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Abstract—Fictitious play is a natural dynamic for equi-
librium play in zero-sum games, proposed by Brown [6],
and shown to converge by Robinson [33]. Samuel Karlin
conjectured in 1959 that fictitious play converges at rate
O(t−

1
2 ) with respect to the number of stepst. We disprove

this conjecture by showing that, when the payoff matrix
of the row player is the n × n identity matrix, fictitious
play may converge (for some tie-breaking) at rate as slow
as Ω(t−

1
n ).

I. I NTRODUCTION

Von Neumann’s MinMax theorem for two-person
zero-sum games marked the birth of Game Theory [36],
and is intimately related to the development of linear
programming. Given a payoff matrixA, whose ij-th
entry specifies how much the column player playingj

pays the row player playingi, the theorem states that

max
x

min
y

xTAy = min
y

max
x

xTAy,

wherex, y range over randomized/mixed strategies for
the row and column player respectively. In other words,
there exists a unique valuez ∈ R and a pair of mixed
strategieŝx and ŷ such that:

min
y

x̂TAy = z = max
x

xTAŷ. (1)

Dantzig and von Neumann observed that the Min-
Max theorem is implied by strong linear programming
duality [10], [2]. Dantzig also provided a candidate
construction for the opposite implication [10], and this
was also established some decades later [1].

Ultimately, the MinMax theorem provides a very sharp
prediction in two-player zero-sum games. It shows that
there is a unique valuez and a pair of strategieŝx and
ŷ such that, by playinĝx the row player can guarantee
himself expected payoff ofz regardless of what strategy
the column player adopts, and such that, by playingŷ,
the column player can guarantee herself expected payoff
of −z regardless of what strategy the row player adopts.
In particular,(x̂, ŷ) comprise a Nash equilibrium of the
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game, with expected payoffz for the row player and−z

for the column. Moreover,̂x, ŷ andz can be computed in
polynomial time with linear programming. This type of
crisp prediction is rather rare in Game Theory. According
to Aumann, zero-sum games are “one of the few areas
in game theory, and indeed in the social sciences, where
a fairly sharp, unique prediction is made” [3].

Shortly after the proof of the MinMax theorem and
the development of linear programming, G. W. Brown
proposedfictitious play as an iterative procedure for
solving a zero-sum game, or equivalently a linear pro-
gram [6], [7]. The procedure proceeds in steps in which
players choose a pure strategy best response to their
opponent’s empirical mixed strategy up until that step.
Let us describe it a bit more formally (we focus on
the simultaneousversion, but our results also hold for
the asynchronousversion, where the players’ moves
alternate): At every stept, the row player chooses some
row it and the column player chooses some columnjt.
At t = 1, the choices are arbitrary. Att + 1 > 1, the
players calculate theempirical mixed strategiesof their
opponents in previous steps, namely1

x(t) =
1

t

∑

τ≤t

eiτ ,

y(t) =
1

t

∑

τ≤t

ejτ .

Then, the row player chooses an arbitrary best response
it+1 to y(t) and the column player chooses an arbitrary
best responsejt+1 to x(t), namely

it+1 ∈ argmax
i

{

eTi Ay(t)
}

,

jt+1 ∈ argmin
j

{

x(t)TAej
}

.
(2)

The procedure may be viewed as a natural way through
which two players could interact in a repeated game with
stage game(A,−A). The question is whether the se-
quence(x(t), y(t))t converges to something meaningful.

1We useei to denote the column vector withi-th component1 and
all other components0. The dimension ofei is always implied by the
context; it ism when describing row player strategies andn when
describing column player strategies.
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In an elegant paper shortly after Brown’s, Robinson
showed that the average payoffs of the players in fic-
titious play converge to the value of the game [33]. In
particular, it was shown that

fA(x(t), y(t)) = max
i

eTi Ay(t)−min
j

x(t)Aej

→ 0, as t → ∞.

Hence, becauseminj x(t)Aej ≤ x(t)TAy(t) ≤
maxi e

T
i Ay(t) andminj x(t)Aej ≤ z ≤ maxi e

T
i Ay(t),

it follows that all three quantities converge to the value
of the gamez.

Robinson’s proof is an elegant induction argument,
which eliminates one row or one column ofA at a
time. Unraveling the induction, one can also deduce
the following bound on the convergence rate of the
procedure:

fA(x(t), y(t)) = O(t−
1

m+n−2 ),

which appears rather slow, compared to the convergence
rate of O(t−

1
2 ) that is typically achieved by no-regret

learning algorithms [13], [26], [8], and the improved
convergence rate ofO( log t

t
) of some no-regret learning

algorithms, obtained recently [11], [32]. Indeed, about
ten years after Robinson’s proof and five decades ago,
Samuel Karlin conjectured that the convergence rate of
fictitious play should beO(t−

1
2 ), namely

Conjecture 1 ([23]). Fictitious play converges at rate
O(t−

1
2 ) in all games.

There is some evidence supporting a convergence rate
of O(t−

1
2 ). As pointed out earlier, a convergence rate

of O(t−
1
2 ) is quite common with dynamics that are

known to converge. Indeed, a close relative of fictitious
play, follow the perturbed leader, is known to achieve
convergence rate ofO(t−

1
2 ) [8]. Also, a continuous time

version of fictitious play has been shown to converge in
timeO(t−1) [19]. Despite this evidence and the apparent
simplicity of fictitious play, the convergence rate from
Robinson’s proof has remained the state-of-the-art. Our
main result is a counter-example, disproving Karlin’s
conjecture. IfIn is then × n identity matrix, we show
the following:

Theorem 1. For everyn ≥ 2, fictitious play forIn may
converge at rateΘ(t−

1
n ), if ties are broken arbitrarily.

Our counter-example, provided in SectionIII , con-
structs a valid execution of fictitious play forIn such
that the empirical mixed strategiesx(t), y(t) of players
satisfy

fIn(x(t), y(t)) = max
i

eTi y(t)−min
j

x(t)ej

= Θ(t−
1
n ).

Remark 1. It is crucial for our construction that ties in
choosing a best response in(2) can be broken arbitrarily
at each step. This is allowed in Karlin’s formulation
of the conjecture. To distinguish this case from when
ties are broken in some consistent way or randomly, we
will call Karlin’s conjecture with arbitrary tie-breaking
Karlin’s strong conjecture, while that with lexicographic
or random tie-breakingKarlin’s weak conjecture. With
this terminology, Theorem1 disproves Karlin’s strong
conjecture.

Interestingly, like Robinson’s upper bound argument,
our lower bound also works by induction. We show
that slow fictitious play executions forI2 can be folded
inside fictitious play executions forI3, etc, leading to an
exponentially slow convergence rate for fictitious play
in In. More intuition about the construction is provided
in SectionII , and the complete details can be found in
SectionIII .

While outperformed by modern learning algo-
rithms [8], because of its simplicity, fictitious play was
thought to provide a convincing explanation of Nash
equilibrium play in zero-sum games. According to Luce
and Raiffa “Brown’s results are not only computationally
valuable but also quite illuminating from a substantive
point of view. Imagine a pair of players repeating a
game over and over again. It is plausible that at every
stage a player attempts to exploit his knowledge of his
opponent’s past moves. Even though the game may be
too complicated or too nebulous to be subjected to an
adequate analysis, experience in repeated plays may tend
to a statistical equilibrium whose (time) average return
is approximately equal to the value of the game” [27]. In
this light, our counterexample sheds doubt on the plau-
sibility of fictitious play in explaining Nash equilibrium
behavior. Given our counterexample, it is important to
investigate whether fictitious play in random payoff zero-
sum games satisfies Karlin’s conjecture, or whether some
choice of tie-breaking rule in the definition of fictitious
play makes it satisfy Karlin’s conjecture for all zero-
sum games. We did perform preliminary simulations of
fictitious play with random tie-breaking on our lower
bounding instances, as well as on zero-sum games with
i.i.d. uniform [0, 1] entries, and they suggest a quadratic
rate of convergence. We leave a rigorous study of these
important questions for future work.

a) Related Work: Fictitious play is one of the
most well-studied dynamics in Game Theory, and we
cannot do it justice in a short exposition. We only
mention a few highlights here. As we have already
mentioned, it was proposed by Brown, in a technical
report at RAND corporation [6], and was shown to con-
verge in two-person zero-sum games by Robinson [33].
Miyakawa extended Robinson’s results to two-player



games with two strategies per player assuming a specific
tie-breaking rule [29], while Shapley constructed a two-
player three-strategy game where fictitious play does not
converge [35]. Since then a lot of research has been
devoted to understanding classes of games where ficti-
tious play converges (e.g. [28], [31], [21], [17], [34], [4])
or does not converge (e.g. [22], [15], [30], [12], [25]).
Surveys can be found in [24], [14], [20]. Other work
has studied the approximation performance of fictitious
play when used as a heuristic to find approximate Nash
equilibria [9], [16].

In two-person zero-sum games, a convergence rate
of O(t−

1
m+n−2 ) is implied by Robinson’s proof, and

S. Karlin conjectured that the convergence rate should
be O(t−

1
2 ), which would match what we know is

achievable by no-regret learning algorithms [8]. Indeed,
Harris showed that a continuous analog of fictitious
play converges in timeO(t−1) [19]. On the other hand,
it is shown in [5] that it may take an exponential
number of steps (in the size of the representation of
the game) before any Nash equilibrium action is played
by the players in fictitious play. However, this is not
incompatible with Karlin’s conjecture, since the payoffs
may nevertheless still converge at rateO(t−

1
2 ). In fact, it

is not even prohibited by [5] that the empirical strategies
converge to Nash equilibrium strategies at rateO(t−

1
2 ).

As fictitious play is one of the simplest and most
natural dynamics for learning in games it is widely
used in applications, and has inspired several algorithms
for learning and optimization, including von Neumann’s
variant of fictitious play for linear programming [37], the
regret minimization paradigm [18], and lots of special-
ized algorithms in AI. See [5] for a survey.

II. PRELIMINARIES

Basic Definitions: A two-player zero-sum gamecan be
represented by anm×n payoff matrixA = (aij), where
m andn are the numbers ofpure strategiesfor the row
player and thecolumn player, respectively. The game is
played when, simultaneously, the row player chooses one
of his m strategies, and the column player chooses one
of her n strategies. If the row player chooses strategyi

and the column player chooses strategyj, then the row
player receivesaij from the column player.

The players can randomize their choices of strategies.
A mixed strategyfor the row player is anm-vectorx,
wherexi ≥ 0 and

∑

i xi = 1. Similarly, a mixed strategy
for the column player is ann-vector y, whereyj ≥ 0
and

∑

j yj = 1. When the players adopt those mixed
strategies, the row player receivesxTAy =

∑

ij aijxiyj
in expectation from the column player.

A min-max equilibrium, or Nash equilibrium, of a
zero-sum gameA is a pair of mixed strategieŝx for

the row player and̂y for the column player such that
Eq (1) is satisfied.

Dynamic: We already described fictitious play in Sec-
tion I. We now introduce the notion of a dynamic as
a formal way to describe a valid execution of fictitious
play.

For a vectorv, letmin v andmax v denote its minimal
and maximal components. A dynamic as defined in the
next paragraph is a special case of a vector system as
defined in [33] that starts from the zero vectors.

Definition 1. A dynamic(U, V ) for A is a sequence ofn-
dimensional row vectorsU(0), U(1), . . . and a sequence
of m-dimensional column vectorsV (0), V (1), . . . such
that2

U(0) = [0, 0, . . . , 0]T,

V (0) = [0, 0, . . . , 0],

and
U(t+ 1) = U(t) + eTi A,

V (t+ 1) = V (t) +Aej ,

wherei and j satisfy the conditions

Vi(t) = maxV (t),

Uj(t) = minU(t).

Just like there can be multiple valid executions of
fictitious play for a matrixA, due to tie-breakings, there
can be multiple possible dynamics forA. In fact, a
dynamic forA corresponds uniquely to an execution of
fictitious play forA, if we identify U(t) andV (t) with
tx(t)TA andtAy(t), respectively. (Recall from SectionI
that x(t) andy(t) are the empirical mixed strategies of
the two players for the firstt steps.)

In terms of dynamics, Robinson’s argument [33] im-
plies the following: If(U, V ) is a dynamic for anm by
n matrix A, then

maxV (t)−minU(t)

t
= O(t−

1
m+n−2 ).

Karlin’s conjecture [23] amounts to the following: If
(U, V ) is a dynamic for a matrixA, then

maxV (t)−minU(t)

t
= O(t−

1
2 ).

Notice that in both equations above, the constant inO(·)
may depend onA. Lastly, our construction implies that
there exists a dynamic(U, V ) for In such that

maxV (t)−minU(t)

t
= Θ(t−

1
n ),

where the constant inO(·) may depend onn.

2Any vector presented using rectangular brackets is a columnvector
by default, unless it is followed by a transpose signT.



Outline of our Construction: First notice that, by
Definition 1, a dynamic(U, V ) for In satisfies

U(0) = [0, 0, . . . , 0]T,

V (0) = [0, 0, . . . , 0],

and
U(t+ 1) = U(t) + eTi ,

V (t+ 1) = V (t) + ej ,

wherei andj satisfy the conditions

Vi(t) = maxV (t),

Uj(t) = minU(t).

A special property of the dynamics forIn is that per-
muting then components of every vector in a dynamic
for In by a common permutationσ results in another
dynamic for In, becauseIn stays the same when its
rows and columns are both permuted byσ. This property
allows us to combine many distinct cases in our main
proof.

Forn = 2, we can directly construct a dynamic forI2
that converges at rateΘ(t−

1
2 ), which we call themain

dynamic forI2 (Figure 2 and Claim3). At each step
t, ties are simply broken by selecting the strategy that
maximizes the ensuing gapmaxV (t)−minU(t).

For n = 3, there is no obvious way to directly
construct a dynamic forI3 that converges at rateΘ(t−

1
3 ).

But, in the first three steps, it is easy to arrive at

U(3) = [1, 1, 1]T,

V (3) = [0, 1, 2].

Aiming for an inductive construction, let’s in fact assume
that, for someP , we can arrive at

U(3P ) = [P, P, P ]T,

V (3P ) = [Q1, Q2, Q3],

whereQ1 ≤ Q2 ≤ Q3. For the next few steps, we let
U increase only in its third component, andV only in
its first two components. We can do this as long as the
third component ofV , i.e.Q3, remains its largest. Thus,
we get to

U(3P +R) = [P, P, P +R]T,

V (3P +R) = [Q3, Q3, Q3].

The crucial component of our construction are the next
steps, where we letU and V increase only their first
two components, simulating a dynamic for the2 × 2
subgame induced by the first two strategies of both
players, i.e.I2. (We are able to do this as long as the third
component ofU , i.e.P+R, remains its largest.) SinceU
and V have equal first and second components at step
3P + R, any initial portion of any dynamic(U ′, V ′)
for I2 can be copied, as long as the components ofU ′

remain at mostR. Indeed, if we do this, then for all

t the first two components ofU(3P + R + t) are P

plus, respectively, the two components ofU ′(t), and the
first two components ofV (3P + R + t) are Q3 plus,
respectively, the two components ofV ′(t).

For a dynamic(U ′, V ′) for I2, suppose that both
components ofU ′(t) are at mostR, for all t ≤ t0, for
somet0. It can be easily checked that, if we copy this
dynamic in the first two components of our dynamic
(U, V ) for I3 for t0 steps, then the amount by which the
gap for(U, V ) increases, that is, from

maxV (3P +R)−minU(3P +R)

to

maxV (3P +R+ t0)−minU(3P +R+ t0),

is exactly the gapmaxV ′(t0)−minU ′(t0) of (U ′, V ′)
at t0.

We have two goals now. The first is to increase the
gap for (U, V ) as much as possible, and the second is
to come back to the pattern we started from (that is,U

has three equal components) so that we can apply the
process again. To achieve our first goal, we want the
gapmaxV ′(t0)−minU ′(t0) to be as large as possible,
subject tomaxU ′(t0) ≤ R. Naturally, we want(U ′, V ′)
to be the main dynamic forI2, discussed earlier, as this
achieves a rate of convergence ofΘ(t−

1
2 ). To achieve

our second goal, we wish thatU ′(t0) = [R,R]T, so that
U(3P + R + t0) = [P + R,P + R,P + R]T. Clearly,
we must havet0 = 2R in this case. So, is it true that
U ′(2R) = [R,R]T, if (U ′, V ′) is the main dynamic for
I2?

From (Figure2/Claim 3), we see that there are indeed
infinitely manyT ’s such thatU ′(2T ) = [T, T ]T. How-
ever, this is not true for allT . Thus, we can’t exactly take
(U ′, V ′) to be the main dynamic forI2, but will need
a padded version of it. Hence, we define thepadding
dynamic forI2 as in Figure1/Claim 2, which reaches

U ′′(2k) = [k, k]T,

V ′′(2k) = [k − 1, k + 1],

for all k. The dynamic(U ′, V ′) that we copy into(U, V )
first follows the padding dynamic forI2, and then the
main dynamic forI2. By picking the appropriate moment
of transition, we can ensure that(U ′, V ′) still converges
at rateΘ(t−

1
2 ), andU ′(2R) = [R,R]T.

Calculation shows that, if we repeat the process
successively, the dynamic that will be obtained forI3
converges at rateΘ(t−

1
3 ). We call the resulting dynamic

themain dynamic forI3, and deal withn = 4 in similar
fashion, etc, leading to our main theorem.

III. T HE COUNTEREXAMPLE

In this section, we disprove Karlin’s conjecture, by
establishing the following.



Theorem 2. For everyn ≥ 2, there exists a dynamic for
In such that for infinitely manyT ’s,

maxV (nT )−minU(nT ) = Θ(T
n−1

n ).

Proof of Theorem2: Theorem2 follows directly from
Part 1 of the following Lemma (Part 2 is useful for
showing Part 1 by induction):

Lemma 1. Part 1: For every n ≥ 2, there exists a
dynamic forIn such that for infinitely manyT ’s,

U(nT ) = [T, T, . . . , T ]T,

and

maxV (nT )−minU(nT ) = Θ(T
n−1

n ).

Part 2: For everyn ≥ 2 and T ≥ 1, there exists a
dynamic forIn such that

U(nT ) = [T, T, . . . , T ]T,

and

maxV (nT )−minU(nT ) = Θ(T
n−1

n ).

In either part, the constant hidden byΘ(·) may depend
on n, but not onT .

Proof of Lemma1: We prove the lemma by induction
on n. For eachn, we prove Part 1 before Part 2.

Base casen = 2: We consider two dynamics forI2,
which we call thepadding dynamics. The first steps of
the padding dynamics are illustrated on the left and on
the right respectively of Figure1. Notice that the strategy
chosen by the row (respectively column) player at each
step is exactly the index of the incremented component
in U (respectivelyV ).

We claim the following.

Claim 1. The dynamics shown in Figure1 can be
extended so that the dynamic on the left satisfies

U(2k) = [k, k]T,

V (2k) = [k ± 1, k ∓ 1],
(3)

for odd k ≥ 1, while the dynamic on the right satisfies
(3) for evenk ≥ 2. The choice of+ or − depends on
the parity of⌈k

2
⌉.

Proof of Claim1: To see the claim for the dynamic on
the left, compareU(t), V (t) at stepst = 2 and t = 6.
The two components ofU(t) are equal, while the two
components ofV (t) differ by 2. So, after exchanging the
strategies1 ↔ 2, we can repeat the players’ choices at
Steps3, 4, 5 and6 in Steps7, 8, 9 and10 respectively to
arrive atU(10) = [5, 5]T andV (10) = [4, 6]. And, we
can continue the same way ad infinitum, which proves
the claim for all oddk’s. Similar argument for the
dynamic on the right proves for all evenk’s. ✷

By using either of the padding dynamics forI2 and
exchanging the components as necessary, we see the
following:

Claim 2. For anyk ≥ 1, there exists a padding dynamic
for I2 such that

U(2k) = [k, k]T,

V (2k) = [k − 1, k + 1].

Next, we define themain dynamic forI2, whose first
steps are shown in Figure2 in the appendix. We claim
the following.

Claim 3. The dynamic given in Figure2 can be extended
so that it satisfies the following for allk ≥ 1:

U(2k(2k − 1))

= [k(2k − 1), k(2k − 1)]T,

V (2k(2k − 1))

= [(k ± 1)(2k − 1), (k ∓ 1)(2k − 1)],

(4)

where the choice of+ or − depends on the parity ofk.

Proof of Claim 3: This can be easily established by
induction onk. Indeed, Figure2 establishes the claim
for k = 1, 2, 3. In general, suppose that, for somek:

U(2k(2k − 1))

= [k(2k − 1), k(2k − 1)]T,

V (2k(2k − 1))

= [(k + 1)(2k − 1), (k − 1)(2k − 1)].

Generalizing what is taking place from Step13
through Step30 of Figure2, the dynamic proceeds with
both players playing strategy1 for one step, the row
player playing strategy1 and the column player playing
strategy2 for the next4k steps, and both players playing
strategy2 for the next4k + 1 steps, resulting in

U(2(k + 1)(2(k + 1)− 1))

= [(k + 1)(2(k + 1)− 1), (k + 1)(2(k + 1)− 1)]T,

V (2(k + 1)(2(k + 1)− 1))

= [k(2(k + 1)− 1), (k + 2)(2(k + 1)− 1)].

This establishes the claim fork + 1. The derivation is
similar, if for k Equation (4) is satisfied with± and∓
instantiated by− and+ respectively.✷

Notice that Claim3 proves Part 1 of Lemma1 for
n = 2.

Now, for any given T , we construct a dynamic
(U ′, V ′) for I2 that satisfies the conditions in Part 2
of Lemma 1. Let k be the largest integer such that
k(2k−1) ≤ T , andl = T −k(2k−1)+1. Starting with



U(0) = [0, 0]T, V (0) = [0, 0] U(0) = [0, 0]T, V (0) = [0, 0]

Step1: row chooses1 column chooses2 row chooses1 column chooses1

U(1) = [1, 0]T, V (1) = [0, 1] U(1) = [1, 0]T, V (1) = [1, 0]

Step2: row chooses2 column chooses2 row chooses1 column chooses2

U(2) = [1, 1]T, V (2) = [0, 2] U(2) = [2, 0]T, V (2) = [1, 1]

Step3: row chooses2 column chooses1 row chooses2 column chooses2

U(3) = [1, 2]T, V (3) = [1, 2] U(3) = [2, 1]T, V (3) = [1, 2]

Step4: row chooses2 column chooses1 row chooses2 column chooses2

U(4) = [1, 3]T, V (4) = [2, 2] U(4) = [2, 2]T, V (4) = [1, 3]

Step5: row chooses1 column chooses1 row chooses2 column chooses1

U(5) = [2, 3]T, V (5) = [3, 2] U(5) = [2, 3]T, V (5) = [2, 3]

Step6: row chooses1 column chooses1 row chooses2 column chooses1

U(6) = [3, 3]T, V (6) = [4, 2] U(6) = [2, 4]T, V (6) = [3, 3]

. . . , . . . . . . , . . .

Fig. 1. The padding dynamics forI2.

U ′(0) = [0, 0]T andV ′(0) = [0, 0], we first evolve the
vectors to

U ′(2l) = [l, l]T,

V ′(2l) = [l − 1, l+ 1],

as enabled by Claim2. Because the components of
U ′(2l) and V ′(2l) are exactlyl − 1 larger than the
corresponding components ofU(2) andV (2) of the main
dynamic forI2, we can further evolve the vectorsU ′ and
V ′ for 2k(2k−1)−2 steps, mirroring the players’ choices
from Steps3 through2k(2k − 1) in the main dynamic
for I2. Using Claim3, we arrive at

U ′(2T ) = [T, T ]T,

V ′(2T ) = [T ± (2k − 1), T ∓ (2k − 1)],

which satisfies

maxV ′(2T )−minU ′(2T )

= 2k − 1

= Θ(T
1
2 ).

The constant hidden byΘ(·) can obviously be chosen
uniformly for all T . We have thus proved Part 2 of
Lemma1 for n = 2.

Induction Step: Assume that Lemma1 is true for a
certainn ≥ 2. To prove it forn+1, we first consider two
padding dynamics forIn+1, whose first steps are shown
in Figure 3 (in the appendix). We suppress the step
numbers and strategy choices in the figure, since these
can be easily inferred from the vectors. These dynamics
generalize the padding dynamics forI2 appropriately.
Similarly to Claim2, we can show the following:

Claim 4. For anyk ≥ 1, there exists a padding dynamic
for In+1 such that

U((n+ 1)k) = [k, k, . . . , k]T,

V ((n+ 1)k) = [k − 1, k, . . . , k, k + 1].

Proof of Claim 4: We omit most of the details as the
proof is very similar to that of Claim2. For example, in
the top dynamic in Figure3, we see thatU reaches both
[1, 1, . . . , 1]T and[3, 3, . . . , 3]T. Since the corresponding
values forV have the same format up to an additive
shift and a permutation of the components, we can repeat
the pattern ad infinitum to prove the cases for oddk’s.
Similarly, the bottom dynamic in Figure3 deals with
evenk’s. ✷

Next, we define the main dynamic forIn+1, which
pieces together parts of various dynamics forIn obtained
from the inductive hypothesis. We describe this dynamic
inductively by dividing it intoepochs:

1) Initial steps leading to 1st epoch:Starting with
U(0) = [0, . . . , 0]T and V (0) = [0, . . . , 0], we
first evolve the vectors to

U(n+ 1) = [1, 1, . . . , 1]T,

V (n+ 1) = [0, 1, . . . , 1, 2],
(5)

as enabled by Claim4. We mark those vectors as
the beginning of the1st epoch.

2) Evolution within an epoch:For i ≥ 1, suppose that
at the beginning of thei-th epoch we satisfy

U((n+ 1)P ) = [P, P, . . . , P ]T,

V ((n+ 1)P ) = [Q1, Q2, . . . , Qn+1].



Without loss of generality, let us also assume that
Q1 ≤ Q2 ≤ · · · ≤ Qn+1.
Because(n+ 1)P =

∑

j Qj , we have

(n+ 1)(Qn+1 − P ) =
∑

j

(Qn+1 −Qj).

For the nextR = (n + 1)(Qn+1 − P ) steps, let
U increase only in its(n+ 1)-th component, and
V increaseQn+1 −Qj times itsj-th component,
for all j (the exact order of those increments
doesn’t matter). The process is compatible with the
definition of a dynamic because, in each of those
R steps, the(n + 1)-th component ofV remains
maximal in V , and the firstn components ofU
remain minimal inU . At the end of these steps,
we arrive at

U((n+ 1)Qn+1) = [P, . . . , P, P +R]T,

V ((n+ 1)Qn+1) = [Qn+1, . . . , Qn+1].
(6)

Now, from our inductive hypothesis, there exists a
dynamic(Û , V̂ ) for In such that

Û(nR) = [R, R, . . . , R]T,

V̂ (nR) = [S1, S2, . . . , Sn],

and

max V̂ (nR)−min Û(nR) = Θ(R
n−1

n ),

where the constant hidden byΘ(·) is independent
of R. Starting from (6), for the nextnR steps, we
increment only the firstn components ofU and
V , in a way that mirrors the strategy choices of
the players in the evolution of̂U and V̂ , starting
from Û(0) = [0, . . . , 0]T and V̂ (0) = [0, . . . , 0],
until Û(nR) and V̂ (nR). Because the(n + 1)-
th component ofV remains minimal inV , we
see that, in each of thosenR steps, a maximal
component among the firstn components ofV is
also a maximal component of the entire vectorV .
Similarly, a minimal component among the first
n components ofU is also a minimal component
of the entire vectorU . Therefore, the process is
compatible with the definition of a dynamic. At
the end of thenR steps, we have

U((n+ 1)(P +R))

= [P +R, . . . , P +R, P +R]T,

V ((n+ 1)(P +R))

= [Qn+1 + S1, . . . , Qn+1 + Sn, Qn+1],

which we mark as the beginning of the(i+ 1)-th
epoch. Notice that the vectors have a format that
allows the induction to continue.

We analyze the convergence rate of the main dynamic
for In+1. For eachi, let (n + 1)Ti be the step number
at the beginning of thei-th epoch, andGi the gap

Gi = maxV ((n+ 1)Ti)−minU((n+ 1)Ti).

Using theP , Q, R, andS notation above, we have the
following relations:

Ti = P,

Ti+1 = P +R,

Gi = Qn+1 − P,

Gi+1 = max
j

(Sj +Qn+1)− (P +R)

= (Qn+1 − P ) + (max V̂ (nR)−min Û(nR))

= (Qn+1 − P ) + Θ(R
n−1

n ),

R = (n+ 1)(Qn+1 − P ).

From the above, along with the initial values from (5),
we obtain the following recursive relations:

G1 = 1,

T1 = 1,

Gi+1 = Gi +Θ([(n+ 1)Gi]
n−1

n ),

Ti+1 = Ti + (n+ 1)Gi,

where the constants hidden by theΘ(·)’s depend only
on n+ 1. A simple calculation based on those relations
yields

Gi = Θ(in),

Ti = Θ(in+1),

and so
Gi = Θ(T

n

n+1

i ),

where the constants hidden by theΘ(·)’s depend only
on n+1. Consequently, by considering the beginning of
each of the infinitely many epoches, the main dynamic
for In+1 satisfies Part 1 of Lemma1 for n+ 1.

We are now ready to construct, for any givenT , a
dynamic(U ′, V ′) for In+1 satisfying the conditions in
Part 2. Letk be the largest integer so thatTk ≤ T , and
l = T − Tk + 1. Starting fromU ′(0) = [0, . . . , 0]T and
V ′(0) = [0, . . . , 0], we first evolve the vectors to

U ′((n+ 1)l) = [l, l, . . . , l]T,

V ′((n+ 1)l) = [l − 1, l, . . . , l, l + 1],

as enabled by Claim4. Because the components of
U ′((n+1)l) andV ′((n+1)l) are exactlyl−1 larger than
the corresponding components ofU(n+1) andV (n+1)
in the main dynamic forIn+1 (i.e. the vectors marking
the beginning of the1st epoch), we can further evolve the
vectorsU ′ andV ′ for (n+1)Tk−(n+1) steps, mirroring
the players’ choices in Stepsn + 2 through(n + 1)Tk

(i.e. up until the beginning of thek-th epoch) in the main



dynamic for In+1. The components ofU ′((n + 1)T )
and V ′((n + 1)T ) at the end of this process arel − 1
plus the corresponding components ofU((n+1)Tk) and
V ((n+ 1)Tk) in the main dynamic forIn+1. Thus, we
have

U ′((n+ 1)T ) = [T, T, . . . , T ]T,

and

maxV ′((n+ 1)T )−minU ′((n+ 1)T )

= Gk

= Θ(T
n

n+1

k )

= Θ(T
n

n+1 ).

The constant hidden by theΘ(·)’s can obviously be
chosen uniformly for allT . We have thus proved Part
2 of Lemma1 for n + 1. By induction, the proof of
Lemma1 is completed.✷

✷

Remark 2. Notice that, even though we do not explicitly
state it in Theorem2, our proof implies something
stronger, namely that for everyn ≥ 2, there exists a
dynamic forIn such that for allt (as opposed to just
infinitely manyt’s):

maxV (t)−minU(t) = Θ(t
n−1

n ).
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[24] V. Krishna and T. Sjöström. Learning in games: Fictitious play
dynamics. InCooperation: Game-Theoretic Approaches, pages
257–273. Springer, 1997.I-0a
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APPENDIX

U(0) = [0, 0]T, V (0) = [0, 0]

Step1: row chooses1 column chooses2

U(1) = [1, 0]T, V (1) = [0, 1]

Step2: row chooses2 column chooses2

U(2) = [1, 1]T, V (2) = [0, 2]

Step3: row chooses2 column chooses2

U(3) = [1, 2]T, V (3) = [0, 3]

Step4: row chooses2 column chooses1

U(4) = [1, 3]T, V (4) = [1, 3]

Step5: row chooses2 column chooses1

U(5) = [1, 4]T, V (5) = [2, 3]

Step6: row chooses2 column chooses1

U(6) = [1, 5]T, V (6) = [3, 3]

Step7: row chooses2 column chooses1

U(7) = [1, 6]T, V (7) = [4, 3]

Step8: row chooses1 column chooses1

U(8) = [2, 6]T, V (8) = [5, 3]

. . . , . . .

Step12: row chooses1 column chooses1

U(12) = [6, 6]T, V (12) = [9, 3]

Step13: row chooses1 column chooses1

U(13) = [7, 6]T, V (13) = [10, 3]

Step14: row chooses1 column chooses2

U(14) = [8, 6]T, V (14) = [10, 4]

. . . , . . .

Step20: row chooses1 column chooses2

U(20) = [14, 6]T, V (20) = [10, 10]

Step21: row chooses1 column chooses2

U(21) = [15, 6]T, V (21) = [10, 11]

Step22: row chooses2 column chooses2

U(22) = [15, 7]T, V (22) = [10, 12]

. . . , . . .

Step30: row chooses2 column chooses2

U(30) = [15, 15]T, V (30) = [10, 20]

. . . , . . .

Fig. 2. The main dynamic forI2.



U(0) = [0, 0, 0, . . . , 0]T, V (0) = [0, 0, 0, . . . , 0]

U(1) = [1, 0, 0, . . . , 0]T, V (1) = [0, 1, 0, . . . , 0]

U(2) = [1, 1, 0, . . . , 0]T, V (2) = [0, 1, 1, . . . , 0]

. . . , . . .

U(n) = [1, 1, 1, . . . , 1, 0]T, V (n) = [0, 1, 1, . . . , 1, 1]

U(n+ 1) = [1, 1, 1, . . . , 1, 1]T, V (n+ 1) = [0, 1, 1, . . . , 1, 2]

U(n+ 2) = [1, 1, 1, . . . , 1, 2]T, V (n+ 2) = [1, 1, 1, . . . , 1, 2]

U(n+ 3) = [1, 1, 1, . . . , 1, 3]T, V (n+ 3) = [2, 1, 1, . . . , 1, 2]

U(n+ 4) = [2, 1, 1, . . . , 1, 3]T, V (n+ 4) = [2, 2, 1, . . . , 1, 2]

. . . , . . .

U(2n+ 2) = [2, 2, 2, . . . , 2, 1, 3]T, V (2n+ 2) = [2, 2, 2, . . . , 2, 2, 2]

U(2n+ 3) = [2, 2, 2, . . . , 2, 2, 3]T, V (2n+ 3) = [2, 2, 2, . . . , 2, 3, 2]

U(2n+ 4) = [2, 2, 2, . . . , 2, 3, 3]T, V (2n+ 4) = [3, 2, 2, . . . , 2, 3, 2]

U(2n+ 5) = [3, 2, 2, . . . , 2, 3, 3]T, V (2n+ 5) = [3, 3, 2, . . . , 2, 3, 2]

. . . , . . .

U(3n+ 2) = [3, 3, 3, . . . , 3, 2, 3, 3]T, V (3n+ 2) = [3, 3, 3, . . . , 3, 3, 3, 2]

U(3n+ 3) = [3, 3, 3, . . . , 3, 3, 3, 3]T, V (3n+ 3) = [3, 3, 3, . . . , 3, 4, 3, 2]

. . . , . . . ,

and

U(0) = [0, 0, 0, . . . , 0]T, V (0) = [0, 0, 0, . . . , 0]

U(1) = [1, 0, 0, . . . , 0]T, V (1) = [1, 0, 0, . . . , 0]

U(2) = [2, 0, 0, . . . , 0]T, V (2) = [1, 1, 0, . . . , 0]

U(3) = [2, 1, 0, . . . , 0]T, V (3) = [1, 1, 1, . . . , 0]

. . . , . . .

U(n+ 1) = [2, 1, 1, . . . , 1, 0]T, V (n+ 1) = [1, 1, 1, . . . , 1, 1]

U(n+ 2) = [2, 1, 1, . . . , 1, 1]T, V (n+ 2) = [1, 1, 1, . . . , 1, 2]

U(n+ 3) = [2, 1, 1, . . . , 1, 2]T, V (n+ 3) = [1, 2, 1, . . . , 1, 2]

U(n+ 4) = [2, 2, 1, . . . , 1, 2]T, V (n+ 4) = [1, 2, 2, . . . , 1, 2]

. . . , . . .

U(2n+ 1) = [2, 2, 2, . . . , 2, 1, 2]T, V (2n+ 1) = [1, 2, 2, . . . , 2, 2]

U(2n+ 2) = [2, 2, 2, . . . , 2, 2, 2]T, V (2n+ 2) = [1, 2, 2, . . . , 2, 3, 2]

U(2n+ 3) = [2, 2, 2, . . . , 2, 3, 2]T, V (2n+ 3) = [2, 2, 2, . . . , 2, 3, 2]

U(2n+ 4) = [2, 2, 2, . . . , 2, 4, 2]T, V (2n+ 4) = [2, 2, 2, . . . , 2, 3, 3]

U(2n+ 5) = [2, 2, 2, . . . , 2, 4, 3]T, V (2n+ 5) = [3, 2, 2, . . . , 2, 3, 3]

. . . , . . .

U(3n+ 3) = [3, 3, 3, . . . , 3, 2, 4, 3]T, V (3n+ 3) = [3, 3, 3, . . . , 3, 3, 3, 3]

U(3n+ 4) = [3, 3, 3, . . . , 3, 3, 4, 3]T, V (3n+ 4) = [3, 3, 3, . . . , 3, 4, 3, 3]

U(3n+ 5) = [3, 3, 3, . . . , 3, 4, 4, 3]T, V (3n+ 5) = [3, 3, 3, . . . , 3, 4, 3, 4]

U(3n+ 6) = [3, 3, 3, . . . , 3, 4, 4, 4]T, V (3n+ 6) = [4, 3, 3, . . . , 3, 4, 3, 4]

. . . , . . .

U(4n+ 3) = [4, 4, 4, . . . , 4, 3, 4, 4, 4]T, V (4n+ 3) = [4, 4, 4, . . . , 4, 4, 4, 3, 4]

U(4n+ 4) = [4, 4, 4, . . . , 4, 4, 4, 4, 4]T, V (4n+ 4) = [4, 4, 4, . . . , 4, 5, 4, 3, 4]

. . . , . . . .

Fig. 3. The padding dynamics forIn+1.
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