
Covert Communication in Mobile Applications

Julia Rubin∗, Michael I. Gordon∗, Nguyen Nguyen§ and Martin Rinard∗
∗Massachusetts Institute of Technology, USA, §Global InfoTek, Inc, USA

mjulia@mit.edu, mgordon@mit.edu, nguyen@uwinsoftware.com, rinard@mit.edu

Abstract—This paper studies communication patterns in mo-
bile applications. Our analysis shows that 63% of the external
communication made by top-popular free Android applications
from Google Play has no effect on the user-observable application
functionality. To detect such covert communication in an efficient
manner, we propose a highly precise and scalable static analysis
technique: it achieves 93% precision and 61% recall compared
to the empirically determined “ground truth”, and runs in a
matter of a few minutes. Furthermore, according to human
evaluators, in 42 out of 47 cases, disabling connections deemed
covert by our analysis leaves the delivered application experience
either completely intact or with only insignificant interference.
We conclude that our technique is effective for identifying and
disabling covert communication. We then use it to investigate
communication patterns in the 500 top-popular applications from
Google Play.

I. INTRODUCTION

Mobile applications enjoy almost permanent connectivity
and the ability to exchange information with their own back-
end and other third-party servers. This paper shows that much
of this communication does not deliver any tangible value to
the application’s user: disabling it leaves the delivered appli-
cation experience completely intact. Yet, this covert commu-
nication comes with costs such as potential privacy breaches,
bandwidth charges, power consumption on the device, and the
unsuspected presence of continued communication between
the device and remote organizations. In fact, we observed that
several popular applications, e.g., Walmart and twitter, spawn
services that covertly communicate with remote servers even
when the application itself is inactive and the user is unaware
that the spawned services are running in the background.

This paper focuses on distinguishing between overt com-
munication that contributes to the application functionality
anticipated by the user, and covert communication that is
hidden and unexpected from the user’s point of view. We start
by analyzing communication patterns of popular applications
in the Google Play app store. Motivated by the significant
amount of covert communication we found in these applica-
tions, we develop a highly precise and scalable static analysis
that can identify such communication automatically. We use
our analysis to further investigate this unfortunate phenomenon
and report on our findings. The following research questions
drive this investigation:

RQ1: How frequent is covert communication? We conduct
an empirical study that focuses on investigating the nature
of communication in thirteen of the top twenty most-popular
applications in Google Play (twitter, Walmart, Spotify, Pan-
dora, etc.). For each connection statement triggered by these
applications, we compare the dynamic execution of the original
application to that of the application with the corresponding
statement being disabled.

We consider all visual content delivered by the application,
including advertisement, as essential and necessary, avoiding
any subjective judgment on the relevance of that information
to the user. That is, we consider application executions as
equivalent if they differ only in contextual information, such
as content of advertisement information and/or messages in
social network applications, e.g., twitter.

Our study reveals that 63% of the exercised connection
statements are covert – disabling them has no noticeable effect
on the observable application functionality. Interestingly, less
than half of such covert connections correspond to communica-
tion initiated from known advertisement and analytics (A&A)
packages included in the application. Thus, looking at the
package information only is not sufficient for distinguishing
between overt and covert communication.

RQ2: Can covert communication be detected statically?
Detailed investigation of multiple detected cases of covert
connections inspired us to develop a novel static application
analysis that can detect such connections automatically. The
core idea behind our analysis is to look for cases when both
connection success and failure are “silently” ignored by the
application, i.e., when no information is presented to the user
neither on success nor on failure of the connection.

For a connection statement, we analyze the portion of the
program’s control flow graph that corresponds to the direct
processing of the connection. This includes forward stack pro-
cessing and failure handling executions. The former is the non-
exceptional execution reachable after the connection statement
but limited to processing of the Android runtime events that
trigger the connection statement. The latter traverses methods
up all possible call stacks from the connection statement but
stops at points at which the exception raised by the connection
statement and all related rethrown exceptions are cleared.

The direct processing of the connection call is searched for
method call invocations that could target a predefined set of
API calls that affect the user interface. If such a call is found,
the connection call statement is deemed overt. Furthermore, if
the exception could be propagated back to the Android runtime
(causing the application to exit), the connection call is deemed
overt. Otherwise, it is deemed covert.

There are two reasons for the analysis to misclassify a
connection as covert. First, it does not take into account user
interface (UI) updates that occur outside of the connection’s
direct processing but are caused by the connection altering a
local or a remote state. Second, the semantics of the direct
processing itself is defined solely by the application’s byte
code, i.e., it does not consider native code and inter-application
executions. Our experiments show that these cases are rare,
which, together with the high scalability of the technique,
justifies our design choices.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78065217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

RQ3: How well does static detection perform? To assess
the precision and recall of the static analysis technique, we
evaluate it on the “truth set” established during the in-depth
dynamic study described above. The results show that our
technique features a high precision: 93% of the covert connec-
tion calls identified by the static analysis are indeed classified
as covert during the dynamic study. Moreover, even though
the technique is designed to be conservative and favor high
precision over high recall, it is still able to identify 61% of all
covert connections in the studied applications.

There are only two connections that were misclassified as
covert, both due to the reasons mentioned above. The first one
occurs because a UI update – in this case, presenting icons of
additional apps that can be downloaded from Google Play –
happens outside of the connection’s direct processing. The
second case, which is responsible for presenting advertisement
material via the Google Ads component installed on the device,
occurs because the direct processing of the connection does
not extend to asynchronous RPC communication with Google
services installed on the device.

To gain further insights on the quality of the technique,
we apply it to additional 47 top-popular applications from
Google Play. For these applications, we disable all connection
statements deemed covert by the analysis. We then employ
humans to perform a usability assessment: we provide them
with two identical devices, one running the original and the
other – the modified version of the application. We ask them
to track and report on any observable differences between the
runs of an application on two devices.

The results of this assessment are encouraging: there are no
observable differences in 63.8% of the applications (30 cases).
In 25.6% of the applications (12 cases), differences are related
to absence of functionality considered minor by the users,
e.g., ads or decorating images. Only 10.6% of the applications
(5 cases) miss functional features considered essential by the
users. This result implies that our static analysis produces
actionable output that could already be applied to eliminate
many cases of covert communication.

RQ4: How often does covert communication occur in real-
life applications and what are its most common sources?
We apply the analysis on the top 500 popular applications from
Google Play. This experiment reveals that 46% of connection
statements encoded in these applications are deemed covert.
Most common sources of covert communication are Google
services and various A&A services. Yet, these are not the
exclusive source of covert communication, and not all com-
munication made from these packages is covert.

Significance of the work. In [1], [2], [3], the authors state
that “the system should continuously inform the user about
what it is doing”. Inspired by this principle, the goal of our
work is to identify application functionality hidden from the
user. This paper studies the extent of that problem in benign
applications downloaded from popular application stores and
installed by millions of users. We believe that our findings
help focus the effort of improving transparency and trust in
the mobile application domain.

Contributions. The paper makes the following contributions:
1) It sets a new problem of distinguishing between overt and

covert communication in an automated manner.

2) It proposes a semi-automated dynamic approach for detect-
ing covert communication in Android applications. The ap-
proach relies on interactive injection of connection failures
in application binaries and identification of cases in which
such injections do not affect the observable application
functionality.

3) It provides empirical evidence for the prevalence of covert
connections in real-life applications. Specifically, it shows
that 63% of the connections attempted by thirteen top-
popular free applications on Google Play fall into that
category.

4) It proposes a static technique that operates on application
binaries and identifies covert connections. The technique
is highly scalable and precise: out of 47 highly popular
applications on Google Play, 63.8% worked without any
interference and further 25.6% worked with only insignif-
icant interference when disabling all covert connections
identified by the technique. The technique also features
93% precision and 61% recall when evaluated on the “truth
set” established dynamically.

5) It provides quantitative evidence for the prevalence of
covert connections in the 500 top-popular free applications
on Google Play and identifies their common patterns.

II. COMMUNICATION IN ANDROID

In this section, we describe the design of the study that
we conducted to gain more insights into the nature of commu-
nication performed by Android applications. We then discuss
the study results.

A. Design of the Study

1) Connection Statements: Table I lists the base classes and
their corresponding methods that we consider in our study. We
also include all sub-classes of those listed in the table.

When a connection failure occurs, e.g., when the desired
server is unavailable, or when a device is put in discon-
nected or airplane mode, each of these methods throws a
java.io.IOException exception. Thus, for investigating
the significance of a connection for the overall behavior of
an analyzed application, we inject a connection failure by
replacing the connection statement with a statement that throws
such an exception. This approach was chosen as it leverages
the applications’ native mechanism for dealing with failures,
thus reducing side-effects introduced by our instrumentation
to a minimum.

2) Application Instrumentation: As input to our study, we
assume an Android application given as an apk file. We use
the dex2jar tool suite [4] to extract the jar file from the apk.
We then use the ASM framework [5] to implement two types
of transformations:

• A monitoring transformation which produces a version
of the original application that logs all executions of the
connection statements in Table I.

TABLE I. CONSIDERED CONNECTION STATEMENTS.

Class or Interface Method
1. java.net.URL openConnection
2. java.net.URLConnection connect
3. org.apache.http.client.HttpClient execute
4. java.net.Socket getOutputStream

(a) Screen 1. (b) Screen 2. (c) Diff. for (a) and (b).

Fig. 1. Visual differences.

• A blocking transformation which obtains as additional input
a configuration file that specifies the list of connection
statements to disable. It then produces a version of the
original application in which the specified connection state-
ments are replaced by statements that throw exceptions.

The jar file of the transformed application is then converted
back to an apk using the dex2jar tool suite and signed with
our own signature, using the jarsigner tool distributed with
the standard Java JDK. As a known side effect of resigning
applications, their authentication for services such as Google
Plus APIs might be broken [6]. As a result, users might be
unable to sign in with their Google Plus account or perform
in-app purchases from the Google Play store. For that reason,
we refrain from executing such scenarios in our analysis.

3) Automated Application Execution and Comparison:
Comparison of user-observable behavior requires dynamic
execution of the analyzed applications. The main obstacle
in performing such comparison is the ability to reproduce
program executions in a repeatable manner. To overcome this
obstacle, we produce a script that automates the execution of
each application.

We experimented with Android’s Monkey tool [7], but it
was unable to provide a reasonably exhaustive coverage as
it quickly locked itself out of the application by generating
gestures that the analyzed application cannot handle. We thus
recorded the desired application execution scenario manually,
including in the recording any “semantic” user input required
by the application, e.g., username and password. We used the
Android getevent tool [8] that captures all user and kernel
input events. We made sure to pause between user gestures
that assume application response. We then enhanced the script
produced by getevent to insert a screen capturing command af-
ter each pause and between events of any prolonged sequences.

For the comparison of application executions, we started
by following the approach in [9], where screenshots from two
different runs are placed side-by-side, along with a visual diff
of each two corresponding images, as shown in Fig. 1, for
the Walmart application. We used the ImageMagick compare
tool [10] to produce the visual diff images automatically.
We then manually scanned the produced output while ig-
noring differences in content of widgets that are populated
by applications in a dynamic manner because such widgets
are expected to differ between applications runs. That is, we

ignored differences in the exact content of the advertisement
messages (but not their overall presence/absence and position),
content of social network messages, e.g., tweets, and the status
of the device, e.g., the exact time. As such, the screenshots in
Figs 1(a) and (b) were deemed similar: they differ only in the
content of the advertisement information and the information
in the status bar.

In one of the analyzed cases, we had to revert to manual
execution and comparison of the application runs. That case
involved interactions with a visual game that required rapid
response time, thus the automated application execution was
unable to provide reliable results.

4) Execution Methodology: We performed our study in
three phases. In the first phase, we installed the original version
of each analyzed application on a Nexus 4 mobile device
running Android version 4.4.4. We manually exercised the ap-
plication for around 10 minutes, exploring all its functionality
visible to us. Our goal was to (a) achieve sufficient coverage
and (b) keep the application active long enough to allow any
background data fetch processes to manifest themselves in the
application’s UI. Yet, we refrained from executing functional-
ity related to signing-in into the user’s Google Plus account
or performing in-app purchases, due to the resign-related
limitations mentioned above. We recorded the execution script
that captured all triggered actions. We then re-installed the
application and re-ran the script to collect screenshots that were
used as the baseline for further comparisons.

In the second phase, we used the monitoring transformation
to produce a version of the application that logs information
about all existing and triggered connection statements. We ran
this version using the recorded execution script and collected
the statistics about its communication statements.

In the third phase, we iterated over all triggered connection
statements, disabling them one by one, in order to assess
the necessity of each connection for preserving the user-
observable behavior of the application. That is, we arranged all
triggered connection statements in a list, in a lexical order and
then applied the blocking transformation to disable the first
connection statement in the list. We ran the produced version
of the application using the recorded execution script and
compared the obtained screenshots to the baseline application
execution. If disabling the connection statement did not affect
the behavior of the application, we marked it as covert, kept it
disabled for the subsequent iterations and proceed to the next
connection in the list. Otherwise, we marked the exercised
connection as overt and kept it enabled in the subsequent
iterations. We continued with this process until all connections
in the list were explored.

As the final quality measure, we manually inspected the
execution of the version in which all covert connections were
blocked, to detect any possible issues missed by the automated
analysis.

5) Subjects: As the subjects of our study, we downloaded
the 20 top-popular applications available on the Google Play
store in November 2014. We excluded from this list chat
applications, as our evaluation methodology does not allow as-
sessing the usability of a chat application without a predictably
available chat partner. We also excluded applications whose
ASM-based instrumentation failed, most probably because

TABLE II. ANALYZED APPLICATIONS.

Applications jar
size

(MB)

Total # of
connection
statements

of triggered
connection
statements

of covert
(% of trig.)

of covert in
known A&A

(% of total
covert)

air.com.sgn.cookiejam.gp 2.7 17 3 2 (66.7%) 1 (50.0%)
com.crimsonpine.stayinline 3.2 15 2 2 (100.0%) 2 (100.0%)
com.devuni.flashlight 1.4 16 3 1 (33.3%) 1 (100.0%)
com.emoji.Smart.Keyboard 0.8 3 3 2 (66.7%) 0 (0.0%)
com.facebook.katana 0.6 3 0 - -
com.grillgames.guitarrockhero 6.2 51 14 14 (100.0%) 6 (42.8%)
com.jb.emoji.gokeyboard 5.2 42 10 7 (70.0%) 0 (0.0%)
com.king.candycrushsaga 2.6 15 1 0 (0.0%) -
com.pandora.android 5.7 57 12 9 (75.0%) 3 (33.3%)
com.spotify.music 5.4 20 7 2 (26.6%) 1 (50.0%)
com.twitter.android 5.9 21 10 3 (30.0%) 1 (33.3%)
com.walmart.android 5.8 33 8 5 (62.5%) 3 (60.0%)
net.zedge.android 6.5 37 8 4 (50.0%) 4 (100.0%)
Total 330 81 51 (62.9%) 22 (43.1%)

they use language constructs that are not supported by that
framework. The remaining thirteen applications are listed in
the first column of Table II; their corresponding archived byte
code sizes are given in the second column of the table.

B. Results

The quantitative results of the study are presented in
Table II. Columns 3 and 4 of the table show that only a
relatively small number of connection statements encoded in
the applications are, in fact, triggered dynamically. Some of the
non-triggered statements correspond to execution paths that
were not explored during our dynamic application traversal.
Yet, the vast majority of the statements originate in third-
party libraries included in the application, e.g., Google and
Facebook services for mobile developers and various A&A
libraries. Such libraries are often only partially used by an
application, which could explain the incomplete coverage.

An interesting case is the Facebook application (row 5 in
Table II), where most of the application code is dynamically
loaded at runtime from resources shipped within the apk file.
Our analysis was unable to traverse these custom-packed re-
sources, and we thus excluded the application from the further
analysis, noting that the only three connection statements in the
application jar file are never triggered. We also excluded from
the further analysis the Candy Crush Saga application (row 8
in Table II), as it did not exhibit any covert connections.

1) Classification of the Triggered Statements: Column 5 of
Table II shows the number of connection statements that we
determined as covert during our study. Averaged for all appli-
cations, 62.9% of the connections fall in that category. This
means that only 37% of the connection statements triggered
by an application affect its observable behavior, when executed
for the exact same scenario with the connection being either
enabled or disabled.

Determining the original purpose of these covert connec-
tions is a non-trivial task: as implied by their nature, they
do not exhibit any observable behavior. Due to obfuscation,
virtually no “semantic” insights about the purpose of these
connections can be drawn from the manual analysis of the
application binaries either. In an attempt to shed some light
on the essence of these connections, we inspected package and
class names, as well as execution stack traces, of the methods
containing the covert connection statements. We also inspected
the data traffic that corresponds to these connections by routing
the communication through a proxy that is able to sniff the data
and decrypt the SSL encoding, if needed [11].

We discovered that only 22 out of 51 connections (43%)
originate from the known A&A libraries, as shown in the last
column of Table II. Another 11 connections (21%) appear to
be responsible for the A&A content as well. However, they
come either from application-specific packages or from third-
party libraries that cannot be immediately linked to A&A. For
example, the Walmart application triggers a covert connection
from the com/walmartlabs/analytics/ package, which appears
to be a proprietary analytics service.

Analytics services collect information about application
performance, crash and usage data, as well as the exact actions
the user performs within the app. While this information has a
clear value to the developer, no apparent description specifying
the nature and frequency of the data collection is presented to
the user. In fact, some applications start collecting analytics
information even before they get activated. For example,
twitter, Walmart and Pandora start their data collection as soon
as the phone is booted and continue, periodically, during the
phone’s entire up time, even if the applications themselves
were never used. In most cases, the user cannot opt-out from
such data sharing without uninstalling the application.

Beyond A&A, several applications release information to
their own and/or third-party services, without causing any
effect on the applications’ observable behavior. For example,
twitter uses covert connections to collect information about
videos and other rich media attachments followed by the users
in tweets. The GO Keyboard application sends, via a covert
connection, a set of ids to the launchermsg.3g.cn server; it
also sends some encrypted data, which we could not decode,
to nextbrowser.goforandroid.com. Both Pandora and Spotify
music players use Facebook’s social graph services [12], send-
ing out information about the application usage. As another
example, the Walmart application incorporates the barcode
scanner library provided by Red Laser [13] – an eBay company
that specializes in comparing prices. This library causes the
application to send out information about the scanned barcode
to the data.redlaser.com server. Yet, blocking that release of
information does not harm the scanning capabilities.

To answer RQ1, we conclude that covert communication
often occurs in real-world applications: 62.9% of the
triggered connection statements can be deemed covert.

2) Lessons Learned: As shown in the last column of
Table II, only 43% of the covert connections originate in the
known A&A libraries. As such, distinguishing between overt
and covert connections only by considering their package name
schema is ineffective. Moreover, some malicious applications
deliberately hide their payloads by using package names which
look legitimate and benign [14]. We conclude that a more so-
phisticated technique for identifying the covert communication
performed by the applications is required.

We manually investigated binaries of the analyzed applica-
tions, to gain more insights into the implementation patterns
of covert connections. We noticed that, in a large number
of cases, neither successes nor failures of such connections
trigger visual notifications to the user. For the failures, the
triggered exception is often either caught and silently ignored
in the method that issues the connection or, more commonly,

propagated upwards in the call stack and then ignored by one
of the calling methods. In several cases, an error or warning
message is written to the Android log file. However, this file
is mostly used by developers rather than end-users.

To answer RQ2, we conjecture that covert connections
can be detected by inspecting updates to UI elements on
both the success and the failure path of a connection
statement. Lack of such UI updates is indicative for a
connection being covert for the application execution as
the user is unaware of both the success and the failure
of the communication.

III. STATIC ANALYSIS FOR CLASSIFYING CONNECTIONS

In this section we describe the static analysis algorithm
we employ to automatically classify connections. Android
applications are developed in Java as a series of external
event handler routines, e.g., button click and application exit.
Given an Android application, the static analysis classifies each
statement that may invoke a connection call as either overt or
covert. We begin by giving a precise definition of overt and
covert connections assumed by the analysis.

DEFINITION (OVERT AND COVERT CONNECTIONS). For
connection statement s, s is classified as overt if it meets at
least one of the following criteria:

1) UI Cue on Failure: When s triggers an exception e, the
user may be notified of the failure via a user interface cue
during failure handling of s on e.

2) Program Exit on Failure: When s triggers an exception e,
the program may stop executing due to an execution path
that propagates e back up to the Android runtime.

3) UI Cue on Success: When s succeeds, there exists a
possible modification to the user interface before either (a)
the next external event is handled by the application or (b)
processing continues beyond the failure handling of s.

Conversely, a covert connection call does not meet any of the
criteria.

Failure handling is defined precisely in Section III-B.
Intuitively, the failure handling of connection statement s
on exception type e are the computation paths that handle
e and any failures triggered by the handling of e (through
rethrown exceptions). Failure handling is finished when all
exceptions triggered by e are handled and flow returns to
normal execution.

In what follows, we discuss how we compute a static
call graph that represents possible method targets of each call
expression in the Android application. We then discuss our
analysis on top of this graph. For each connection statement,
the analysis consists of three steps: failure handler analysis,
success forward analysis, and success backward analysis.

Table I lists the target methods that are considered as
connection calls. The set of target methods that are considered
as affecting the user interface are listed in Table III (also
included are all overriding methods).

A. Constructing an Accurate Call Graph for Android Apps

Static analysis of Android applications is notoriously diffi-
cult because of the complexity and dynamic nature of the An-

droid runtime and API; precise, whole-program analysis runs
the high-risk of missing dynamic program behavior and not
scaling to real-world Android applications. Static analysis must
either model the Android execution environment or account
for possible dynamic program behaviors with conservative
analysis choices; otherwise some runtime behaviors could be
unconsidered.

Our analysis over-approximates the runtime behaviors of
the applications, and under-approximates the connection calls
that could be covert. The analysis prioritizes high precision
over high recall because we do not want to block connection
calls that perform overt communication. Our analysis employs
a class hierarchy analysis (CHA) [15] to build a call graph with
refinement achieved by intra-procedural data-flow analysis,
as discussed later. After much experimentation with higher
precision, though brittle, points-to analysis techniques, this
analysis combination gave us the best performance for the
classification task. Our analysis is implemented in the Soot
Analysis Framework [16] and utilizes the Android API model
provided by DroidSafe [17]. The presentation of the analysis
below assumes the application is represented in the Jimple
intermediate language [16].

To compute a call graph, we augment the application
code with the DroidSafe Android Device Implementation
(ADI) [17]. The ADI is a Java-based model of the Android
runtime and API. It attempts to present full runtime semantics
for commonly-used classes of the runtime and API. Our call
graph construction begins at each application method that
could be a target of the Android runtime, i.e., the event handler
methods of the application. Call graph construction does not
traverse into Android API methods. As such, the call graph
is actually a forest of graphs, each rooted at an event handler
of the application, and each graph includes only application-
defined methods. However, we found it necessary to account
for API calls that directly call back into the application, e.g.,
Thread.start(). We achieve that by replacing the API call
with a direct call to the application method(s) that the API call
could invoke, e.g., Thread.run().

The call graph is augmented to account for reflected
method calls using the following policy. When a reflected call
is found, we add edges to the graph that target all methods of
the same package domain as the caller (e.g., com.google, com
.facebook). The edges are pruned by the following strategy:
if the number of arguments and argument types to the call can
be determined using a def-use analysis [18], then we limit the
edges to only targets that have the same number and types
of arguments. This strategy works well for us in practice and
aggressively accounts for reflection semantics.

B. Failure Handler Analysis

Failure analysis determines if a connection call modifies
the UI or could exit the application on exception. We organize
the static failure-handling analysis as a recursive traversal on
the call graph. An iterator over all application statements calls
the analysis separately for the combination of each statement
in the application that could target a connection call and an
exception that indicates communication failure.

Conceptually, the failure handling of s on e is defined as a
slice of instructions. In the slice are all statements that are

TABLE III. CONSIDERED UI ELEMENTS.

Class or Interface Methods
1. android.app.Dialog setContentView
2. android.support.v7.app.

ActionBarActivityDelegate
setContentView

3. android.view.View onLayout, layout, onDraw,
onAttachedToWindow

4. android.view.ViewGroup addView, addFocusables, addTouchables,
addChildrenForAccessibility

5. android.view.ViewManager addView, updateViewLayout
6. android.view.WindowManagerImpl.

CompatModeWrapper
addView

7. android.webkit.WebView loadData, loadDataWithBaseURL, loadUrl
8. android.widget.TextView append, setText
9. android.widget.Toast makeText

1: procedure FINDCATCHES(meth, stmt, ex, visiting, stack, cg)
2: if (stmt, ex) ∈ visiting or stmt ∈ overt then return end if
3: visiting ← visiting ∪ (stmt, ex)
4: catchBlockStart ← FINDCOMPATCATCH(meth, stmt, ex)
5: if catchBlockStart = null then
6: if ISEVENTHANDLER(meth) then
7: overt ← overt ∪ stmt
8: return
9: end if

10: for (predStmt, predMeth) ∈ GETPREDS(cg, meth) do
11: if stack 6= ∅ and (predStmt, predMeth) 6= PEEK(stack) then
12: continue
13: end if
14: newStack ← stack
15: POP(newStack)
16: FINDCATCHES(predMeth, predStmt, ex,
17: visiting, newStack, cg)
18: if predStmt ∈ overt then
19: overt ← overt ∪ stmt
20: return
21: end if
22: end for
23: else
24: catchStmts ← GETCATCHSTMTS(catchBlockStart, meth)
25: ANALYZEHANDLER(meth, stmt, catchStmts,
26: visiting, ∅, stack, cg)
27: end if
28: end procedure

Fig. 2. Find catch blocks for exception thrown at statement.

reachable from all catch blocks that can handle e. Then,
for each reachable statement in the slice that could throw
an exception of type f , we recursively add to the slice all
statements that are reachable from all catch blocks that could
dynamically handle f . Next, we recursively process those
newly added statements that could throw an exception. In
the processing, Android API methods are not considered, and
searching for a handler does not propagate into the Android
runtime environment.

The analysis starts with the FINDCATCHES procedure
listed in Fig. 2. It employs a set of helper procedures; the non-
obvious ones are listed in Fig. 4, and the full list is available
in [19]. FINDCATCHES is called separately for each connection
statement and exception pair, stmt and ex, respectively. The
arguments to the procedure also include stmt’s enclosing
method (meth); the set of currently visiting statements and
exception pairs (visiting), initially empty; the call stack built
when searching forward on a path of the call graph (stack),
initially empty; and the pre-calculated call graph (cg).

For stmt and ex, the procedure first consults stmt’s contain-
ing method to find an appropriate catch (line 4). If ex is not
caught locally, and meth is an event handler (called from the
Android runtime), then we conservatively calculate that stmt

1: procedure ANALYZEHANDLER(meth, exceptStmt, stmts, visiting, handledStmts,
stack, cg)

2: if stmts ∈ handledStmts then return end if
3: handledStmts ← handledStmts ∪ stmts
4: for each stmt ∈ stmts do
5: if HASINVOKE(stmt) then
6: for (succStmt, succMeth) ∈ GETSUCCS(cg, stmt) do
7: if ISUIMETHOD(succMeth) then
8: overt ← overt ∪ exceptStmt
9: return

10: else if ISNATIVEMETHOD(succMeth) then
11: for nativeEx ∈ GETTHROWSEXCEPTIONS(succMethd) do
12: FINDCATCHES(meth, stmt, nativeEx, visiting, stack, cg)
13: end for
14: else
15: newStack ← stack
16: PUSH(newStack, (succStmt, succMeth))
17: succStmts ← GETBODYSTMTS(succMeth)
18: ANALYZEHANDLER(succMeth, exceptStmt, succStmts,
19: visiting, handledStmts, newStack, cg)
20: end if
21: end for
22: else if ISTHROWSTMT(stmt) then
23: rethrownTypes = ∅
24: for defStmt ∈ GETLOCALDEFS(GETOP(stmt)) do
25: if ISALLOC(defStmt) then
26: rethrownTypes ← rethrownTypes ∪ GETTYPE(defStmt)
27: else if ISCAUGHTEXCEPTIONSTMT(defStmt) then
28: rethrownTypes ← rethrownTypes ∪
29: GETPOSSIBLETHROWNTYPES(meth, defStmt)
30: else
31: overt ← overt ∪ exceptStmt
32: return
33: end if
34: end for
35: for rethrownType ∈ rethrownTypes do
36: FINDCATCHES(meth, stmt, rethrownType, visiting, stack, cg)
37: if stmt ∈ overt then
38: overt ← overt ∪ exceptStmt
39: return
40: end if
41: end for
42: end if
43: end for
44: end procedure

Fig. 3. Analyze reachable statements during failure handling.

could cause application exit, and it is added to the overt set
(lines 6-9). Otherwise, the analysis recursively visits all direct
caller methods to find catch blocks that trap the call graph
edge (lines 10-21), as discussed later.

If a compatible handler is found locally (lines 24-26),
the analysis calls the procedure ANALYZEHANDLER (Fig. 3)
on the statements of the compatible block. This procedure
analyzes the reachable statements of the handler. If a call that
could target a UI method is encountered, then the statement
that began the handler analysis is considered overt since the
failure handling affects the user interface (lines 7-9 in Fig. 3).
If the analysis finds a call to a native method, we assume that
the method will throw all exceptions it is defined to throw,
and the handler analysis spawns a FINDCATCHES instance
for each exception declared throws (lines 10-13). When the
analysis finds a call to an application method, it pushes the
current statement and method onto the stack and recursively
calls itself for the new method to analyze the new method’s
statements (lines 14-20).

If the analysis finds a throw statement, it spawns a new
FINDCATCHES analysis to find all the possible handlers of
each rethrown exception (lines 22-42). Towards this end, it
first calculates local def-use chains to obtain the types of
the exception. In lines 23-34, the analysis considers all local
reaching defs of the thrown value. If an allocation statement

FINDCOMPATCATCH(meth,stmt,ex): Return the first statement of the catch
block that will handle an exception of type ex thrown at statement stmt in method
meth.

GETCATCHSTMTS(stmt,meth): Given the start of a catch block defined in the
trap table of method meth, return all statements that were defined in the source
code for the catch block of stmt. This method calculates an over-estimation of
catch block extents, e.g., it includes finally blocks.

GETPOSSIBLETHROWNTYPES(meth,stmt): Calculate the possible exception
types caught at the catch block that begins with stmt of meth. The statements of
the try block that associates with the catch block that encloses stmt: (1) For
a call statement, the procedure adds to the return list all exception types declared
throws by all methods that the call can target, (2) For a throw statement, the
reaching definitions of the thrown value are calculated. If the reaching definition is
an allocation, then add to the return list the type of the allocation. If the reaching def-
inition is a caught exception statement, then GETPOSSIBLETHROWNEXCEPTIONS
recursively calls itself to find the nesting try block statements and continue the
calculation. If a definition of any other statement type can reach the thrown value,
then return null to denote that it cannot calculate the thrown.

Fig. 4. Failure handling analysis helper functions.

reaches the throw, then the allocated type is added to the
set of possible types of the rethrown exception. If a caught
exception reference, c, reaches the throw statement, then the
try block associated with catch block of c is analyzed
for all checked exceptions that could be thrown. This is
performed in the GETPOSSIBLETHROWNTYPES call in line
29 of ANALYZEHANDLER. If only allocations and caught
exception statements reach the thrown value, then the handler
analysis spawns a new FINDCATCHES instance to analyze the
failure handling.

A stack of pairs of method call statement and target
method is maintained. The analysis uses the stack to focus the
handler search in FINDCATCHES after a method call has been
performed by a handler further up the stack (lines 11-15 in
Fig. 2). When we initiate the analysis for a connection call, the
stack is empty and the analysis in FINDCATCHES has to search
all possible stacks (predecessor of the containing method) for
handlers of the connection statement’s exception. However,
once a handler is found, and the handler calls a sequence
of methods that ends in a possible rethrown exception, the
sequence of methods defines the only stack that should be
searched for a handler of the rethrown exception (line 11).

The stack is pushed in line 16 of ANALYZEHANDLER
for each method call of a reachable handler code. During
the handler search of the execution stack in FINDCATCHES,
the stack is consulted to guide the search in line 11, only
visiting the edge at the head of the stack. The stack is
popped when visiting a caller method of the current method
in FINDCATCHES line 15.

C. Success Analysis

For connection statement stmt, if the failure handling
analysis concludes that no UI call could be invoked during
failure handling and all stacks handle stmt’s exception, then the
analysis continues with the success paths of stmt. The success
analysis determines if there is any UI modification after the
connection succeeds but before control returns to the Android
runtime environment and before control merges back to the
failure handling paths.

Here we summarize the success analysis of connection
call stmt enclosed in method meth by presenting a high-level
description of two conceptual phases:

1) Success Forward Analysis: Code reachable from the
statement immediately after stmt is searched for a connection
call. This is accomplished by traversing all paths in the
interprocedural control flow graph (CFG) starting at stmt
and following method invoke expressions via the call graph.
We follow both normal and exceptional control paths when
analyzing the CFG.

2) Success Backward Analysis: For all methods, caller,
such that there is a path from caller to meth in the call
graph and caller was searched during the failure handling
analysis, examine all statements of caller for calls that affect
the user interface. This has the effect of traversing the call
graph backwards from meth at stmt for UI calls, stopping at
event handlers (that are called by the Android API) and, on a
path, stopping once the exception of stmt is handled.

If the success forward and success backward analysis do
not find any calls that could affect the user interface, then the
connection call is classified as covert.

D. Design Discussion

The intuition for our static analysis is that overt connection
calls always affect the user interface either on success or
failure. Another insight gleaned from the study in Section II
is that normal processing of a connection often ends when
the exceptional and non-exceptional control flow paths merge.
Hence, the success backward analysis only examines methods
that were analyzed by the failure analysis. Furthermore, we use
the enclosing runtime event handlers to bound the connection
call processing.

IV. EXPERIMENTS

We start by assessing the quality of our static analysis
technique. We then apply the technique to gather information
about common patterns of covert communication in the 500
most popular Android applications on Google Play.

A. Quality of the Static Analysis

We first evaluate the accuracy, i.e., precision and recall, of
our technique on the “truth set” established during our in-depth
case study (see Section II). Then, via a usability assessment,
we evaluate the user-experience when running a version of
an application in which all connections deemed covert are
disabled.

1) Accuracy: For the accuracy evaluation, we look again
at the applications listed in Table II, excluding Facebook and
Candy Crush because these applications did not exhibit any
covert communication. We limit the set of results reported by
the static analysis to those that were, in fact, triggered dynami-
cally, as only for these we have the “ground truth” established.
We assess the results, for each application individually and
averaged for all applications, using the metrics below:

• Precision: the fraction of connection statements correctly
identified as covert among those reported by the technique.

• Recall: the fraction of connection statements correctly
identified as covert among those expected, i.e., marked as
covert during the dynamic study.

• Execution time: the execution time of the analysis, mea-
sured by averaging results of three runs on an Intel® Xeon®

CPU E5-2690 v2 @ 3.00GHz machine running Ubuntu
12.04.5. The machine was configured to use at most 16GB
of heap and to perform no parallelization for a single
application, i.e., each application uses one core only.

The results of this experiment are summarized in Table IV.
The second column of the table shows that the overall averaged
precision of our analysis is 93.2%. The analysis correctly
identifies all but two covert connections. The first one, in
com.devuni.flashlight, is responsible for presenting icons of
application extensions that can be downloaded from Google
Play. The misclassification stems from the fact that UI updates
for these icons happen after the success and failure paths unify,
and thus are missed by our search.

The second misclassified connection, in net.zedge.android,
is responsible for presenting advertisement material and be-
longs to the com.mopub.mobileads A&A service library pack-
aged with the application. That library relies on asynchronous
RPC communication with Google services installed on the
same device. Our static analysis is not designed to track inter-
application communication between various applications and
services on the device, hence the false-positive result.

Even though our analysis is designed to be conservative,
it is able to correctly identify 61.5% of statements deemed
covert in the empirical study (see column 3 in Table IV). The
major reasons for why we do not achieve higher recall are (1)
a conservative, though feasibly analyzable, definition of direct
processing related to a connection call, and (2) conservative
call graph construction, specifically w.r.t. reflection. Such so-
lution is aligned with our goal of providing actionable results,
which are “safe” albeit under-approximate.

Finally, the analysis is highly efficient and runs in a matter
of minutes even on large applications, as shown in the last
column of Table IV.

2) Usability Assessment: To check whether our technique
is able to provide actionable results, we further selected 100
applications that persisted in the list of the 500 most popular
free applications on Google Play in the January 2015 and
May 2015 samples. We installed the original version of each
application on a Nexus device running Android v4.4.4. On
an identical device, we installed a modified version of each
application that was produced by employing the blocking
transformation (see Section II) to disable all calls identified
as covert by the static analysis.

We recruited two human subjects, both experienced soft-
ware developers, and paired each with an author of this paper.
Each pair was given one device with the original and one with
the modified versions of the applications. We asked them to
execute the same application simultaneously on both devices
for around 10 minutes, and to record all differences observed
during the execution. Similar to the experiment described
in Section II, our goal was to ensure sufficient coverage
and manifestation of background data fetch processes in the
application’s UI. We asked the participants to avoid signing
in with a Google Plus account or performing in-app purchases
from the Google Play store, as these features are not supported
in resigned applications, as discussed in Section II.

TABLE IV. COMPARISON WITH THE MANUALLY ESTABLISHED
RESULTS.

Applications Correctly detected covert Execution
timePrecision Recall

air.com.sgn.cookiejam.gp 1/1 (100.0%) 1/2 (50.0%) 2min 11s
com.crimsonpine.stayinline 2/2 (100.0%) 2/2 (100.0%) 2min 24s
com.devuni.flashlight 1/2 (50.0%) 1/1 (100.0%) 1min 44s
com.emoji.Smart.Keyboard 2/2 (100.0%) 2/2 (100.0%) 1min 16s
com.grillgames.guitarrockhero 1/1 (100.0%) 1/14 (7.1%) 6min 14s
com.jb.emoji.gokeyboard 4/4 (100.0%) 4/7 (57.1%) 3min 22s
com.pandora.android 4/4 (100.0%) 4/9 (44.4%) 2min 41s
com.spotify.music 1/1 (100.0%) 1/2 (50.0%) 2min 51s
com.twitter.android 1/1 (100.0%) 1/3 (33.3%) 3min 3s
com.walmart.android 3/3 (100.0%) 3/5 (60.0%) 3min 2s
net.zedge.android 3/4 (75.0%) 3/4 (75.0%) 4min 13s
Average 93.2% 61.5% 2min 48s

To analyze the results of that experiment in a reliable
manner, we exclude 14 applications that were non-operational
(either did not run in the original version or required payment
to continue running); 17 applications for which ASM-based
instrumentation failed or the instrumented version did not run
due to the issues related to the resigning process; 2 Google
applications that we could not re-install on a device; 5 chat
applications; 4 applications that either contained no connection
statements or had no covert connection statements detected;
and 11 applications for which no covert connection statement
were triggered during the dynamic execution of the application.

Information about the remaining 47 applications is below.
Identical: 30 (63.8%). Our participants did not observe any
noticeable differences in these 30 applications, which confirms
that the connection statements deemed covert by the static
analysis have indeed no effect on the user-observable appli-
cation behavior.
Missing advertisement: 9 (19.2%). Advertisement informa-
tion was missing in 9 cases, for the same reason as in the
Zedge example described above.
Missing minor functionality: 3 (6.4%). The participants
observed the absence of features that they perceived as minor:
2 cases of missing icons, in Talkingben as well as in the
Flashlight application discussed above; and 1 case where they
were unable to create an account for the antivirus application,
but the core functionality of that application was intact.
Missing essential functionality: 5 (10.6%). Only 5 appli-
cations were missing essential functionality: Battery Saver,
Spider-Man and Minion Rush games, Microsoft Office Mobile
and PicsArt Photo Studio. We conjecture that the last case is re-
lated to resigning issues. Other cases stem from the limitations
of our static analysis techniques: performing intra-application
analysis, ignoring stateful communication and restricting the
search for UI updates only to statements that occur before the
success and failure paths unify. We believe that the low number
of such cases, together with the high scalability of our analysis,
justifies these choices.

On average, 2.6 covert call statements per application were
triggered at runtime (min: 1, max: 9, mdn: 2). As each state-
ment can be executed multiple times, we also counted all dy-
namic call instances of these statements, obtaining the average
of 299 covert call instances per application (min: 1, max: 4011,
mdn: 11). The high average numbers are due to applications
that, once installed, are constantly executed in the background,
and, as it turns out, attempt network communication. Ex-
amples of such applications are com.cleanmaster.mguard and
com.ijinshan.kbatterydoctor en.

To answer RQ3, we conclude that the static analysis
proposed in this paper can be applied for an accurate
detection of covert connections. The technique is precise,
highly scalable and provides actionable output that can
be directly used for disabling covert communication in a
vast majority of cases.

B. Covert Communication in the Wild

We next apply our technique to the 500 most popular
Android applications downloaded from the Google Play store
in January 2015. By considering such a large data set, our goal
is to investigate how often covert communication occurs and
what its most common sources are.

Our analysis reveals that 46.2% of all connection state-
ments in these application can be considered covert (8,539
connections out of 18,480 in total). These results, adjusted
by the 93% precision and 61% recall rates of the analysis,
are consistent with the observation of our empirical study
described in Section II.

Table V presents the top 10 packages in which covert
connections occur. As we analyzed free applications that
frequently use third-party packages and then aggregated the
numbers for 500 such applications, it is no surprise that Google
services, gaming, and A&A services are at the top of the list;
the number of applications that use each of these packages is
shown in the third column of Table V. More surprising is the
com.gameloft package (row 2 of Table V); even though it is
part of only 17 different mobile applications published by the
same company, the number of covert connection statements
these game applications contain is notable.

The last column of Table V shows the percentage of
covert connections out of all connection statements in the
corresponding package. This number varies between 24% and
87%, confirming, again, our initial observation in Section II
that the source of a connection cannot be used to determine
its impact on the application behavior.

To answer RQ4, we conclude that covert communication
is common in real-life applications. Such communication
is not exclusive to A&A packages, and not all communi-
cation stemming from these packages is covert.

V. LIMITATIONS AND THREATS TO
VALIDITY

1) Empirical Study: Our empirical study has a dynamic
nature and thus suffers from the well-known limitations of
dynamic analysis: it does not provide an exhaustive exploration
of an application’s behavior. Even though we made an effort
to cover all application functionality visible to us, we might
have missed some behaviors, e.g., those triggered under system
settings different from ours. To minimize unexpected results,
we performed all our dynamic experiments on the same device,
at the same location and temporally close to each other. We
also automated our execution scripts in order to compare
behaviors of different variants under the same scenario and
settings. We only report on the results comparing these similar
runs.

TABLE V. TOP 10 COVERT COMMUNICATION CALLERS.

Package Description Used in
(%) of Apps

Covert Calls
(% of total calls)

1. com.google.android Google services 382 (76.4%) 1913 (49.9%)
2. com.gameloft Mobile games 17 (3.4%) 784 (87.4%)
3. com.inmobi A&A services 61 (12.2%) 615 (67.6%)
4. com.millennialmedia.

android
A&A services 78 (15.6%) 447 (58.8%)

5. com.mopub.mobileads A&A services 72 (14.4%) 320 (56.9%)
6. com.tapjoy A&A services 49 (9.8%) 277 (43.8%)
7. com.facebook Facebook services 112 (22.4%) 222 (24.3%)
8. com.unity3d Gaming services 77 (15.4%) 203 (41.8%)
9. (default) Default package of an application 23 (4.6%) 178 (48%)
10. com.flurry A&A services 95 (19%) 175 (35.3%)

Yet, due to the limitations of dynamic analysis, we could
encounter false-positive results: a connection statement that we
classified as covert could have an effect on an unexplored part
of an application. At the same time, we could also have false-
negative results: changes in user interface could stem from
the non-determinism in an application itself rather than the
absence of communications. Moreover, by focusing on indi-
vidual connection statements, we cannot distinguish between
multiple application behaviors that communicate via the same
statement in code. We thus conservatively deem a connection
as overt if it is overt for at least one of such behaviors.
Exploring more sophisticated techniques for identification of
covert connections could be a subject of possible future work.

Finally, our study only includes a limited number of sub-
jects, so the results might not generalize to other applications.
We tried to mitigate this problem by not biasing our application
selection but rather selecting top-popular applications from the
Google Play store, and by ensuring that we observe similar
communication patterns in all analyzed applications.

2) A Static Technique For Detecting Covert Connections:
Our technique deems as covert stateful communication that
toggles the state of a connection target but does not present any
information to the user. In many cases, detecting such commu-
nication statically is impossible because the code executed on
the target is unknown and unavailable. For a similar reason,
in this work, we do not consider RPC communication with
applications installed on the same device. We might explore
that direction as part of future work.

Moreover, our analysis searches for communication that
affects the application UI in a direct manner rather than
transitively, through other resources. Extending the analysis
to cover such cases, while maintaining its scalability and
precision, is another subject for possible future work.

Some of the covert connections that we identified statically
might never be triggered dynamically. A large percentage of
these connections originate in third-party libraries that are
included in the application but only partially used. As such,
analyzing them is still beneficial as this code might be used
in other applications.

VI. RELATED WORK

Work related to this paper falls into three categories:
1) User-Centric Analysis for Identifying Spurious Behav-

iors: Huang et al. [20] propose a technique, AsDroid, for
identifying contradictions between a user interaction function
and the behavior that it performs. This technique associates
intents with certain sensitive APIs, such as HTTP access or

SMS send operations, and tracks the propagation of these
intents through the application call graph, thus establishing
correspondence between APIs and the UI elements they affect.
It then uses the established correspondence to compare intents
with the text related to the UI elements. Mismatches are treated
as potentially stealthy behaviors. In our work, we do not
assume that all operations are triggered by the UI and do not
rely on textual descriptions of UI elements.

Ko and Zhang [3] propose a system, FeedLack, for iden-
tifying usability problems in web applications. The system
looks for control flow paths that originate from user input
but lack UI-affecting code. Our work is similar as it relies
on the same underlying principle of user feedback necessity
and also searches for code affecting the UI. Yet, our goal is
different: we look for any hidden behavior rather than missing
feedback loops for user-triggered operations. Also, our analysis
is tailored for mobile rather than web applications and, unlike
FeedLack, focuses not only on success paths but takes failure
paths into account as well.

CHABADA [21] compares natural language descriptions
of applications, clusters them by description topics, and then
identifies outliers by observing API usage within each cluster.
Essentially, this system identifies applications whose behavior
would be unexpected given their description. Instead, our
approach focuses on identifying unexpected behaviors given
the actual user experience, not just the description of the
application.

Elish et al. [22] propose an approach for identifying
malware by tracking dependencies between the definition and
the use of user-generated data. They deem sensitive function
calls that are not triggered by a user gesture as malicious.
However, in our experience, the absence of a data dependency
between a user gesture and a sensitive call is not always
indicative for suspicious behavior: applications such as twitter
and Walmart can initiate HTTP calls to show the most up-to-
date information to their user, without any explicit user request.
Moreover, malicious behaviors can be performed as a side-
effect of any user-triggered operation. We thus take an inverse
approach, focusing on identifying operations that do not affect
the user experience.

2) Information Propagation in Mobile Applications: The
most prominent technique for dynamic information propaga-
tion tracking in Android is TaintDroid [23], which detects
flows of information from a selected set of sensitive sources to
a set of sensitive sinks. Several static information flow analysis
techniques for tracking propagation of information from sen-
sitive sources to sinks have also been recently developed [24],
[17], [25], [26]. Our work is orthogonal and complimentary
to all the above: while they focus on providing precise in-
formation flow tracking capabilities and detecting cases when
sensitive information flows outside of the application and/or
mobile device, our focus is on distinguishing between overt
and covert flows.

The authors of AppFence [9] build up on TaintDroid
and explore approaches for either obfuscating or completely
blocking the identified cases of sensitive information release.
Their study shows that blocking all such cases renders more
than 65% of the applications either less functional or com-
pletely dysfunctional, blocking cases when information flows

to advertisement and analytics services “hurts” 10% of the
applications, and blocking the communication with the adver-
tisement and analytics services altogether – more than 60%
of the applications. Our work has a complementary nature
as we rather attempt to identify cases when communication
can be disabled without affecting the application functionality.
Our approach for assessing the user-observable effect of that
operation is similar to the one they used.

Both MudFlow [27] and AppContext [28] build up on
the FlowDroid static information flow analysis system [24]
and propose approaches for detecting malicious applications
by learning “normal” application behavior patterns and then
identifying outliers. The first work considers flows of informa-
tion between sensitive sources and sinks, while the second –
contexts, i.e., the events and conditions, that cause the security-
sensitive behaviors to occur. Our work has a complementary
nature as we focus on identifying covert rather than malicious
behaviors, aiming to preserve the overall user experience.

Shen et al. [29] contribute FlowPermissions – an approach
that extends the Android permission model with a mechanism
for allowing the users to examine and grant permissions per
an information flow within an application, e.g., a permission
to read the phone number and send it over the network or to
another application already installed on the device. While our
approaches have a similar ultimate goal – to provide visibility
over the holistic behavior of the applications installed on a
user’s phone – our techniques are entirely orthogonal.

3) Exception Analysis for Java: A rich body of static
analysis techniques has been developed to analyze and account
for exceptional control and data flow [30], [31], [32], [33],
[34], [35], [36]. Most of these techniques define a variant of a
reverse data-flow analysis and use a program heap abstraction
(e.g., points-to analysis or class hierarchy analysis) to resolve
references to exception objects and to construct a call graph.
Our technique follows a similar strategy, using class hierarchy
analysis with intra-procedural analysis refinement. Though
some of the prior analysis techniques will provide higher
precision than our technique (namely [32], [33], [35]), we
designed our technique to conservatively, though aggressively,
consider difficult to analyze Android application development
idioms such as reflection, native methods, and missing program
semantics of the Android API defined in non-Java languages.

VII. CONCLUSIONS

Covert communication can impair the transparency of
device operation, silently consume device resources, and ulti-
mately undermine user trust in the mobile application ecosys-
tem. Our analysis shows that covert communication is quite
common in top-popular Android applications in the Google
Play store. Our results show that our static analysis can
effectively support the identification and removal of covert
communication and promote the development of more trans-
parent and trustworthy mobile applications.

Acknowledgments. This material is based on research spon-
sored by DARPA under agreement number FA8750-12-2-
0110. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon.

REFERENCES

[1] J. Nielsen and R. Molich, “Heuristic Evaluation of User Interfaces,” in
Proc. of the International Conference on Human Factors in Computing
Systems (CHI’90), 1990, pp. 249–256.

[2] M. H. Blackmon, P. G. Polson, M. Kitajima, and C. H. Lewis,
“Cognitive Walkthrough for the Web,” in Proc. of the International
Conference on Human Factors in Computing Systems (CHI’02), 2002,
pp. 463–470.

[3] A. J. Ko and X. Zhang, “FeedLack Detects Missing Feedback in Web
Applications,” in Proc. of the International Conference on Human
Factors in Computing Systems (CHI’11), 2011, pp. 2177–2186.

[4] dex2jar, “https://code.google.com/p/dex2jar/.”
[5] ASM Java Bytecode Manipulation and Analysis Framework,

“http://asm.ow2.org/.”
[6] Google APIs Console Help, “https://developers.google.com/console/help.”
[7] Android’s UI/Application Exerciser Monkey,

“http://developer.android.com/tools/help/monkey.html.”
[8] Android Getevent Tool, “https://

source.android.com/devices/input/getevent.html.”
[9] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These

Aren’t the Droids You’re Looking for: Retrofitting Android to Protect
Data from Imperious Applications,” in Proc. of the 18th ACM Confer-
ence on Computer and Communications Security (CCS’11), 2011, pp.
639–652.

[10] ImageMagick Compare Tool, “http://
www.imagemagick.org/script/compare.php.”

[11] Charles – an HTTP proxy / HTTP monitor / Reverse Proxy,
“http://www.charlesproxy.com/.”

[12] Facebook’s Social Graph, “https://developers.facebook.com/docs/graph-
api.”

[13] Red Laser – an eBay company, “http://redlaser.com/.”
[14] Y. Zhou and X. Jiang, “Dissecting Android Malware: Characterization

and Evolution,” in Proc. of the IEEE Symposium on Security and
Privacy (SP’12), 2012, pp. 95–109.

[15] J. Dean, D. Grove, and C. Chambers, “Optimization of Object-Oriented
Programs Using Static Class Hierarchy Analysis,” in Proc. of the 9th
European Conference on Object-Oriented Programming (ECOOP’95),
1995.

[16] R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pominville, and
V. Sundaresan, “Optimizing Java Bytecode Using the Soot Framework:
Is It Feasible?” in Proc. of the 9th International Conference on Compiler
Construction (CC’00), 2000, pp. 18–34.

[17] M. I. Gordon, D. Kim, J. Perkins, L. Gilham, N. Nguyen, and M. Rinard,
“Information Flow Analysis of Android Applications in DroidSafe,” in
Proc. of the 22nd Annual Network and Distributed System Security
Symposium (NDSS’15), 2015.

[18] A. Aho, M. Lam, R. Sethi, and J. Ullman, Compilers: Principles,
Techniques, and Tools, 2nd ed. Addison Wesley, 2006.

[19] Helper Function Definitions for the Connection Analysis,
“http://people.csail.mit.edu/mjulia/covert-helpers.pdf.”

[20] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “AsDroid: Detecting
Stealthy Behaviors in Android Applications by User Interface and
Program Behavior Contradiction,” in Proc. of the 36th International
Conference on Software Engineering (ICSE’14), 2014.

[21] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking App Behavior
against App Descriptions,” in Proc. of the 36th International Conference
on Software Engineering (ICSE’14), 2014.

[22] K. O. Elish, D. D. Yao, and B. G. Ryder, “User-Centric Dependence
Analysis for Identifying Malicious Mobile Apps,” in Proc. of the IEEE
Mobile Security Technologies Workshop (MoST’12), 2012.

[23] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “TaintDroid: An Information-flow Tracking System
for Realtime Privacy Monitoring on Smartphones,” in Proc. of the 9th
USENIX Conference on Operating Systems Design and Implementation
(OSDI’10), 2010, pp. 1–6.

[24] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. L.
Traon, D. Octeau, and P. McDaniel, “FlowDroid: Precise Context, Flow,
Field, Object-sensitive and Lifecycle-aware Taint Analysis for Android
Apps,” in Proc. of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’14), 2014.

[25] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android Taint
Flow Analysis for App Sets,” in Proc. of the 3rd ACM SIGPLAN
International Workshop on the State of the Art in Java Program Analysis
(SOAP’14), 2014.

[26] L. Li, A. Bartel, J. Klein, Y. L. Traon, S. Arzt, S. Rasthofer, E. Bodden,
D. Octeau, and P. McDaniel, “I Know What Leaked in Your Pocket:
Uncovering Privacy Leaks on Android Apps with Static Taint Analysis,”
arXiv Computing Research Repository (CoRR), vol. abs/1404.7431,
2014.

[27] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer,
and E. Bodden, “Mining Apps for Abnormal Usage of Sensitive Data,”
in Proc. of the 37th International Conference on Software Engineering
(ICSE’15), 2015.

[28] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “AppContext:
Differentiating Malicious and Benign Mobile App Behavior Under
Contexts,” in Proc. of the 37th International Conference on Software
Engineering (ICSE’15), 2015.

[29] F. Shen, N. Vishnubhotla, C. Todarka, M. Arora, B. Dhandapani, E. J.
Lehner, S. Y. Ko, and L. Ziarek, “Information Flows as a Permission
Mechanism,” in Proc. of the ACM/IEEE International Conference on
Automated Software Engineering (ASE’14), 2014.

[30] Byeong-Mo Chang, Jang-Wu Jo, and Soon Hee Her, “Visualization
of Exception Propagation for Java Using Static Analysis,” in Proc. of
the 2nd IEEE International Workshop on Source Code Analysis and
Manipulation, 2002, pp. 173–182.

[31] B.-M. Chang, J.-W. Jo, K. Yi, and K.-M. Choe, “Interprocedural
Exception Analysis for Java,” in Proc. of the 2001 ACM Symposium
on Applied Computing (SAC’01), 2001, pp. 620–625.

[32] C. Fu, A. Milanova, B. G. Ryder, and D. G. Wonnacott, “Robustness
Testing of Java Server Applications,” IEEE Transactions on Software
Engineering, vol. 31, pp. 292–311, 2005.

[33] C. Fu and B. G. Ryder, “Exception-Chain Analysis: Revealing Excep-
tion Handling Architecture in Java Server Applications,” in Proc. of the
International Conference on Software Engineering (ICSE’07), 2007, pp.
230–239.

[34] J. W. Jo, B. M. Chang, K. Yi, and K. M. Choe, “An Uncaught Exception
Analysis for Java,” Journal of Systems and Software, vol. 72, pp. 59–69,
2004.

[35] X. Qiu, L. Zhang, and X. Lian, “Static Analysis for Java Exception
Propagation Structure,” in Proc. of the 2010 IEEE International Con-
ference on Progress in Informatics and Computing (PIC’10), vol. 2,
2010, pp. 1040–1046.

[36] G. Kastrinis and Y. Smaragdakis, “Efficient and Effective Handling of
Exceptions in Java Points-to Analysis,” in Proc. of the 22nd Interna-
tional Conference on Compiler Construction (CC’13), 2013, pp. 41–60.

