machine is depicted in Fig. 2.

We use a shared L2-cache configuration because it is the most
common last-level cache design for commercial multi-cores. In a
comparison experiment between shared and private L2-caches, we
observe that shared caches lead to significantly less memory traffic
and higher performance for OLTP workloads due to its increased
aggregate cache capacity (results not shown). Since L2 slices are
distributed among the different tiles, the simulated multi-core sys-
tem is a NUCA (Non-Uniform Cache Access) architecture, where
L2-cache latency increases with distance in the 2D-mesh.

3.2 DBMS
We implemented our own lightweight main memory DBMS based

on pthreads to run in Graphite. It executes as a single process with
the number of worker threads equal to the number of cores, where
each thread is mapped to a different core. All data in our DBMS is
stored in memory in a row-oriented manner. The system supports
basic hash table indexes and a pluggable lock manager that allows
us swap in the different implementations of the concurrency con-
trol schemes described in Section 2. It also allows the indexes and
lock manager to be partitioned (as in the case with the H-STORE
scheme) or run in a centralized mode.



Client threads are not simulated in our system; instead, each
worker contains a fixed-length queue of transactions that are served
in order. This reduces the overhead of network protocols, which are
inherently difficult to model in the simulator. Each transaction con-
tains program logic intermixed with query invocations. The queries
are executed serially by the transaction’s worker thread as they are
encountered in the program logic. Transaction statistics, such as
throughput, latency, and abort rates, are collected after a warm-up
period that is long enough for the system to achieve a steady state.

In addition to runtime statistics, our DBMS also reports how
much time each transaction spends in the different components of
the system [21]. We group these measurements into six categories:

USEFUL WORK: The time that the transaction is actually exe-
cuting application logic and operating on tuples in the system.

ABORT: The overhead incurred when the DBMS rolls back all
of the changes made by a transaction that aborts.

TS ALLOCATION: The time that it takes for the system to ac-
quire a unique timestamp from the centralized allocator. For those
concurrency control schemes that require a timestamp, the alloca-
tion overhead happens only once per transaction.

INDEX: The time that the transaction spends in the hash indexes
for tables, including the overhead of low-level latching of the buck-
ets in the hash tables.

WAIT: The total amount of time that a transaction has to wait.
A transaction may either wait for a lock (e.g., 2PL) or for a tuple
whose value is not ready yet (e.g., T/O).

MANAGER: The time that the transaction spends in the lock
manager or the timestamp manager. This excludes any time that
it has to wait.

3.3 Workloads
We next describe the two benchmarks that we implemented in

our test-bed for this analysis.

YCSB: The Yahoo! Cloud Serving Benchmark is a collection
of workloads that are representative of large-scale services created
by Internet-based companies [8]. For all of the YCSB experiments
in this paper, we used a ∼20GB YCSB database containing a sin-
gle table with 20 million records. Each YCSB tuple has a single
primary key column and then 10 additional columns each with 100
bytes of randomly generated string data. The DBMS creates a sin-
gle hash index for the primary key.

Each transaction in the YCSB workload by default accesses 16
records in the database. Each access can be either a read or an up-
date. The transactions do not perform any computation in their pro-
gram logic. All of the queries are independent from each other; that
is, the input of one query does not depend on the output of a pre-
vious query. The records accessed in YCSB follows a Zipfian dis-
tribution that is controlled by a parameter called theta that affects
the level of contention in the benchmark [18]. When theta=0, all
tuples are accessed with the same frequency. But when theta=0.6
or theta=0.8, a hotspot of 10% of the tuples in the database are ac-
cessed by ∼40% and ∼60% of all transactions, respectively.

TPC-C: This benchmark is the current industry standard for
evaluating the performance of OLTP systems [40]. It consists of
nine tables that simulate a warehouse-centric order processing ap-
plication. All of the transactions in TPC-C provide a WAREHOUSE
id as an input parameter for the transaction, which is the ancestral
foreign key for all tables except ITEM. For a concurrency control
algorithm that requires data partitioning (i.e., H-STORE), TPC-C is
partitioned based on this warehouse id.

Only two (Payment and NewOrder) out of the five transactions

0 5 10 15 20 25 30 35
Number of Cores

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Th
ro

ug
hp

ut
 (M

ill
io

n 
tx

n/
s) DL_DETECT

NO_WAIT
WAIT_DIE
TIMESTAMP
MVCC
OCC

(a) Graphite Simulation

0 5 10 15 20 25 30 35
Number of Cores

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Th
ro

ug
hp

ut
 (M

ill
io

n 
tx

n/
s) DL_DETECT

NO_WAIT
WAIT_DIE
TIMESTAMP
MVCC
OCC

(b) Real Hardware

Figure 3: Simulator vs. Real Hardware – Comparison of the concurrency
control schemes running in Graphite and a real multi-core CPU using the
YCSB workload with medium contention (theta=0.6).

in TPC-C are modeled in our simulation. Since these two comprise
88% of the total TPC-C workload, this is a good approximation.
Our version of TPC-C is a “good faith” implementation, although
we omit the “thinking time” for worker threads. Each worker issues
transactions without pausing; this mitigates the need to increase the
size of the database with the number of concurrent transactions.

3.4 Simulator vs. Real Hardware
To show that using the Graphite simulator generates results that

are comparable to existing hardware, we deployed our DBMS on an
Intel Xeon E7-4830 and executed a read-intensive YCSB workload
with medium contention (theta=0.6). We then executed the same
workload in Graphite with the same number of cores.

The results in Fig. 3 show that all of the concurrency control
schemes exhibit the same performance trends on Graphite and the
real CPU. We note, however, that the relative performance differ-
ence between MVCC, TIMESTAMP, and OCC is different in Fig. 3b.
This is because MVCC accesses memory more than the other two
schemes and those accesses are more expensive on a two-socket
system. Graphite models a single CPU socket and thus there is
no inter-socket traffic. In addition to this, the throughput of the
T/O-based and WAIT_DIE schemes drops on 32 cores due to the
overhead of cross-core communication during timestamp alloca-
tion. We address this issue in Section 4.3.

4. DESIGN CHOICES & OPTIMIZATIONS
One of the main challenges of this study was designing a DBMS

and concurrency control schemes that are as scalable as possible.
When deploying a DBMS on 1000 cores, many secondary aspects
of the implementation become a hindrance to performance. We did
our best to optimize each algorithm, removing all possible scalabil-
ity bottlenecks while preserving their essential functionality. Most
of this work was to eliminate shared data structures and devise dis-
tributed versions of the classical algorithms [3].

In this section, we discuss our experience with developing a
many-core OLTP DBMS and highlight the design choices we made
to achieve a scalable system. Additionally, we identify fundamental
bottlenecks of both the 2PL and T/O schemes and show how hard-
ware support mitigates these problems. We present our detailed
analysis of the individual schemes in Section 5.

4.1 General Optimizations
We first discuss the optimizations that we added to improve the

DBMS’s performance across all concurrency control schemes.

Memory Allocation: One of the first limitations we encountered
when trying to scale our DBMS to large core counts was the malloc
function. When using the default Linux version of malloc, we
found that the DBMS spends most of the time waiting for memory
allocation. This is a problem even for read-only workloads, since
the DBMS still needs to copy records for reads in TIMESTAMP



100 101 102 103

Number of Cores

10-1

100

101
Th

ro
ug

hp
ut

 (M
ill

io
n 

tx
n/

s)

theta=0
theta=0.6
theta=0.8

Figure 4: Lock Thrashing – Results for a write-intensive YCSB workload
using the DL_DETECT scheme without deadlock detection. Each transac-
tion acquires locks in their primary key order.

and to create internal meta-data handles for access tracking data
structures. We tried running optimized versions (TCMalloc [15],
jemalloc [13]), but both yielded similar disappointing results.

We overcame this by writing a custom malloc implementation.
Similar to TCMalloc and jemalloc, each thread is assigned its own
memory pool. But the difference is that our allocator automatically
resizes the pools based on the workload. For example, if a bench-
mark frequently allocates large chunks of contiguous memory, the
pool size increases to amortize the cost for each allocation.

Lock Table: As identified in previous work [26, 36], the lock
table is another key contention point in DBMSs. Instead of having
a centralized lock table or timestamp manager, we implemented
these data structures in a per-tuple fashion where each transaction
only latches the tuples that it needs. This improves scalability, but
increases the memory overhead because the DBMS maintains addi-
tional meta-data for the lock sharer/waiter information. In practice,
this meta-data (several bytes) is negligible for large tuples.

Mutexes: Accessing a mutex lock is an expensive operation that
requires multiple messages to be sent across the chip. A central
critical section protected by a mutex will limit the scalability of any
system (cf. Section 4.3). Therefore, it is important to avoid using
mutexes on the critical path. For 2PL, the mutex that protects the
centralized deadlock detector is the main bottleneck, while for T/O
algorithms it is the mutex used for allocating unique timestamps.
In the subsequent sections, we describe the optimizations that we
developed to obviate the need for these mutexes.

4.2 Scalable Two-Phase Locking
We next discuss the optimizations for the 2PL algorithms.

Deadlock Detection: For DL_DETECT, we found that the dead-
lock detection algorithm is a bottleneck when multiple threads com-
pete to update their waits-for graph in a centralized data structure.
We solved this by partitioning the data structure across cores and
making the deadlock detector completely lock-free. Now when a
transaction updates its waits-for graph, its thread updates its queue
with the transactions that it is waiting for without any locks. This
step is local (i.e., no cross-core communication), as the thread does
not write to the queues of other transactions.

In the deadlock detection process, a thread searches for cycles in
a partial waits-for graph constructed by only reading the queues of
related threads without locking the queues. Although this approach
may not discover a deadlock immediately after it forms, the thread
is guaranteed to find it on subsequent passes [5].

Lock Thrashing: Even with improved detection, DL_DETECT
still does not scale due to lock thrashing. This occurs when a trans-
action holds its locks until it commits, blocking all the other concur-
rent transactions that attempt to acquire those locks. This becomes
a problem with high contention and a large number of concurrent
transactions, and thus is the main bottleneck of all 2PL schemes.

0 1us 10us 100us 1ms 10ms 100ms
Timeout Threshold

0.16
0.17
0.18
0.19
0.20
0.21
0.22

Th
ro

ug
hp

ut
 (M

ill
io

n 
tx

n/
s)

600
800
1000
1200
1400
1600
1800
2000
2200

Ab
or

t R
at

e

Figure 5: Waiting vs. Aborting – Results for DL_DETECT with varying
timeout threshold running high contention YCSB (theta=0.8) at 64 cores.

To demonstrate the impact of thrashing, we executed a write-
intensive YCSB workload (i.e., 50/50% read-write mixture) using a
variant of DL_DETECT where transactions acquire locks in primary
key order. Although this approach is not practical for all work-
loads, it removes the need for deadlock detection and allows us to
better observe the effects of thrashing. Fig. 4 shows the transaction
throughput as a function of the number of cores for different lev-
els of contention. When there is no skew in the workload (theta=0),
the contention for locks is low and the throughput scales almost lin-
early. As the contention level increases, however, thrashing starts to
occur. With medium contention (theta=0.6), the throughput peaks
at several hundred cores and then decreases due to thrashing. At
the highest contention level (theta=0.8), the DBMS’s throughput
peaks at 16 cores and cannot scale beyond that. Simulation re-
sults show that almost all the execution time is spent on waiting
for locks. Thus, lock thrashing is the key bottleneck of lock-based
approaches that limits scalability in high-contention scenarios.

Waiting vs. Aborting: The thrashing problem can be solved in
DL_DETECT by aborting some transactions to reduce the number
of active transactions at any point in time. Ideally, this keeps the
system running at the highest throughput achieved in Fig. 4. We
added a timeout threshold in the DBMS that causes the system to
abort and restart any transaction that has been waiting for a lock for
an amount of time greater than the threshold. We note that when
timeout is zero, this algorithm is equivalent to NO_WAIT.

We ran the same YCSB workload with high contention using
different timeout thresholds on a 64-core CPU. We measure both
the throughput and abort rate in the DBMS for the DL_DETECT
scheme sweeping the timeout from 0–100 ms.

The results in Fig. 5 indicate when the CPU has a small number
of cores, it is better to use a shorter timeout threshold. This high-
lights the trade-off between performance and the transaction abort
rate. With a small timeout, the abort rate is high, which reduces the
number of running transactions and alleviates the thrashing prob-
lem. Using a longer timeout reduces the abort rate at the cost of
more thrashing. Therefore, in this paper, we evaluate DL_DETECT
with its timeout threshold set to 100µs. In practice, the threshold
should be based on an application’s workload characteristics.

4.3 Scalable Timestamp Ordering
Finally, we discuss the optimizations that we developed to im-

prove the scalability of the T/O-based algorithms.

Timestamp Allocation: All T/O-based algorithms make order-
ing decisions based on transactions’ assigned timestamps. The
DBMS must therefore guarantee that each timestamp is allocated
to only one transaction. A naïve approach to ensure this is to use a
mutex in the allocator’s critical section, but this leads to poor perfor-
mance. Another common solution is to use an atomic addition op-
eration to advance a global logical timestamp. This requires fewer
instructions and thus the DBMS’s critical section is locked for a
smaller period of time than with a mutex. But as we will show, this



approach is still insufficient for a 1000-core CPU. We now discuss
three timestamp allocation alternatives: (1) atomic addition with
batching [42], (2) CPU clocks, and (3) hardware counters.

With the batched atomic addition approach, the DBMS uses the
same atomic instruction to allocate timestamps, but the timestamp
manager returns multiple timestamps together in a batch for each
request. This method was first proposed in the Silo DBMS [42].

To generate a timestamp using clock-based allocation, each worker
thread reads a logical clock from its local core and then concate-
nates it with its thread id. This provides good scalability as long
as all the clocks are synchronized. In distributed systems, synchro-
nization is accomplished using software protocols [31] or external
clocks [9]. On a many-core CPU, however, this imposes large over-
head and thus requires hardware support. As of July 2014, only
Intel CPUs support synchronized clocks across cores.

Lastly, the third approach is to use an efficient, built-in hardware
counter. The counter is physically located at the center of the CPU
such that the average distance to each cores is minimized. No exist-
ing CPU currently supports this. Thus, we implemented a counter
in Graphite where a timestamp request is sent through the on-chip
network to increment it atomically in a single cycle.

To determine the maximum rate that the DBMS can allocate
timestamps for each method, we ran a micro-benchmark where
threads continually acquire new timestamps. The throughput as
a function of the number of cores is shown in Fig. 6. We first note
that mutex-based allocation has the lowest performance, with ∼1
million timestamps per second (ts/s) on 1024 cores. The atomic
addition method reaches a maximum of 30 million ts/s with a
small number of cores, but throughput decreases with the number
of cores down to 8 million ts/s. This is due to the cache coherence
traffic from writing back and invalidating the last copy of the cor-
responding cache line for every timestamp. This takes one round
trip of communication across the chip or ∼100 cycles for a 1024-
core CPU, which translates to a maximum throughput of 10 million
ts/s at 1GHz frequency. Batching these allocations does help, but
it causes performance issues when there is contention (see below).
The hardware-based solutions are able to scale with the number of
cores. Because incrementing the timestamp takes only one cycle
with the hardware counter-based approach, this method achieves
a maximum throughput of 1 billion ts/s. The performance gain
comes from removing the coherence traffic by executing the addi-
tion operation remotely. The clock-based approach has ideal (i.e.,
linear) scaling, since this solution is completely decentralized.

We also tested the different allocation schemes in the DBMS to
see how they perform for real workloads. For this experiment, we
executed a write-intensive YCSB workload with two different con-
tention levels using the TIMESTAMP scheme. The results in Fig. 7a
show that with no contention, the relative performance of the al-
location methods are the same as in Fig. 6. When there is con-
tention, however, the trends in Fig. 7b are much different. First,
the DBMS’s throughput with the batched atomic addition method
is much worse. This is because when a transaction is restarted due
to a conflict, it gets restarted in the same worker thread and is as-
signed the next timestamp in the last batch. But this new timestamp
will also be less than the one for the other transaction that caused
the abort, and thus it will continually restart until the thread fetches
a new batch. The non-batched atomic addition method performs as
well as the clock and hardware counter approaches. Hence, for this
paper the DBMS uses atomic addition without batching to allocate
timestamps because the other approaches require specialized hard-
ware support that is currently not available on all CPUs.

Distributed Validation: The original OCC algorithm contains
a critical section at the end of the read phase, where the transac-

1 10 100 1000
Number of Cores

1

10

100

1000

10000

Th
ro

ug
hp

ut
 (M

ill
io

n 
ts

/s
)

Clock
Hardware
Atomic batch=16
Atomic batch=8
Atomic
Mutex

Figure 6: Timestamp Allocation Micro-benchmark – Throughput mea-
surements for different timestamp allocation methods.

0 200 400 600 800 1000
Number of Cores

0
10
20
30
40
50
60
70
80
90

Th
ro

ug
hp

ut
 (M

ill
io

n 
tx

n/
s) Clock

HW Counter
Atomic batch=16
Atomic batch=8
Atomic
Mutex

(a) No Contention

0 200 400 600 800 1000
Number of Cores

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Th
ro

ug
hp

ut
 (M

ill
io

n 
tx

n/
s)

(b) Medium Contention

Figure 7: Timestamp Allocation – Throughput of the YCSB workload
using TIMESTAMP with different timestamp allocation methods.

tion’s read set is compared to previous transactions’ write sets to
detect conflicts. Although this step is short, as mentioned above,
any mutex-protected critical section severely hurts scalability. We
solve this problem by using per-tuple validation that breaks up this
check into smaller operations. This is similar to the approach used
in Hekaton [29] but it is simpler, since we only support a single
version of each tuple.

Local Partitions: We optimized the original H-STORE proto-
col to take advantage of shared memory. Because the DBMS’s
worker threads run in a single process, we allow multi-partition
transactions to access tuples at remote partitions directly instead of
sending query requests that are executed by the remote partitions’
worker threads. This allows for a simpler implementation that is
faster than using intra-process communication. With this approach,
the data is not physically partitioned since on-chip communication
latency is low. Read-only tables are accessed by all threads without
replication, thus reducing the memory footprint. Finally, we use
the same timestamp allocation optimizations from above to avoid
the mandatory wait time to account for clock skew [38].

5. EXPERIMENTAL ANALYSIS
We now present the results from our analysis of the different

concurrency control schemes. Our experiments are grouped into
two categories: (1) scalability and (2) sensitivity evaluations. For
the former, we want to determine how well the schemes perform as
we increase the number of cores. We scale the number of cores up
to 1024 while fixing the workload parameters. With the sensitivity
experiments, we vary a single workload parameter (e.g., transaction
access skew). We report the DBMS’s total simulated throughput as
well as a breakdown of the amount of time that each worker thread
spends in the different parts of the system listed in Section 3.2.

We begin with an extensive analysis of the YCSB workload.
The nature of this workload allows us to change its parameters
and create a variety of scenarios that stress the concurrency con-
trol schemes in different ways. Next, we analyze the TPC-C work-
load, where we vary the number of warehouses and observe the
impact on the throughput of the algorithms. The H-STORE scheme
is excluded from our initial experiments and is only introduced in
Section 5.5 when we analyze database partitioning.



0 200 400 600 800 1000
Number of Cores

0
2
4
6
8

10
12
14

Th
ro

ug
hp

ut
 (M

ill
io

n 
tx

n/
s) DL_DETECT

NO_WAIT
WAIT_DIE

TIMESTAMP
MVCC
OCC

(a) Total Throughput

DL_DETECT
NO_WAIT

WAIT_DIE

TIMESTAMP
MVCC OCC

0.0

0.2

0.4

0.6

0.8

1.0

Useful Work
Abort
Ts Alloc.
Index
Wait
Manager

(b) Runtime Breakdown (1024 cores)

Figure 8: Read-only Workload – Results for a read-only YCSB workload.

5.1 Read-Only Workload
In this first scalability analysis experiment, we executed a YCSB

workload comprising read-only transactions with a uniform access
distribution. Each transaction executes 16 separate tuple reads at a
time. This provides a baseline for each concurrency control scheme
before we explore more complex workload arrangements.

In a perfectly scalable DBMS, the throughput should increase
linearly with the number of cores. This is not the case, however,
for the T/O schemes in Fig. 8a. The time breakdown in Fig. 8b
indicates that timestamp allocation becomes the bottleneck with a
large core count. OCC hits the bottleneck even earlier since it needs
to allocate timestamps twice per transaction (i.e., at transaction start
and before the validation phase). Both OCC and TIMESTAMP have
significantly worse performance than the other algorithms regard-
less of the number of cores. These algorithms waste cycles because
they copy tuples to perform a read, whereas the other algorithms
read tuples in place.

5.2 Write-Intensive Workload
A read-only workload represents an optimistic (and unrealistic)

scenario, as it generates no data contention. But even if we intro-
duce writes in the workload, the large size of the dataset means that
the probability that any two transactions access the same tuples at
the same time is small. In reality, the access distribution of an OLTP
application is rarely uniform. Instead, it tends to follow a Zipfian
skew, where certain tuples are more likely to be accessed than oth-
ers. This can be from either skew in the popularity of elements in
the database or skew based on temporal locality (i.e., newer tuples
are accessed more frequently). As a result, this increases contention
because transactions compete to access the same data.

We executed a write-intensive YCSB workload comprising trans-
actions that access 16 tuples at time. Within each transaction, each
of these accesses will modify the tuple with a 50% probability. The
amount of skew in the workload is determined by the parameter
theta (cf. Section 3.3). We use the medium and high contention
levels for the transactions’ access patterns.

The medium contention results in Fig. 9 show that NO_WAIT
and WAIT_DIE are the only 2PL schemes that scales past 512 cores.
NO_WAIT scales better than WAIT_DIE. For DL_DETECT, the break-

0 200 400 600 800 1000
Number of Cores

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Th
ro

ug
hp

ut
 (M

ill
io

n 
tx

n/
s) DL_DETECT

NO_WAIT
WAIT_DIE

TIMESTAMP
MVCC
OCC

(a) Total Throughput

DL_DETECT
NO_WAIT

WAIT_DIE

TIMESTAMP
MVCC OCC

0.0

0.2

0.4

0.6

0.8

1.0

Useful Work
Abort
Ts Alloc.
Index
Wait
Manager

(b) Runtime Breakdown (512 cores)

Figure 9: Write-Intensive Workload (Medium Contention) – Results for
YCSB workload with medium contention (theta=0.6).

down in Fig. 9b indicates that the DBMS spends a larger percentage
of its time waiting in these schemes. DL_DETECT is inhibited by
lock thrashing at 256 cores. NO_WAIT is the most scalable because
it eliminates this waiting. We note, however, that both NO_WAIT
and WAIT_DIE have a high transaction abort rate. This is not an
issue in our experiments because restarting an aborted transaction
has low overhead; the time it takes to undo a transaction is slightly
less than the time it takes to re-execute the transactions queries. But
in reality, the overhead may be larger for workloads where trans-
actions have to rollback changes to multiple tables, indexes, and
materialized views.

The results in Fig. 9a also show that the T/O algorithms perform
well in general. Both TIMESTAMP and MVCC are able to overlap
operations and reduce the waiting time. MVCC performs slightly
better since it keeps multiple versions of a tuple and thus can serve
read requests even if they have older timestamps. OCC does not
perform as well because it spends a large portion of its time abort-
ing transactions; the overhead is worse since each transaction has
to finish before the conflict is resolved.

With higher contention, the results in Fig. 10 show that perfor-
mance of all of the algorithms is much worse. Fig. 10a shows
that almost all of the schemes are unable to scale to more than 64
cores. Beyond this point, the DBMS’s throughput stops increas-
ing and there is no performance benefit to the increased core count.
NO_WAIT initially outperforms all the others, but then succumbs
to lock thrashing (cf. Fig. 4). Surprisingly, OCC performs the
best on 1024 cores. This is because although a large number of
transactions conflict and have to abort during the validation phase,
one transaction is always allowed to commit. The time breakdown
in Fig. 10b shows that the DBMS spends a larger amount of time
aborting transactions in every scheme.

To better understand when each scheme begins to falter with in-
creased contention, we fixed the number of cores to 64 and per-
formed a sensitivity analysis on the skew parameter (theta). The
results in Fig. 11 indicate that for theta values less than 0.6, the con-
tention has little effect on the performance. But for higher settings,
there is a sudden drop in throughput that renders all algorithms non-
scalable and approaches zero for values greater than 0.8.



0 200 400 600 800 1000
Number of Cores

0.00

0.05

0.10

0.15

0.20

0.25
Th

ro
ug

hp
ut

 (M
ill

io
n 

tx
n/

s) DL_DETECT
NO_WAIT
WAIT_DIE

TIMESTAMP
MVCC
OCC

(a) Total Throughput

DL_DETECT
NO_WAIT

WAIT_DIE

TIMESTAMP
MVCC OCC

0.0

0.2

0.4

0.6

0.8

1.0

Useful Work
Abort
Ts Alloc.
Index
Wait
Manager

(b) Runtime Breakdown (64 cores)

Figure 10: Write-Intensive Workload (High Contention) – Results for
YCSB workload with high contention (theta=0.8).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Theta

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Th
ro

ug
hp

ut
 (M

ill
io

n 
tx

n/
s)

DL_DETECT
NO_WAIT
WAIT_DIE
TIMESTAMP
MVCC
OCC

Figure 11: Write-Intensive Workload (Variable Contention) – Results
for YCSB workload with varying level of contention on 64 cores.

5.3 Working Set Size
The number of tuples accessed by a transaction is another factor

that impacts scalability. When a transaction’s working set is large,
it increases the likelihood that the same data is accessed by concur-
rent transactions. For 2PL algorithms, this increases the length of
time that locks are held by a transaction. With T/O, however, longer
transactions may reduce timestamp allocation contention. In this
experiment, we vary the number of tuples accessed per transaction
in a write-intensive YCSB workload. Because short transactions
leads to higher throughput, we measure the number of tuples ac-
cessed per second, rather than transactions completed. We use the
medium skew setting (theta=0.6) and fix the core count to 512.

The results in Fig. 12 show that when transactions are short, the
lock contention is low. DL_DETECT and NO_WAIT have the best
performance in this scenario, since there are few deadlocks and
the number of aborts is low. But as the transactions’ working set
size increases, the performance of DL_DETECT degrades due to
the overhead of thrashing. For the T/O algorithms and WAIT_DIE,
the throughput is low when the transactions are short because the
DBMS spends a majority of its time allocating timestamps. But
as the transactions become longer, the timestamp allocation cost is
amortized. OCC performs the worst because it allocates double the
number of timestamps as the other schemes for each transaction.

Fig. 12b shows the time breakdown for transaction length equals

0 2 4 6 8 10 12 14 16
Number of Rows Accessed per Transaction

0
10
20
30
40
50
60
70

Th
ro

ug
hp

ut
 (M

ill
io

n 
tu

pl
e/

s)

DL_DETECT
NO_WAIT
WAIT_DIE

TIMESTAMP
MVCC
OCC

(a) Total Throughput

DL_DETECT
NO_WAIT

WAIT_DIE

TIMESTAMP
MVCC OCC

0.0

0.2

0.4

0.6

0.8

1.0

Useful Work
Abort
Ts Alloc.
Index
Wait
Manager

(b) Runtime Breakdown (transaction length = 1)

Figure 12: Working Set Size – The number of tuples accessed per core on
512 cores for transactions with a varying number of queries (theta=0.6).

to one. Again, we see that the T/O schemes spend most of their
execution time allocating timestamps. As the transactions become
longer, Figs. 8b and 9b shows that the allocation is no longer the
main bottleneck. The results in Fig. 12 also show that the T/O-
based algorithms are more tolerant to contention than DL_DETECT.

5.4 Read/Write Mixture
Another important factor for concurrency control is the read-

/write mixtures of transactions. More writes leads to more con-
tention that affect the algorithms in different ways. For this exper-
iment, we use YCSB on a 64 core configuration and vary the per-
centage of read queries executed by each transaction. Each trans-
action executes 16 queries using the high skew setting (theta=0.8).

The results in Fig. 13 indicate that all of the algorithms achieve
better throughput when there are more read transactions. At 100%
reads, the results match the previous read-only results in Fig. 8a.
TIMESTAMP and OCC do not perform well because they copy tu-
ples for reading. MVCC stand out as having the best performance
when there are small number of write transactions. This is also an
example of where supporting non-blocking reads through multiple
versions is most effective; read queries access the correct version
of a tuple based on timestamps and do not need to wait for a writing
transaction. This is a key difference from TIMESTAMP, where late
arriving queries are rejected and their transactions are aborted.

5.5 Database Partitioning
Up to this point in our analysis, we assumed that the database is

stored as a single partition in memory and that all worker threads
can access any tuple. With the H-STORE scheme, however, the
DBMS splits the database into disjoint subsets to increase scala-
bility [38]. This approach achieves good performance only if the
database is partitioned in such a way that enables a majority of
transactions to only need to access data at a single partition [34].
H-STORE does not work well when the workload contains multi-
partition transactions because of its coarse-grained locking scheme.
It also matters how many partitions each transaction accesses; for
example, H-STORE will still perform poorly even with a small
number of multi-partition transactions if they access all partitions.



0.0 0.2 0.4 0.6 0.8 1.0
Percentage of Read Requests

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Th
ro

ug
hp

ut
 (M

ill
io

n 
tx

n/
s)

DL_DETECT
NO_WAIT
WAIT_DIE
TIMESTAMP
MVCC
OCC

Figure 13: Read/Write Mixture – Results for YCSB with a varying per-
centage of read-only transactions with high contention (theta=0.8).

0 200 400 600 800 1000
Number of Cores

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (M

ill
io

n 
tx

n/
s)

DL_DETECT
NO_WAIT
WAIT_DIE
TIMESTAMP

MVCC
OCC
HSTORE

Figure 14: Database Partitioning – Results for a read-only workload on a
partitioned YCSB database. The transactions access the database based on
a uniform distribution (theta=0.0).

To explore these issues in a many-core setting, we first compare
H-STORE to the six other schemes under ideal conditions. We then
analyze its performance with multi-partition transactions.

We divide the YCSB database into the same number of parti-
tions as the number of cores in each trial. Since YCSB only has
one table, we use a simple hashing strategy to assign tuples to par-
titions based on their primary keys so that each partition stores ap-
proximately the same number of records. These tests use a write-
intensive workload where each transaction executes 16 queries that
all use index look-ups without any skew (theta=0.0). We also as-
sume that the DBMS knows what partition to assign each transac-
tion to at runtime before it starts [34].

In the first experiment, we executed a workload comprised only
of single-partition transactions. The results in Fig. 14 show that H-
STORE outperforms all other schemes up to 800 cores. Since it is
especially designed to take advantage of partitioning, it has a much
lower overhead for locking than the other schemes. But because
H-STORE also depends on timestamp allocation for scheduling, it
suffers from the same bottleneck as the other T/O-based schemes.
As a result, the performance degrades at higher core counts. For
the other schemes, partitioning does not have a significant impact
on throughput. It would be possible, however, to adapt their imple-
mentation to take advantage of partitioning [36].

We next modified the YCSB driver to vary the percentage of
multi-partition transactions in the workload and deployed the DBMS
on a 64-core CPU. The results in Fig. 15a illustrate two important
aspects of the H-STORE scheme. First, there is no difference in
performance whether or not the workload contains transactions that
modify the database; this is because of H-STORE’s locking scheme.
Second, the DBMS’s throughput degrades as the number of multi-
partition transactions in the workload increases because they reduce
the amount of parallelism in the system [34, 42].

Lastly, we executed YCSB with 10% multi-partition transactions
and varied the number of partitions that they access. The DBMS’s

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of multi-partition transactions
0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (M

ill
io

n 
tx

n/
s)

readonly
readwrite

(a) Multi-Partition Percentage

200 400 600 800 1000
Number of Cores

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (M

ill
io

n 
tx

n/
s)

part=1
part=2
part=4
part=8
part=16

(b) Partitions per Transaction

Figure 15: Multi-Partition Transactions – Sensitivity analysis of the H-
STORE scheme for YCSB workloads with multi-partition transactions.

throughput for the single-partition workload in Fig. 15b exhibits
the same degradation due to timestamp allocation as H-STORE in
Fig. 14. This is also why the throughputs for the one- and two-
partition workloads converge at 1000 cores. The DBMS does not
scale with transactions accessing four or more partitions because of
the reduced parallelism and increased cross-core communication.

5.6 TPC-C
Finally, we analyze the performance of all the concurrency con-

trol algorithms when running the TPC-C benchmark. The trans-
actions in TPC-C are more complex than those in YCSB and is
representative of a large class of OLTP applications. For example,
they access multiple tables with a read-modify-write access pattern
and the output of some queries are used as the input for subsequent
queries in the same transaction. TPC-C transactions can also abort
because of certain conditions in their program logic, as opposed to
only because the DBMS detected a conflict.

The workload in each trial comprises 50% NewOrder and 50%
Payment transactions. These two make up 88% of the default TPC-
C mix and are the most interesting in terms of complexity. Support-
ing the other transactions would require additional DBMS features,
such as B-tree latching for concurrent updates. This would add ad-
ditional overhead to the system, and thus we defer the problem of
scaling indexes for many-core CPUs as future work.

The size of TPC-C databases are typically measured by the num-
ber of warehouses. The warehouse is the root entity for almost all
tables in the database. We follow the TPC-C specification where
∼10% of the NewOrder transactions and ∼15% of the Payment
transactions access a “remote” warehouse. For partitioned-based
schemes, such as H-STORE, each partition consists of all the data
for a single warehouse [38]. This means that the remote warehouse
transactions will access multiple partitions.

We first execute the TPC-C workload on a 4-warehouse database
with 100MB of data per warehouse (0.4GB in total). This allows
us to evaluate the algorithms when there are more worker threads
than warehouses. We then execute the same workload again on a
1024-warehouse database. Due to memory constraints of running
in the Graphite simulator, we reduced the size of this database to
26MB of data per warehouse (26GB in total). This does not affect
our measurements because the number of tuples accessed by each
transaction is independent of the database size.

5.6.1 4 Warehouses
The results in Fig. 16 show that all of the schemes fail to scale

for TPC-C when there are fewer warehouses than cores. With
H-STORE, the DBMS is unable to utilize extra cores because of
its partitioning scheme; the additional worker threads are essen-
tially idle. For the other schemes, the results in Fig. 16c show that
they are able to scale up to 64 cores for the NewOrder transaction.
TIMESTAMP, MVCC, and OCC have worse scalability due to high
abort rates. DL_DETECT does not scale due to thrashing and dead-



0 50 100 150 200 250 300
Number of Cores

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

Th
ro

ug
hp

ut
 (M

ill
io

n 
tx

n/
s)

(a) Payment + NewOrder

0 50 100 150 200 250 300
Number of Cores

0.00

0.05

0.10

0.15

0.20

Th
ro

ug
hp

ut
 (M

ill
io

n 
tx

n/
s)

DL_DETECT
WAIT_DIE
NO_WAIT
TIMESTAMP

MVCC
OCC
HSTORE

(b) Payment only

0 50 100 150 200 250 300
Number of Cores

0.00

0.05

0.10

0.15

0.20

0.25

Th
ro

ug
hp

ut
 (M

ill
io

n 
tx

n/
s)

(c) NewOrder only

Figure 16: TPC-C (4 warehouses) – Results for the TPC-C workload running up to 256 cores.

0 200 400 600 800 1000
Number of Cores

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (M

ill
io

n 
tx

n/
s)

(a) Payment + NewOrder

0 200 400 600 800 1000
Number of Cores

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

ill
io

n 
tx

n/
s)

DL_DETECT
WAIT_DIE
NO_WAIT
TIMESTAMP

MVCC
OCC
HSTORE

(b) Payment only

0 200 400 600 800 1000
Number of Cores

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (M

ill
io

n 
tx

n/
s)

(c) NewOrder only

Figure 17: TPC-C (1024 warehouses) – Results for the TPC-C workload running up to 1024 cores.

locks. But the results in Fig. 16b show that no scheme scales for
the Payment transaction. The reason for this is that every Payment
transaction updates a single field in the warehouse (W_YTD). This
means that either the transaction (1) must acquire an exclusive lock
on the corresponding tuple (i.e., DL_DETECT) or (2) issue a pre-
write on that field (i.e., T/O-based algorithms). If the number of
threads is greater than the number of warehouses, then updating
the warehouse table becomes a bottleneck.

In general, the main problem for these two transactions is the
contention on updating the WAREHOUSE table. Each Payment trans-
action updates its corresponding warehouse entry and each NewOrder
will read it. For the 2PL-based algorithms, these read and write
operations block each other. Two of the T/O-based algorithms,
TIMESTAMP and MVCC, outperform the other schemes because
their write operations are not blocked by reads. This eliminates
the lock blocking problem in 2PL. As a result, the NewOrder trans-
actions can execute in parallel with Payment transactions.

5.6.2 1024 Warehouses
We next execute the TPC-C workload with 1024 warehouses

with up to 1024 cores. Once again, we see in Fig. 17 that no scheme
is able to scale. The results indicate that unlike in Section 5.6.1, the
DBMS’s throughput is limited by NewOrder transactions. This is
due to different reasons for each scheme.

With almost all the schemes, the main bottleneck is the overhead
of maintaining locks and latches, which occurs even if there is no
contention. For example, the NewOrder transaction reads tuples
from the read-only ITEM table, which means for the 2PL schemes
that each access creates a shared-lock entry in the DBMS. With
a large number of concurrent transactions, the lock meta-data be-
comes large and thus it takes longer to update them. OCC does not
use such locks while a transaction runs, but it does use latches for
each tuple accessed during the validation phase. Acquiring these
latches becomes an issue for transactions with large footprints, like
NewOrder. Although MVCC also does not have locks, each read
request generates a new history record, which increases memory
traffic. We note, however, that all of this is technically unnecessary
work because the ITEM table is never modified.

The results in Fig. 17b indicate that when the number of ware-
houses is the same or greater than the number of worker threads,
the bottleneck in the Payment transaction is eliminated. This im-
proves the performance of all schemes. For T/O schemes, however,
the throughput becomes too high at larger core counts and thus they
are inhibited by timestamp allocation. As a result, they are unable

to achieve higher than ∼10 million txn/s. This is the same scenario
as Fig. 12a where 2PL outperforms T/O for short transactions.

H-STORE performs the best overall due to its ability to exploit
partitioning even with ∼12% multi-partition transactions in the work-
load. This corroborates results from previous studies that show that
H-STORE outperforms other approaches when less than 20% work-
load comprises multi-partition transactions [34, 42]. At 1024 cores,
however, it is limited by the DBMS’s timestamp allocation.

6. DISCUSSION
We now discuss the results of the previous sections and propose

solutions to avoid these scalability issues for many-core DBMSs.

6.1 DBMS Bottlenecks
Our evaluation shows that all seven concurrency control schemes

fail to scale to a large number of cores, but for different reasons
and conditions. Table 2 summarizes the findings for each of the
schemes. In particular, we identified several bottlenecks to scala-
bility: (1) lock thrashing, (2) preemptive aborts, (3) deadlocks, (4)
timestamp allocation, and (5) memory-to-memory copying.

Thrashing happens in any waiting-based algorithm. As discussed
in Section 4.2, thrashing is alleviated by proactively aborting. This
leads to the trade-off between aborts and performance. In general,
the results in Section 5.2 showed that for high-contention work-
loads, a non-waiting deadlock prevention scheme (NO_WAIT) per-
forms much better than deadlock detection (DL_DETECT).

Although no single concurrency control scheme performed the
best for all workloads, one may outperform the others under cer-
tain conditions. Thus, it may be possible to combine two or more
classes of algorithms into a single DBMS and switch between them
based on the workload. For example, a DBMS could use DL_DETECT
for workloads with little contention, but switch to NO_WAIT or a
T/O-based algorithm when transactions are taking too long to fin-
ish due to thrashing. One could also employ a hybrid approach,
such as MySQL’s DL_DETECT + MVCC scheme, where read-only
transactions use multi-versioning and all others use 2PL.

These results also make it clear that new hardware support is
needed to overcome some of these bottlenecks. For example, all of
the T/O schemes suffer from the timestamp allocation bottleneck
when the throughput is high. Using the atomic addition method
when the core count is large causes the worker threads to send many
messages across the chip to modify the timestamp. We showed
in Section 4.3 how the clock and hardware counter methods per-



2P
L

DL_DETECT Scales under low-contention. Suffers from lock
thrashing.

NO_WAIT Has no centralized point of contention. Highly scal-
able. Very high abort rate.

WAIT_DIE Suffers from lock thrashing and timestamp bottle-
neck.

T
/O

TIMESTAMP High overhead from copying data locally. Non-
blocking writes. Suffers from timestamp bottleneck.

MVCC Performs well w/ read-intensive workload. Non-
blocking reads and writes. Suffers from timestamp
bottleneck.

OCC High overhead for copying data locally. High abort
cost. Suffers from timestamp bottleneck.

H-STORE The best algorithm for partitioned workloads. Suf-
fers from multi-partition transactions and timestamp
bottleneck.

Table 2: A summary of the bottlenecks for each concurrency control
scheme evaluated in Section 5.

formed the best without the drawbacks of batching. Thus, we be-
lieve that they should be included in future CPU architectures.

We also saw that memory issues cause slowdown in some of the
schemes. One way to alleviate this problem is to add a hardware
accelerator on the CPU to do memory copying in the background.
This would eliminate the need to load all data through the CPU’s
pipeline. We also showed in Section 4.1 how malloc was another
bottleneck and that we were able to overcome it by developing our
own implementation that supports dynamic pool resizing. But with
a large number of cores, these pools become too unwieldy to man-
age in a global memory controller. We believe that future CPUs
will need to switch to decentralized or hierarchical memory con-
trollers to provide faster memory allocation.

6.2 Multi-core vs. Multi-node Systems
Distributed DBMSs are touted for being able to scale beyond

what a single-node DBMS can support [38]. This is especially
true when the number of CPU cores and the amount of memory
available on a node is small. But moving to a multi-node architec-
ture introduces a new performance bottleneck: distributed trans-
actions [3]. Since these transactions access data that may not be
on the same node, the DBMS must use an atomic commit proto-
col, such as two-phase commit [16]. The coordination overhead
of such protocols inhibits the scalability of distributed DBMSs be-
cause the communication between nodes over the network is slow.
In contrast, communication between threads in a shared-memory
environment is much faster. This means that a single many-core
node with a large amount of DRAM might outperform a distributed
DBMS for all but the largest OLTP applications [42].

It may be that for multi-node DBMSs two levels of abstraction
are required: a shared-nothing implementation between nodes and
a multi-threaded shared-memory DBMS within a single chip. This
hierarchy is common in high-performance computing applications.
More work is therefore needed to study the viability and challenges
of such hierarchical concurrency control in an OLTP DBMS.

7. RELATED WORK
The work in [39] is one of the first hardware analysis of a DBMS

running an OLTP workload. Their evaluation focused on multi-
processor systems, such as how to assign processes to processors
to avoid bandwidth bottlenecks. Another study [37] measured CPU
stall times due to cache misses in OLTP workloads. This work was
later expanded in [2] and more recently by [41, 35].

With the exception of H-STORE [14, 22, 38, 43] and OCC [28],
all other concurrency control schemes implemented in our test-bed

are derived from the seminal surveys by Bernstein et al. [3, 5]. In
recent years, there have been several efforts towards improving the
shortcomings of these classical implementations [11, 24, 32, 42].
Other work includes standalone lock managers that are designed to
be more scalable on multi-core CPUs [36, 26]. We now describe
these systems in further detail and discuss why they are still un-
likely to scale on future many-core architectures.

Shore-MT [24] is a multi-threaded version of Shore [7] that em-
ploys a deadlock detection scheme similar to DL_DETECT. Much
of the improvements in Shore-MT come from optimizing bottle-
necks in the system other than concurrency control, such as log-
ging [25]. The system still suffers from the same thrashing bottle-
neck as DL_DETECT on high contention workloads.

DORA is an OLTP execution engine built on Shore-MT [32]. In-
stead of assigning transactions to threads, as in a traditional DBMS
architecture, DORA assigns threads to partitions. When a transac-
tion needs to access data at a specific partition, its handle is sent
to the corresponding thread for that partition where it then waits
in a queue for its turn. This is similar to H-STORE’s partitioning
model, except that DORA supports multiple record-level locks per
partition (instead of one lock per partition) [33]. We investigated
implementing DORA in our DBMS but found that it could not be
easily adapted and requires a separate system implementation.

The authors of Silo [42] also observed that global critical sec-
tions are the main bottlenecks in OCC. To overcome this, they use
a decentralized validation phase based on batched atomic addition
timestamps. But as we showed in Section 4.3, the DBMS must
use large batches when deployed on a large number of cores to
amortize the cost of centralized allocation. This batching in turn
increases the system’s latency under contention.

Hekaton [11] is a main memory table extension for Microsoft’s
SQL Server that uses a variant of MVCC with lock-free data struc-
tures [29]. The administrator designates certain tables as in-memory
tables that are then accessed together with regular, disk-resident ta-
bles. The main limitation of Hekaton is that timestamp allocation
suffers from the same bottleneck as the other T/O-based algorithms
evaluated in this paper.

The VLL centralized lock manager uses per-tuple 2PL to re-
move contention bottlenecks [36]. It is an optimized version of
DL_DETECT that requires much smaller storage and computation
overhead than our implementation when the contention is low. VLL
achieves this by partitioning the database into disjoint subsets. Like
H-STORE, this technique only works when the workload is parti-
tionable. Internally, each partition still has a critical section that
will limit scalability at high contention workloads.

The work in [26] identified latch contention as the main scala-
bility bottleneck in MySQL. They removed this contention by re-
placing the atomic-write-after-read synchronization pattern with a
read-after-write scheme. They also proposed to pre-allocate and
deallocate locks in bulk to improve scalability. This system, how-
ever, is still based on centralized deadlock detection and thus will
perform poorly when there is contention in the database. In addi-
tion, their implementation requires the usage of global barriers that
will be problematic at higher core counts.

Others have looked into using the software-hardware co-design
approach for improving DBMS performance. The “bionic database”
project [23] is similar to our proposal, but it focuses on implement-
ing OLTP DBMS operations in FPGAs instead of new hardware
directly on the CPU. Other work is focused on OLAP DBMSs and
thus is not applicable to our problem domain. For example, an
FPGA-based SQL accelerator proposed in [10] filters in-flight data
moving from a data source to a data sink. It targets OLAP applica-
tions by using the FPGA to accelerate the projection and restriction



operations. The Q100 project is a special hardware co-processor for
OLAP queries [44]. It assumes a column-oriented database storage
and provides special hardware modules for each SQL operator.

8. FUTURE WORK
This work uncovered fundamental bottlenecks of concurrency

control algorithms that limit their scalability as the number of cores
increases. Because these limitations are inherent to these algo-
rithms, it is possible that no workaround exists in software. In this
case, software-hardware co-design is the only solution to address
these issues. For certain functionalities, specialized hardware can
significantly improve performance while reducing power consump-
tion. We plan to study possible hardware modifications that can
bring the most performance gain for OLTP DBMSs.

Concurrency control is only one of the several aspects of a DBMS
that affects scalability. To build a truly scalable DBMS, other com-
ponents also need to be studied. We plan to investigate logging and
index implementations, and then analyze possible optimizations for
these components. We will also expand our work to include multi-
socket systems with more than one many-core CPU.

9. ACKNOWLEDGEMENTS
This research was funded (in part) by the Intel Science and Tech-

nology Center for Big Data. We also pour out some lean in grati-
tude to the great Phil Bernstein for his sapient feedback.

10. CONCLUSION
This paper studied the scalability bottlenecks in concurrency con-

trol algorithms for many-core CPUs. We implemented a lightweight
main memory DBMS with a pluggable architecture that supports
seven concurrency control schemes. We ran our DBMS in a dis-
tributed CPU simulator that provides a virtual environment of 1000
cores. Our results show that none of the algorithms are able to get
good performance at such a high core count in all situations. For
lower core configurations, we found that 2PL-based schemes are
good at handling short transactions with low contention that are
common in key-value workloads. Whereas T/O-based algorithms
are good at handling higher contention with longer transactions that
are more common in complex OLTP workloads. Although it may
seem like all hope is lost, we proposed several research directions
that we plan to explore to rectify these scaling issues.

11. REFERENCES
[1] Intel brings supercomputing horsepower to big data analytics.

http://intel.ly/18A03EM, November 2013.
[2] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. DBMSs on a modern

processor: Where does time go? In VLDB, pages 266–277, 1999.
[3] P. A. Bernstein and N. Goodman. Concurrency control in distributed database

systems. ACM Comput. Surv., 13(2):185–221, 1981.
[4] P. A. Bernstein and N. Goodman. Multiversion concurrency control - theory and

algorithms. ACM Trans. Database Syst., 8(4):465–483, Dec. 1983.
[5] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and

Recovery in Database Systems, chapter 5. 1987.
[6] P. A. Bernstein, D. Shipman, and W. Wong. Formal aspects of serializability in

database concurrency control. IEEE Transactions on Software Engineering,
5(3):203–216, 1979.

[7] M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall, M. L. McAuliffe, J. F.
Naughton, D. T. Schuh, M. H. Solomon, C. Tan, O. G. Tsatalos, et al. Shoring
up persistent applications, volume 23. ACM, 1994.

[8] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with YCSB. In SoCC’10, pages 143–154.

[9] J. C. Corbett and et al. Spanner: Google’s Globally-Distributed Database. In
OSDI, pages 251–264, 2012.

[10] C. Dennl, D. Ziener, and J. Teich. On-the-fly composition of fpga-based sql
query accelerators using a partially reconfigurable module library. In FCCM,
pages 45–52, 2012.

[11] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stonecipher,
N. Verma, and M. Zwilling. Hekaton: SQL Server’s memory-optimized OLTP
engine. In SIGMOD, pages 1243–1254, 2013.

[12] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of
consistency and predicate locks in a database system. Commun. ACM,
19(11):624–633, Nov. 1976.

[13] J. Evans. jemalloc. http://canonware.com/jemalloc.
[14] H. Garcia-Molina and K. Salem. Main memory database systems: An overview.

IEEE Trans. on Knowl. and Data Eng., 4(6):509–516, Dec. 1992.
[15] S. Ghemawat and P. Menage. TCMalloc: Thread-caching malloc.

http://goog-perftools.sourceforge.net/doc/tcmalloc.html.
[16] J. Gray. Concurrency Control and Recovery in Database Systems, chapter

Notes on data base operating systems, pages 393–481. Springer-Verlag, 1978.
[17] J. Gray. The transaction concept: Virtues and limitations. In VLDB, pages

144–154, 1981.
[18] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger. Quickly

generating billion-record synthetic databases. SIGMOD, pages 243–252, 1994.
[19] J. N. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger. Modelling in data base

management systems. chapter Granularity of locks and degrees of consistency
in a shared data base, pages 365–393. 1976.

[20] T. Haerder and A. Reuter. Principles of transaction-oriented database recovery.
ACM Comput. Surv., 15(4):287–317, Dec. 1983.

[21] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker. OLTP through
the looking glass, and what we found there. In SIGMOD, pages 981–992, 2008.

[22] M. Heytens, S. Listgarten, M.-A. Neimat, and K. Wilkinson. Smallbase: A
main-memory dbms for high-performance applications. Technical report,
Hewlett-Packard Laboratories, 1995.

[23] R. Johnson and I. Pandis. The bionic dbms is coming, but what will it look like?
In CIDR, 2013.

[24] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi. Shore-MT: a
scalable storage manager for the multicore era. EDBT, pages 24–35, 2009.

[25] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis, and A. Ailamaki. Aether: a
scalable approach to logging. Proc. VLDB Endow., 3(1-2):681–692, 2010.

[26] H. Jung, H. Han, A. D. Fekete, G. Heiser, and H. Y. Yeom. A scalable lock
manager for multicores. In SIGMOD, pages 73–84, 2013.

[27] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P. C.
Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and D. J. Abadi.
H-Store: A High-Performance, Distributed Main Memory Transaction
Processing System. Proc. VLDB Endow., 1(2):1496–1499, 2008.

[28] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control.
ACM Trans. Database Syst., 6(2):213–226, June 1981.

[29] P.-A. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel, and M. Zwilling.
High-performance concurrency control mechanisms for main-memory
databases. VLDB, 5(4):298–309, Dec. 2011.

[30] J. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio,
J. Eastep, and A. Agarwal. Graphite: A distributed parallel simulator for
multicores. In HPCA, pages 1–12, 2010.

[31] D. L. Mills. Internet time synchronization: the network time protocol.
Communications, IEEE Transactions on, 39(10):1482–1493, 1991.

[32] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki. Data-oriented
transaction execution. Proc. VLDB Endow., 3:928–939, September 2010.

[33] I. Pandis, P. Tözün, R. Johnson, and A. Ailamaki. PLP: Page Latch-free
Shared-everything OLTP. Proc. VLDB Endow., 4(10):610–621, July 2011.

[34] A. Pavlo, C. Curino, and S. Zdonik. Skew-aware automatic database
partitioning in shared-nothing, parallel OLTP systems. In SIGMOD, pages
61–72, 2012.

[35] D. Porobic, I. Pandis, M. Branco, P. Tözün, and A. Ailamaki. OLTP on
Hardware Islands. Proc. VLDB Endow., 5:1447–1458, July 2012.

[36] K. Ren, A. Thomson, and D. J. Abadi. Lightweight locking for main memory
database systems. In VLDB, pages 145–156, 2013.

[37] M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, and A. Gupta. The
impact of architectural trends on operating system performance. In SOSP, pages
285–298, 1995.

[38] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and
P. Helland. The end of an architectural era: (it’s time for a complete rewrite). In
VLDB, pages 1150–1160, 2007.

[39] S. S. Thakkar and M. Sweiger. Performance of an OLTP application on
symmetry multiprocessor system. In ISCA, pages 228–238, 1990.

[40] The Transaction Processing Council. TPC-C Benchmark (Revision 5.9.0).
http://www.tpc.org/tpcc/spec/tpcc_current.pdf, June 2007.

[41] P. Tözün, B. Gold, and A. Ailamaki. OLTP in wonderland: where do cache
misses come from in major OLTP components? In DaMoN, 2013.

[42] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy transactions in
multicore in-memory databases. In SOSP, 2013.

[43] A. Whitney, D. Shasha, and S. Apter. High Volume Transaction Processing
Without Concurrency Control, Two Phase Commit, SQL or C++. In HPTS’97.

[44] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross. Q100: the
architecture and design of a database processing unit. In ASPLOS, 2014.

http://intel.ly/18A03EM
http://canonware.com/jemalloc
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://www.tpc.org/tpcc/spec/tpcc_current.pdf

	Introduction
	Concurrency Control Schemes
	Two-Phase Locking
	Timestamp Ordering

	Many-Core DBMS Test-Bed
	Simulator and Target Architecture
	DBMS
	Workloads
	Simulator vs. Real Hardware

	Design Choices & Optimizations
	General Optimizations
	Scalable Two-Phase Locking
	Scalable Timestamp Ordering

	Experimental Analysis
	Read-Only Workload
	Write-Intensive Workload
	Working Set Size
	Read/Write Mixture
	Database Partitioning
	TPC-C
	4 Warehouses
	1024 Warehouses


	Discussion
	DBMS Bottlenecks
	Multi-core vs. Multi-node Systems

	Related Work
	Future Work
	Acknowledgements
	Conclusion
	References

