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Abstract. We study online algorithms for the Canadian Traveller
Problem (CTP) introduced by Papadimitriou and Yannakakis in 1991.
In this problem, a traveller knows the entire road network in advance,
and wishes to travel as quickly as possible from a source vertex s to a
destination vertex t, but discovers online that some roads are blocked
(e.g., by snow) once reaching them. It is PSPACE-complete to achieve
a bounded competitive ratio for this problem. Furthermore, if at most k
roads can be blocked, then the optimal competitive ratio for a determin-
istic online algorithm is 2k+ 1, while the only randomized result known
is a lower bound of k + 1.

In this paper, we show for the first time that a polynomial time ran-
domized algorithm can beat the best deterministic algorithms, surpass-
ing the 2k + 1 lower bound by an o(1) factor. Moreover, we prove the

randomized algorithm achieving a competitive ratio of
(
1 +

√
2

2

)
k + 1 in

pseudo-polynomial time. The proposed techniques can also be applied to
implicitly represent multiple near-shortest s-t paths.

1 Introduction

Imagine attempting to drive across your favorite northern country in the dead
of winter. Snow is falling in unpredictable patterns, effectively blocking certain
roads from passage (either from lack of plowing or accident pile-ups). You have
purchased a complete road map, modeled as a weighted graph G = (V,E) whose
edges represent roads and whose edge weights represent the time to traverse
the edge. But you have no knowledge of which roads are blocked by weather or
accidents, until you reach a vertex incident to such a road, in which case you can
directly observe the blockage before attempting traversal. This problem, called
the Canadian Traveller Problem (CTP), was defined by Papadimitriou
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and Yannakakis [14] in 1991. The objective is to design an efficient route from a
source to a destination under this condition of uncertainty. The major difficulty
in developing a good strategy based on partial information is to make decisions
without being able to predict blockages.

Prior work on CTP. Papadimitriou and Yannakakis [14] proved that it is
PSPACE-complete to devise a CTP strategy that guarantees a bounded com-
petitive ratio. They also proved that the stochastic model of this problem, in
which a probability that each edge is blocked, independent of all others, is given
in advance, is #P-hard when minimizing the expected competitive ratio to the
offline optimum [14]. Bar-Noy and Schieber [1] investigated several variations of
the CTP from the worst-case perspective, where the objective is to find a static
(offline) algorithm that minimizes the maximum travel cost [2]. They considered
the k-CTP in which the number of blockages is bounded by k. Note that for an
arbitrary k, the problem of designing a strategy that guarantees a given travel
time remains PSPACE-complete, as has been shown in [1, 14].

During recent decades, no significant progress has been made in the devel-
opment of online approximation algorithms for solving the k-CTP. Basically,
two simple deterministic strategies for solving this problem are available [16,
17]. The greedy algorithm (GA) starts at a vertex v and finds the shortest v-t
path using Dijkstra’s algorithm [5] in a greedy manner based on the current
blockage information. The other strategy, called the reposition algorithm (RA),
proposed by Westphal [16], requires the traveller to begin at the source s, follow
the shortest s-t path until she learns about a blockage on the path to t, and then
returns to s and takes a new shortest s-t path based on the updated blockage
information. Westphal [16] proved that no deterministic online algorithm within
a (2k + 1)-competitive ratio exists for the problem, and the simple reposition
algorithm achieves the lower bound. Westphal also proved a lower bound of k+1
on the competitive ratios of all randomized online algorithms. Xu et al. [17] de-
veloped a similar deterministic adaptive comparison strategy that incorporates
the concept of reposition; the approach achieves the tight deterministic lower
bound as well. They also showed that the competitive ratio of the GA algorithm
is exponential in k in the worst case. Huang and Liao [9] considered a general-
ization of the k-CTP, called the Double-valued Graph, in which each edge
is associated with two possible distances. They proposed lower bounds and a
simple algorithm that meets the deterministic lower bound. They also extended
the k-CTP to the design of a tour through a set of vertices, in which the traveller
visits each vertex and returns to the origin under the same uncertainty.

Our results. We develop improved randomized strategies for solving the k-CTP.
Whereas deterministic algorithms have been extensively studied, research on
randomized approaches for solving the problem is lacking.1 In this paper, we
propose a polynomial time randomized algorithm that surpasses the determinis-
tic lower bound of 2k+1 by an o(1) factor. In addition, the competitive ratio of

1 Recently, Bender and Westphal proposed a randomized algorithm using the RA
strategy for special graphs in which all s-t paths are vertex-disjoint [3].



this algorithm can be improved to
(
1 +

√
2
2

)
k+ 1 in pseudo-polynomial running

time. This result is the first demonstration that randomization strictly helps in
the k-CTP for arbitrary graphs.

The rationale behind the proposed randomized algorithm is summarized as
follows. Given a connected graph G = (V,E) with a source s and a destination
t in V and a distance function d : E → R+, the algorithm first selects a set S of
near-shortest s-t paths whose distance cost does not exceed the product of that
of the shortest s-t path and a threshold factor. Precisely, this set comprises all
s-t paths of cost (1+α)d(s, t), where d(s, t) denotes the shortest travel cost from
s to t and α is a small constant. Let the set of all such paths be represented by
an apex tree T , which is a tree-like graph that becomes a tree by removal of a
vertex. Then, the traveller traverses T rather than the original graph G using
an online randomized strategy under the same uncertainty until all possible s-t
paths in S are blocked. We repeat the argument until she arrives at t.

Near-shortest paths. In order to conduct the randomized algorithm in polynomial
time, we need to find all near-shortest s-t paths efficiently, which is of indepen-
dent interest. There has been a considerable amount of research investigating
the problem. Eppstein’s well-known approach for finding ℓ shortest s-t paths or
all s-t paths shorter than a given distance cost, in a directed graph G = (V,A),
spends constant time for each of the ℓ paths, after a fast preprocessing step that
runs in O(|V | log |V |+ |A|) time [6]. That is, the ℓ shortest paths can be obtained
in O(ℓ) time. Note that ℓ may be exponential in |V |, even if all the ℓ paths have
the same distance. In Eppstein’s study, cycles of repeated vertices were allowed.
Recently, Hershberger et al. [8] and Frieder and Roditty [7] studied finding the
ℓ shortest simple (i.e., loopless) paths in directed graphs. In undirected graphs,
Katoh et al. [11] investigated finding ℓ shortest simple paths in an undirected
graph G = (V,E), and their algorithm, which takes O(ℓ(|V | log |V |+ |E|)) time,
is the best known-to-date result.

In this paper, we propose an implicit representation, constructed inO(µ2|E|2)
time and O(µ|E|) space, of all strictly jth-shortest s-t paths, 1 ≤ j ≤ µ,
where µ is at most the summation of distances of all edges. That is, assume
d1(s, t), d2(s, t), d3(s, t), . . . denotes the strictly increasing sequence of all possible
distinct s-t path distances, where d1(s, t) = d(s, t); our technique can represent
all strictly jth-shortest paths of cost dj(s, t), 1 ≤ j ≤ µ. Note that a strictly jth-
shortest s-t path can be obtained by finding ℓ shortest s-t paths for a sufficiently
large value of ℓ; however, the worst-case number of such near-shortest s-t paths
can be exponential in the order of G. The proposed implicit representation can
guarantee the pseudo-polynomial running time of the randomized strategy.

2 Preliminaries

Given a connected graph G = (V,E) with a source s and a destination t, let an
s-t path p of length m be p : s = v1 − v2 − · · · − vm − vm+1 = t. We denote the
subset of blockages in E identified by an online algorithm A during the trip as



EA
i = {e1, e2, . . . , ei} ⊆ E, 1 ≤ i ≤ k, where ei is the ith blockage identified, and

let E0 = ∅ and Ek be the set of all blocked edges. Let dEA
i
(s, t) denote the travel

cost from s to t, derived by an adaptive algorithm A that learns about blockage
information Ei during the trip; and let dEk

(s, t) be the offline optimum from s to
t under complete information Ek. For convenience, we denote by dEi(s, t)-path
a route along which the traveller spends at most dEi(s, t). For all instances, the
following property is immediately obtained, where E1 ⊆ E2 ⊆ · · · ⊆ Ek.

d(s, t) = dE0(s, t) ≤ dE1(s, t) ≤ · · · ≤ dEk
(s, t). (1)

We refer to [4, 15] and formally define the competitive ratio as follows. An
online randomized algorithm A is cA-competitive against an oblivious adversary
for the k-CTP if

E[dEA
i
(s, t)] ≤ cA · dEk

(s, t) + ε, 1 ≤ i ≤ k,

where E[dEA
i
(s, t)] is the expected travel cost of the randomized strategy A and

cA and ε are constants. To analyze the performance of online algorithms for the
k-CTP, we make two basic assumptions [1, 17]: one is that once a blocked edge is
discovered by the traveller, the edge remains blocked forever. The other is that
the given graph G remains connected even if all the blockages are eliminated.

3 Main Algorithm

Given a connected graph G = (V,E) with a source s and a destination t, we
require a set S of all (1+α)dEi

(s, t)-paths from s to t under blockage information
Ei, where α is a constant, 0 < α < 1. In contrast to the previous studies, we
find strictly jth-shortest paths, 1 ≤ j ≤ µ, for a sufficiently large µ, to derive
the set S of the s-t paths. The technique for so doing will be presented later.

Algorithm 1: Greedy & Reposition Randomized Algorithm (GRR)

Input : A graph G = (V,E) with a source s and a sink t, and constants k and α;
Output : A random route from s to t;
1: Let i = 0; ◃ no blockage found
2: while the traveller does not arrive at t do
3: Find a set S of all (1 + α)dEi(s, t)-paths from s to t;
4: Randomly select an s-t path from S to traverse with the following probabilities;

k−i
k−i+1

: she leaves for t along any dEi(s, t)-path until a blockage is found;
1

k−i+1
: she follows Traverse-Tree on the remaining s-t paths in S;

5: if the traveller learns about the jth blockage on the way to t, j < k then
6: the traveller returns to s and i← j;
7: else if the traveller learns about the last blockage then ◃ finding all blockages
8: the traveller returns to s and follows a dEk(s, t)-path to t;
9: end if
10: end while



The main algorithm (Algorithm 1) is described as follows. First, we select
a set S of all (1 + α)dEi(s, t)-paths from s to t under blockage information Ei,
0 ≤ i ≤ k, for a small α. Then, the traveller uses the reposition RA strategy,
and when restarting at s, she either selects an arbitrary dEi(s, t)-path from S
and traverses the path with probability k−i

k−i+1 , or she chooses the remaining s-t
paths in S and traverses them using the Traverse-Tree procedure with probability

1
k−i+1 . The algorithm repeats until the traveller arrives at t.

To analyze the competitive ratio of the entire GRR algorithm, the traveller is
supposed to be able to efficiently traverse the remaining s-t paths in S following
the Traverse-Tree procedure, whose details will be introduced in the next section.
More precisely, if the extra travel cost of the procedure is bounded within an
acceptable range for every blockage discovered, then the ratio can be improved
over the deterministic lower bound of 2k + 1. The correctness of the claim will
be proved in the next section.
Claim 1: If the traveller uses the Traverse-Tree procedure on the (1+α)dEi(s, t)-
paths from s to t in S and arrives at t, 0 ≤ i < k, each blockage increases the
total travel cost of the algorithm by at most (1 + α)dEk

(s, t) on average.

Theorem 1. The k-Canadian Traveller Problem can be approximated

within a competitive ratio
(
1 +

√
2
2

)
k+ 1, when the number of blockages is up to

a given constant k.

Proof. In each iteration, r, of the while loop, let the cost of conducting the
Traverse-Tree procedure be c(r) for blockages discovered. When the traveller
arrives at t using the GRR algorithm, consider the case whether she learns
about all the blockages or not.
Case 1: The traveller does not learn about every blockage when she arrives at t;
i.e. at least one (1 + α)dEk−1

(s, t)-path from s to t is unblocked during the trip.
In the worst case analysis, assume the traveller learns about only one blockage

in each iteration of the while loop. Based on Claim 1, c(r) ≤ (k − r + 1)(1 +
α)dEk

(s, t) for every iteration r of the loop, where the number of remaining
blockages undiscovered is k − r + 1 in iteration r. Consequently, the expected
travel cost of the GRR algorithm is formulated as follows:

E[dEGRR
k

(s, t)] ≤
[

k

k + 1
· 2d(s, t) + 1

k + 1
· c(1)

]
+

k

k + 1

[
k − 1

k
· 2dE1(s, t) +

1

k
· c(2)

]
+

k

k + 1
· k − 1

k
·
[
k − 2

k − 1
· 2dE2(s, t) +

1

k − 1
· c(3)

]
+ · · · · · ·

+

[
1

k + 1
· 2dEk−1(s, t) +

1

k + 1
· c(k)

]
+ dEk (s, t)

≤
(

k

k + 1
+

k − 1

k + 1
+ · · ·+ 1

k + 1

)
· 2dEk−1(s, t)

+

(
k

k + 1
+

k − 1

k + 1
+ · · ·+ 1

k + 1

)
· (1 + α)dEk (s, t) + dEk(s, t)

≤
[
k +

1

2
(1 + α)k + 1

]
· dEk(s, t).



Thus, in Case 1, the competitive ratio of the GRR algorithm is at most[
k + 1

2 (1 + α) · k + 1
]
· dEk

(s, t)

dEk
(s, t)

=
3 + α

2
· k + 1.

Case 2: The traveller learns about all the k blockages before she arrives at t; that
is, each (1 + α)dEk−1

(s, t)-path is blocked during the trip. Thus, she eventually
restarts at s and follows a dEk

(s, t)-path to t, as indicated in Line 8 of the GRR
algorithm.

The condition implies that the distance of an offline optimal s-t path is
dEk

(s, t) > (1 +α)dEk−1
(s, t). Moreover, Claim 1 cannot be applied because the

traveller cannot reach t while conducting the Traverse-Tree procedure. Thus, an
upper bound on the travel cost c(r) in iteration r is derived by exploiting the
RA strategy [16]. In the worst case analysis, c(r) ≤ 2(k−r+1)(1+ α)dEk−1

(s, t)
for every iteration r, where the number of remaining blockages undiscovered is
k − r + 1 in iteration r. The expected total travel cost of the GRR algorithm is
formulated in a similar manner:

E[dEGRR
k

(s, t)] ≤ k(2 + α) · dEk−1
(s, t) + dEk

(s, t).

Hence, in Case 2, the competitive ratio of the GRR algorithm is at most

k(2 + α) · dEk−1
(s, t) + dEk

(s, t)

dEk
(s, t)

≤
k(2 + α) · dEk−1

(s, t)

(1 + α) · dEk−1
(s, t)

+ 1 =
2 + α

1 + α
· k + 1.

By simple algebra, the competitive ratio of the GRR algorithm can be min-
imized in the two cases by letting the constant α be

√
2 − 1. So the expected

competitive ratio is at most
(
1+

√
2
2

)
k+1. Note that for any small constant α′,

0 < α′ ≤ α =
√
2 − 1, the competitive ratio is still strictly smaller than the

deterministic lower bound of 2k + 1. 2

4 Apex Tree

In this section, we consider the Traverse-Tree procedure conducted in a tree-like
graph, called an apex tree, which can represent all (1+ α)dEi(s, t)-paths from s
to t, 0 ≤ i < k, in a given graph G, for a small constant α.

A graph T = (V,E) is an apex tree if T comprises a source vertex s, a rooted
tree that consists of a destination vertex t (as root) and all other vertices in V ,
and edges that connect s to each leaf and some internal vertices of the tree. That
is, T \ {s} is actually a tree that is rooted at t.

Subsequently, we claim that the Traverse-Tree procedure (see Algorithm 2)
is an optimal randomized strategy for solving the k-CTP in an apex tree T , if
the distance cost of every s-t path in T is assumed to be identical. Note that
the worst-case instance that was reported in [16] to establish the lower bound of
k + 1 is in fact also an apex tree where all s-t paths have the same cost. Thus,



Algorithm 2: Traverse-Tree

Input : An apex tree T that represents all (1 + α)dEi(s, t)-paths from s to t;
Output : A random route from s to t;
1: Assign equal probabilities to every child of the root t, and sequentially repeat the

process for each descendant of t in the order of breadth-first search;
2: The traveller begins at s, and randomly selects an s-t path according to the assigned

probability and leaves for t following that path;
3: while the traveller does not arrive at t do
4: Let the blocked edge discovered by the traveller be e = (vi, vi+1) along a path

p : s = v1 − v2 − · · · − vh = t;
5: The traveller returns to s and eliminates the blocked s-vi path;
6: while every s-t path through the vertex vi+1 is currently blocked do
7: i← i+ 1; ◃ depth-first search order of the path p
8: end while
9: Reassign probabilities only to the subtree rooted at vi+1 in a similar way;
10: The traveller randomly selects an s-t path through vi+1 according to the

assigned probability and leaves for t following that path;
11: end while

the competitive ratio of the algorithm can achieve the lower bound and it follows
that the algorithm is optimal.

The main concept of the Traverse-Tree procedure is to incorporate random-
ized operations into the reposition RA strategy and then to explore subtrees of
an apex tree T in the order of depth-first search. Precisely, we initially distribute
probabilities of path selection equally among every child of the root t. We se-
quentially distribute the probabilities equally to each descendant in the order
of breadth-first search. When the traveller starts at the source s, she randomly
selects an s-t path according to the assigned probability and follows the path
to t. While finding a blockage on the way to t, the traveller uses the RA strategy
and returns to s. We eliminate the blocked path, and reassign probabilities to
the unblocked subtrees similarly. The traveller traverses the remaining routes
in T by exploring the subtrees in the order of depth-first search. The argument
repeats until the traveller arrives at the destination t.

For the k-CTP in an apex tree T , there is at least one s-t path without a
blockage. Let this offline optimal s-t path be p : s = v∗1 − v∗2 − · · · − v∗m = t and
the number of children of a vertex v∗j be cj in the apex tree T , such that v∗j has
children vj,1, vj,2, . . . , vj,cj . Assume the last child of each v∗j , vj,cj , 2 ≤ j ≤ m,
lies on the path p; i.e. vj,cj = v∗j−1. Moreover, suppose each subtree rooted at
vj,ℓ, 1 ≤ ℓ ≤ cj−1, has bj,ℓ blockages. Consider the expected total cost when the
traveller traverses the paths other than the offline optimal path. Note that the
malicious adversary does not block any edge (s, v) ∈ E. So

∑m
j=3

∑cj−1
ℓ=1 bj,ℓ = k.

Lemma 1. For the k-CTP in an apex tree T in which the distance costs of all
s-t paths are equal, there is an optimal (k+1)-competitive randomized algorithm.

Proof. Let E(s, v∗i ) be the expected total travel cost from s to v∗i . For t = v∗m, we
evaluate the cost. If cm = 1, we obtain E(s, v∗m) ≤ E(s, v∗m−1) + dEk

(v∗m−1, v
∗
m).



If cm > 1, with probability 1
cm

, the traveller finds v∗m−1 as a predecessor of
v∗m in the first trial. Then the expected travel cost is at most E(s, v∗m−1) +
dEk

(v∗m−1, v
∗
m). If the traveller cannot find v∗m−1 in the first trial, with probability(

1 − 1
cm

)
1

cm−1 , she finds v∗m−1 in the second trial. Without loss of generality,
suppose the traveller selects vm,ℓ from ℓ = 1 to ℓ = cm − 1, when finding
v∗m−1 = vm,cm . In this case the expected travel cost is

{
2bm,1dEbm,1

(s, vm,1) +

E(s, v∗m−1) + dEk
(v∗m−1, v

∗
m)

}
because the reposition algorithm may return to s

bm,1 times and find the way to v∗m−1 with E(s, v∗m−1) expected cost and finally
go to v∗m with cost dEk

(v∗m−1, v
∗
m). Therefore we obtain

E(s, v∗m) ≤ 1
cm

{
E(s, v∗m−1) + dEk

(v∗m−1, v
∗
m)

}
+ (1− 1

cm
) 1
cm−1

{
2bm,1dEbm,1

(s, vm,1) + E(s, v∗m−1) + dEk
(v∗m−1, v

∗
m)

}
+ (1− 1

cm
)(1− 1

cm−1 )
1

cm−2

{
2bm,1dEbm,1

(s, vm,1) + 2bm,2dEbm,2
(s, vm,2)

+ E(s, v∗m−1) + dEk
(v∗m−1, v

∗
m)

}
+ · · ·

≤ 1
cm

{2(bm,1 + bm,2 + · · ·+ bm,cm−1)dEk
(s, t)}+ E(s, v∗m−1)

+ dEk
(v∗m−1, v

∗
m)

≤
cm−1∑
ℓ=1

bm,ℓdEk
(s, t) + E(s, v∗m−1) + dEk

(v∗m−1, v
∗
m)

Therefore either cm = 1 or not, we obtain E(s, v∗m) ≤
∑cm−1

ℓ=1 bm,ℓdEk
(s, t) +

E(s, v∗m−1) + dEk
(v∗m−1, v

∗
m). Similarly, E(s, v∗m−1) ≤

∑cm−1−1
ℓ=1 bm−1,ℓdEk

(s, t) +

E(s, v∗m−2)+dEk
(v∗m−2, v

∗
m−1). Therefore, E(s, v

∗
m) ≤

∑m
j=2

∑cj−1
ℓ=1 bj,ℓdEk

(s, t)+

dEk
(v∗1 , v

∗
2)+ . . .+dEk

(v∗m−1, v
∗
m) = (k+1)dEk

(s, t), because
∑c2−1

ℓ=1 b2,ℓ = 0. The
expected total cost of the algorithm, including the distance cost of the offline
optimal path, is (k+1)dEk

(s, t). The competitive ratio achieves the lower bound
for any randomized online algorithms in apex trees. 2

Based on the above proof, if the distance cost of each s-t path in T is at most
(1+ α)dEi(s, t), 0 ≤ i < k, then the upper bound on the expected total travel cost

of the algorithm is
∑m

j=3

∑cj−1
ℓ=1 bj,ℓ(1+α)dEk

(s, t) = k(1+α)dEk
(s, t), excluding

the cost of the offline optimal path. The next theorem follows immediately and
proves the claim made in Section 3, i.e., each blockage increases the total travel
cost by at most (1 + α)dEk

(s, t) on average.

Theorem 2. For the k-CTP in an apex tree T in which each s-t path is a
(1 + α)dEi(s, t)-path, 0 ≤ i < k, the competitive ratio of the Traverse-Tree
procedure is at most (1 + α)k + 1.

5 Implicit Representation of Near-shortest Paths

Given a connected undirected graphG = (V,E) with a source s and a destination
t, we give two simple data structures for storing all shortest to strictly µth-
shortest s-t paths, for a large value of µ. The first representation is for storing



shortest to strictly jth-shortest simple s-t paths, provided that dj(s, t) is given,
1 ≤ j ≤ µ, and the second one is for representing possibly non-simple paths
whose distances are from the cost d(s, t) to dµ(s, t).

5.1 Strictly second-shortest paths

For each vertex v ̸= s, let Sj(v) be the vertex set that comprises all v’s prede-
cessors, each of which is v’s preceding neighbor lying in a strictly ith-shortest
s-v path, 1 ≤ i ≤ j. To represent all shortest to strictly jth-shortest s-t paths,
we define the jth-shortest path digraph, denoted by Dj(G) = (V j , Aj) of G,

where an arc
−−−→
(u, v) ∈ Aj if and only if there exists a strictly ith-shortest s-t

path p in G, 1 ≤ i ≤ j, such that (u, v) ∈ p; all isolated vertices are eliminated
in V j . The previous studies [10, 12, 13] investigated the strictly second-shortest
path problem (i.e., next-to-shortest path) based on the shortest path digraph, i.e.,
D1(G) = (V 1, A1). Notably, D1(G) is acyclic and can be constructed in O(|V |2)
time [10, 12]. Moreover, for every vertex v ̸= s, d1(s, v) and S1(v) can also be ob-
tained. Kao et al.’s algorithm [10] can derive the cost of a strictly second-shortest
s-t path, d2(s, t) in O(|V |2) time, given the shortest path digraph D1(G).

1: procedure Find-2nd-Shortest(G, s, t,D1(G)) ◃ find each d2(s, v) and S2(v)
2: Use Kao et al.’s algorithm to compute d2(s, t) based on D1(G);
3: Initialize a queue Q = {t}, D2(G) = (V 1, ∅), and S2(v) = ∅, ∀v ∈ V ;
4: while the queue Q ̸= ∅ do
5: u← Dequeue(Q);

6: for each neighbor w adjacent to u and
−−−→
(u,w) /∈ A2 do ◃ breath-first search

7: if d2(s, u)− d(w, u) ≥ d1(s, w) then

8: A2 ← A2 ∪
−−−→
(w, u) and S2(u)← S2(u) ∪ {w};

9: if d2(s, u)− d(w, u) > d1(s, w) or
d2(s, u)− d(w, u) = d1(s, w) and w ∈ V \ V 1 then

10: d2(s, w)← d2(s, u)− d(w, u) and V 2 ← V 2 ∪ {w};
11: end if
12: Enqueue(Q,w) if w is not in the queue Q;
13: end if
14: end for
15: end while
16: end procedure

We present the Find-2nd-Shortest procedure to search for all strictly second-
shortest simple s-t paths and to construct the representation D2(G) = (V 2, A2).
The main step of this procedure is just a breadth-first search. We start at t and
traverse backward all other vertices until s, and to determine whether each vertex
lies on a strictly second-shortest s-t path. The correctness of the procedure
follows from the optimal substructure property; moreover, the resulting graph
D2(G), which is a directed acyclic graph from s to t, can represent an apex tree.



Note that in an apex tree, there is a unique path from each vertex to t, while
in D2(G) there may exist multiple paths to t. However, this is not an obstacle
to use of our algorithm in D2(G) if we obtain a random path from t to s. The
traveller randomly selects one of incoming edges (or outgoing edges) to a vertex,
and traverses the edge. The traveller excludes already visited vertices when she
randomly selects a path.

In addition, the procedure can be generalized to finding all strictly third-
shortest to µth-shortest simple s-t paths, provided that the cost dj(s, t) is given,
3 ≤ j ≤ µ; note that the property holds between every strictly (j−1)th-shortest
and jth-shortest paths. However, Kao et al.’s method cannot be straightfor-
wardly extended to compute dj(s, t), j ≥ 3. We leave it as an open problem to
find an efficient way to derive dj(s, t), j ≥ 3.

Clearly, the data structure D2(G) can be constructed in polynomial time
and linear space. In each iteration of the loop in the GRR algorithm, we find
all shortest to strictly second-shortest s-t paths whose cost is assumed to be at
most d2(s, t) = (1 + α′)d(s, t), for some α′ > 0. The competitive ratio would

be ( 2+α′

1+α′ )k + 1 < 2k + 1, and therefore, the GRR algorithm can surpass the
deterministic lower bound for the k-CTP in polynomial time.

1: procedure Find-Multiple-Shortest(G, s, t, µ)
2: Duplicate each edge in the input graph G = (V,E) to make G directed;

3: Let S0 = {t}, DV (t) = {0}; DE(
−−−→
(u, v)) = {∞}

−−−→
(u, v) ∈ E; DV (v) = {∞} v ∈ V ;

4: for i = 0 to µ|E| do
5: Let Si+1 = ∅;
6: for each v ∈ Si do

7: for each e =
−−−→
(u, v) ∈ E do

8: Si+1 ← Si+1 ∪ {u};
9: Let L = {d(u, v) + ℓ | ℓ ∈ DV (v)};
10: Let DE(

−−−→
(u, v)) be the set of the smallest µ values in DE(

−−−→
(u, v)) ∪ L;

11: end for
12: end for
13: for each u ∈ V do
14: for each e =

−−−→
(u, v) ∈ E do

15: Let DV (u) be the set of the smallest µ values in DV (u)∪DE(
−−−→
(u, v));

16: end for
17: end for
18: end for
19: end procedure

5.2 Strictly µth-shortest paths

We compute the sets of possibly non-simple strictly jth-shortest paths for j =
1, 2, . . . , µ using the Find-Multiple-Shortest procedure. This is again a breadth-
first search traversing from t backward to s. We have some notation. In the ith



iteration, we keep a set Si of vertices which are reached from t using exactly
i edges, and initially, S0 = {t}. Let a set DV (u) store shortest to strictly µth-
shortest distances from u to t; that is, DV (s) = {d1(s, t), d2(s, t), . . . , dµ(s, t)}.
Let two sets DE(

−−−→
(u, v)) and DE(

−−−→
(v, u)) for an edge e = (u, v) store distances

from u to t and distances from v to t, respectively, using the edge e. Precisely,

ℓ ∈ DE(
−−−→
(u, v)) for an edge e = (u, v) if and only if there is a u-t path of distance

ℓ ∈ DV (u) through the edge e. Note that the breadth-first search traverses a
vertex multiple times. It is enough to repeat µ|E| times the iteration because a
strictly µth-shortest s-t path uses at most µ|E| edges.

1: procedure Implicit-Representation(G, s, t, L)
2: Let i = 0, Si = {s}, V ′ = {s}, E′ = ∅, L(v) = ∅ ∀v ∈ V , and L(s) = DV (s)∩L;
3: while Si ̸= ∅ do
4: Let Si+1 = ∅;
5: for each u ∈ Si do

6: for each e =
−−−→
(u, v) ∈ E do

7: Let L = {ℓ− d(u, v) | ℓ ∈ L(u)};
8: L(v)← L(v) ∪ (DV (v) ∩ L);
9: if L(v) ̸= ∅ then
10: Si+1 ← Si+1 ∪ {v}, V ′ ← V ′ ∪ {v}, and E′ ← E′ ∪ {e};
11: end if
12: end for
13: end for
14: i← i+ 1;
15: end while
16: end procedure

Based on this data structure, we can construct a graph G′ = (V ′, E′) which
represents all (possibly non-simple) s-t paths whose distances are in a given set
L ⊆ {d1(s, t), . . . , dµ(s, t)} using the Implicit-Representation procedure. Starting

from s, we traverse an edge e = (u, v) only if the set DE(
−−−→
(u, v)) or DE(

−−−→
(v, u)) of

distances to t contains the given set of distances. Similarly, in the ith iteration,
we keep a set Si of vertices which are reached from s using exactly i edges, and
initially, S0 = {s}. Let L(v) be the set of distances from v to t for each vertex
v ∈ V ′. Precisely, if ℓ ∈ L(v), then ℓ ∈ DV (v) and there is a v-t path of cost ℓ.
The number of iterations of the procedure is also at most µ|E|.

The resulting graph G′ is a directed graph from s to t. However because there
may exist non-simple paths, the graph may have cycles. We can convert G′ into
a directed acyclic graph G′′ as follows. For each ℓ ∈ L(v), we create a vertex
vℓ, and for each pair of vertices vℓ and wℓ′ , we create an edge from vℓ to wℓ′ if
and only if (v, w) ∈ E′ and ℓ − d(v, w) = ℓ′. The graph G′ is converted so that
vertices can be duplicated to eliminate multiple edges. Each vertex is identified
with the name of the vertex in the original graph and the unique distance to t.



Then the new graph containing those newly inserted vertices and edges becomes
a directed acyclic graph. Therefore, the graph G′′ can represent an apex tree.

In summary, the simple implicit representation has at most µ|V | vertices and
at most µ|E| edges, and it can be constructed in O(µ2|E|2) time. Hence, we can
obtain a set of paths whose distances are at most (1 + α)d(s, t) by setting µ to
be the summation of distances of all edges. The number of iterations of the loop
in the GRR algorithm is at most k and thus the whole process takes O(kµ2|E|2)
time in the worst case; that is, the proposed

(
1+

√
2
2

)
k+1-competitive randomized

algorithm runs in pseudo-polynomial time.
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