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Abstract

Targeted nanoparticles are increasingly being engineered for the treatment of cancer. By design,

they can passively accumulate in tumors, selectively bind to targets in their environment, and

deliver localized treatments. However, the penetration of targeted nanoparticles deep into tissue

can be hindered by their slow diffusion and a high binding affinity. As a result, they often localize

to areas around the vessels from which they extravasate, never reaching the deep-seeded tumor

cells, thereby limiting their efficacy. To increase tissue penetration and cellular accumulation, we

propose generalizable guidelines for nanoparticle design and validate them using two different

computer models that capture the potency, motion, binding kinetics, and cellular internalization of

targeted nanoparticles in a section of tumor tissue. One strategy that emerged from the models was

delaying nanoparticle binding until after the nanoparticles have had time to diffuse deep into the

tissue. Results show that nanoparticles that are designed according to these guidelines do not

require fine-tuning of their kinetics or size and can be administered in lower doses than classical

targeted nanoparticles for a desired tissue penetration in a large variety of tumor scenarios. In the

future, similar models could serve as a testbed to explore engineered tissue-distributions that arise

when large numbers of nanoparticles interact in a tumor environment.
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1. Introduction

Nanoparticles targeted to surface receptors that are over-expressed in certain tumors have

the potential to improve specificity and intracellular delivery of therapeutic payloads to

cancer cells [1]. Their size, typically in the 5–200 nm range, enables them to leak out of

angiogenic vessels and accumulate in tumors [2]. Once in the tumor tissue, nanoparticles

must traverse the interstitial space to reach all cells that require treatment [3]. This is a

challenging goal because high, uniform pressure in tumor environments causes nanoparticle

motion to be mostly diffusive [4, 5]. In addition, nanoparticles with large binding affinities,

amplified by multivalent interactions, will accumulate in the first cells they encounter after

extravasation as depicted in Fig. 1A. The resulting binding-site barriers, previously

demonstrated with antibodies [6] and recently with targeted nanoparticles [7, 8], prevent

treatments from reaching cells far away from vessels.

Efforts have been made to overcome transport barriers that limit the accumulation of

nanoparticles in tumor tissue [4]. Solutions include increasing nanoparticle circulation time

[9], or activating transvascular transport, and parenchyma penetration through the use of

tumor-penetrating peptides [10, 11].1 Rather than approach nanoparticle design empirically,

models by Thurber et al. [6, 12] and Wittrup et al. [13] are able to quantitatively predict the

impact of dosage, blood flow, extravasation, diffusion, and binding kinetics on the

distribution of antibodies and macromolecules in tumors. Other models by Ferrari et al. [14]

focus on the targeting of nanoparticles to the vasculature. To date, most models have been

used to investigate how existing nanoparticle designs impact tissue distribution; the next

step is to implement computational models that drive innovation by helping to explore novel

nanoparticle designs and offer the potential to yield generalizable guidelines for a variety of

tumor scenarios. Furthermore, current models do not consider the ability of targeted

nanoparticles to accumulate at effective doses in individual cancer cells given a specific

therapeutic cargo. Finally, researchers typically rely on deterministic models that assume

nanoparticles can be modeled as populations that are not subject to stochastic variations.

Using a deterministic model, which is further validated by stochastic simulations, we

systematically explore nanoparticle designs that result in binding-site barriers and propose

generalizable guidelines to avoid such barriers without increasing the injected dose or fine-

tuning nanoparticle diffusion coefficients and binding kinetics. Rather than consider all

transport parameters that impact nanoparticle distribution, we model a challenging

representative tumor scenario in which a defined low number of targeted nanoparticles must

accumulate to kill individual receptor-rich cells, including those located furthest from the

tumor vasculature. Results show that many targeted nanoparticle designs reported in the

literature lead to superficial tumor penetration in this scenario. The therapeutic payload is

1See our video on nanoparticle transport in tumors: http://youtu.be/gBYkYzj7CKM
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taken into account in calculating the number of nanoparticles needed to affect tumor cells.

Optimization of the deterministic model shows that overcoming the barrier would typically

require large treatment doses to saturate cells near tumor vessels before nanoparticles can

penetrate deeper into the tissue. Rather than fine-tune the size and binding affinity of

nanoparticles to improve tissue penetration, we augment our models to explore novel design

guidelines that rely on delaying nanoparticle binding until after the nanoparticles have had

time to diffuse deep into the tissue. Results in simulation show that nanoparticles designed

following these guidelines can accumulate at effective levels in all cells that require

treatment with the use of smaller injected doses than would be necessary for conventional

targeted nanoparticles. The design guidelines are immediately generalizable to a variety of

tumor scenarios that account for variations in surface receptor expression and recycling,

drug encapsulation, number of nanoparticles, and the rate at which nanoparticles accumulate

in the tumor tissue. Furthermore, we outline existing, established technologies that could be

used to implement these guidelines in reality. Beyond deep tissue penetration, we aim to

ultimately control the distribution of nanoparticles in tissue with sufficient precision to

accommodate heterogeneous treatment and imaging needs. To this end, we propose the use

of nanoparticles with targeting moieties whose unveiling is a function of an environmental

stimulus rather than time or external triggers. Using this strategy, we demonstrate in

simulation that the nanoparticles could achieve inverted internalization gradients by

accumulating more in cells further away from the vasculature. Such a distribution pattern

could be useful to deliver drugs deep into tumors.

2. Materials and methods

2.1 In Silico Models

Computer simulations can help engineer nanotreatments by rapidly predicting experimental

outcomes for a large set of design parameters. To this end, we formulate both deterministic

and stochastic reaction-diffusion models to simulate the transport, binding kinetics, and

internalization of nanoparticles in a section of tumor tissue.

The main challenge is to back out usable guidelines that generalize across tumor scenarios

and can therefore be implemented in reality. Varying all the parameters that impact

nanoparticle transport is unrealistic and typically results in a variety of regimes and tradeoffs

that are difficult to translate to actionable guidelines. Instead, we focus on a representative

scenario, which embodies a challenging tumor environment that would realistically be

encountered by targeted nanoparticles. Solutions to this scenario have the potential to

automatically generalize to many tumor environments. Our focus is on scenarios that result

in binding-site barriers. Specifically, we consider the situation depicted in Fig. 1B in which

nanoparticles leaving a vessel near the central, poorly perfused area of the tumor need to

penetrate deep into the tumor tissue up to a depth L, while accumulating at levels sufficient

to kill each of the N cells along the way. Each cell is represented as a cubic region that has a

volume of S3, where S is the largest cell dimension. The percent injected dose (PID) of

drugs with high potency P reaching the tumor section is sufficient to theoretically kill or

treat (e.g. through siRNA delivery) all cells if distributed uniformly throughout the tissue.

The PID is measured at a predefined time T after the nanoparticle injection. Based on the
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weight W of a mouse and the ratio of the entire tumor volume VT to the volume of the

simulated tumor section S2 L, we can approximate the minimal injected dose (ID) of drugs

in mass per body weight needed to accumulate at PID levels at time T after injection. Each

nanoparticle encapsulates a large number E of drug molecules with molar mass M, resulting

in a low number NP0 of nanoparticles that are present in the simulated tumor section for the

predefined injected dose of drug. To approximate a slow clearance of the nanoparticles from

the blood, the model is initialized with NP0 nanoparticles that enter the first cell region of

the tumor tissue section at a uniform rate over the duration of the circulation time TC.

Nanoparticles diffuse through the tumor tissue and bind to highly expressed receptors [15]

that are immediately recycled upon internalization of the nanoparticles. We can approximate

NP0 as

Eq. 1

where NA is the Avogadro constant.

The reaction-diffusion model illustrated in Fig. 1C describes the formation and dissociation

of nanoparticle-receptor complexes and the internalization of nanoparticles in each cell of

the tumor model [16]. The species in the reaction network are defined as NPF, free

nanoparticles; NPI, internalized nanoparticles; R, receptors; and C, nanoparticle-receptor

complexes. Free nanoparticles diffuse between cell regions with diffusion coefficient D. The

reaction network is:

Eq. 2

where ka and kd are the association and dissociation rate constants and ki is the

internalization rate constant.

Both the stochastic and deterministic models proposed here describe the population

dynamics of nanoparticles in tumors, and thus are less computationally expensive than

simulations of the movement of individual nanoparticles and their interactions with other

nanoparticles or receptors. The stochastic model has a more legitimate physical basis than

the deterministic model: it captures fluctuations and correlations in population levels that

occur in reaction-diffusion systems, and it realistically represents these populations as

integers that change by discrete amounts [13]. The deterministic formulation is accurate for

systems with large populations whose fluctuations remain small relative to the absolute

population levels. This model represents the system state as concentration fields that evolve

continuously according to partial differential equations. The dimensionality of the

deterministic model is independent of the population levels, and for large populations it is

faster to numerically solve this model than to simulate the stochastic model. Hence, when

accurate, the deterministic model is more suitable as a tool for quickly predicting the system

behavior for a large set of parameters. In this paper, we use deterministic models to simulate

all experiments and validate key results using a stochastic simulator.
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2.2 Deterministic Model

The deterministic model of the system consists of a set of reaction-diffusion partial

differential equations (PDEs) that govern the expected spatiotemporal evolution of the

different species populations in the one-dimensional domain of interest. The population

levels of free nanoparticles, NPF(x,t), internalized nanoparticles, NPI(x,t), receptors, R(x,t),

and nanoparticle-receptor complexes, C(x,t), are defined at each position x ∈ [0 L] at each

time t ≥ 0 and are expressed in units [number/cell]. The equations for the PDE model are:

NP0 represents a direct measure of the number of nanoparticles present in the simulated

tumor section after extravasation and clearance at time T. Focus is on modeling where these

nanoparticles distribute within the simulated tumor tissue. Initially, no nanoparticles are

present in the domain, and NR receptors are distributed uniformly throughout each of the

cells. The model boundary condition at x = 0 is defined as a constant-rate extravasation of

the NP0 free nanoparticles into the first cell region over time period TC. Due to the local

symmetry of the tumor environment at the micro-scale, we assume that nanoparticles that

diffuse out of the tumor section at x = L are replaced by nanoparticles flowing in from

adjacent tissue. Hence, a Neumann boundary condition is applied at x = L:

The deterministic model is numerically integrated in MATLAB (Mathworks) using a finite

difference method with 20 or more uniformly spaced nodes.

2.3 Stochastic Model

The stochastic model of the system takes the form of a Reaction-Diffusion (or Multivariate)

Master Equation [17, 18]. In this model, the spatial domain is discretized into cubic

subvolumes that are chosen small enough to be approximated as well-mixed regions [19].

The populations of different species in each subvolume change when chemical reactions

occur inside the subvolume or when nanoparticles diffuse into or out of the subvolume. A

stochastic simulation algorithm can be used to compute numerical realizations of the species

populations over time in a way that takes into account the fact that these populations are

integer-valued and exhibit randomness in their time evolution [20]. Various spatial

stochastic simulators for reaction-diffusion systems have been developed in recent years

[21]. We implement a stochastic simulator that is based on the freely available Stochastic

Simulator Compiler (SSC) [22]2. Briefly, for each cell region, the simulator determines how

probable a reaction is compared to other reactions and when the next reaction should occur.

2Stochastic Simulator Compiler: http://web.mit.edu/irc/ssc/.
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Based on the reaction network described in Eq. 2, associations happen with probability ka ·

NPF · R per unit time, dissociations with probability kd · C per unit time, and internalizations

with probability ki · C per unit time. Diffusion is modeled as a reaction in which a free

nanoparticle jumps between neighboring cell regions with rate constant D/S2; this

occurrence happens with probability 2 NPF · D/S2 per unit time. The next reaction should

therefore happen after an exponentially distributed random time with mean 1/(ka · NPF · R +

kd · C + ki · C + 2 NPF · D/S2) seconds and should randomly be chosen proportionally to the

probability rate at which each reaction happens. After each reaction, the species populations

and reaction probability rates are updated.

3. Results

3.1 Binding-Site Barriers

Providing guidelines for the improvement of nanoparticle design requires an understanding

of which design parameters result in binding-site barriers. We focus on exploring parameters

that have a direct effect on the distribution of nanoparticles in tissue after extravasation and

can be modified through engineering. For example, diffusion coefficients can be modified

by changing the size of nanoparticles [23, 24] or by relaxing the extracellular matrix [4],

while binding kinetics can be modified by acting on multivalency and engineering targeting

ligands [25]. Toward this end, we identified a relevant range of nanoparticle radii r and

dissociation constants, defined as KD = kd/ka, from the literature (Table 1).

Diffusion coefficients D were determined using the Stokes-Einstein equation [33] based on

nanoparticle radii ranging from 2 nm to 500 nm and viscosities ranging from values for

water to values for tumor tissue (10-fold increase in viscosity [4]). We simulated the effect

of combinations of D and KD in a representative challenging tumor scenario in which

liposomes carrying high loads of a cytotoxic drug doxorubicin (e.g. Doxil) are targeted to

over-expressed receptors [34] such as folate on KB cells [25] or HER-2 in certain breast

cancer lines [35]. The values of the parameters for the scenario are given in Table 2.

Particles are required to penetrate at least L = 200 μm into the tissue [4], targeting 20 cells

along the way. Only 1% of the injected dose reaches the tumor, which is typically the lower

bound in tumor tissue accumulation for targeted nanoparticles [13, 36–38]. The PID is

measured after T = 48 hours to ensure that the nanoparticles are able to diffuse far away

from the vasculature. The number of internalized nanoparticles estimated to theoretically

induce cytotoxicity in a single cell was calculated to be 600 using the equation

, where NA is the Avogadro constant. Setting NP0 = 20 NPc in Eq. 1

corresponds to a local concentration of 10uM in all 20 cell regions of the scenario, which is

the IC90 of doxorubicin. An injected dose ID = 3.3 mg/kg of doxorubicin is computed to be

sufficient to kill all 20 cells if the nanoparticles distribute uniformly along the linear section

of tumor in the model. However, to increase the likelihood that sufficient numbers of

nanoparticles reach all cells, we administer a dose of 33 mg/kg, 10 times in excess of the

theoretically sufficient dose. This corresponds to an initial nanoparticle population in the

tumor model of NP0 = 1.2044 · 105, corresponding to a maximum concentration of 200 nM

(for the nanoparticles) or 2 mM of doxorubicin in a cell region. As a reference, the typical
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injected dose for liposomal doxorubicin in humans ranges from 20 mg/m2 to 70 mg/m2 [39],

corresponding to a mouse equivalent range between 6.6 mg/kg and 25 mg/kg [40]. Doses up

to 55 mg/kg have been shown to cause reversible weight loss in mice [41].

Fig. 2A shows the number of cells that are dead after 48 hours of treatment as a function of

D and KD, simulated using both the stochastic model and the deterministic model. Note that

the identical results from both models validate the use of the deterministic model for

prediction and optimization. Based on experimental work by Hong et al. [6, 25] and Thurber

et al. [6], we maintained the dissociation and internalization rate constants at kd = 10−4 s−1,

ki = 10−5 s−1 while varying ka in the range [103, 109] M−1s−1. These are the parameter

ranges used throughout the paper, unless stated otherwise. Fig. 2B shows the penetration

profiles of several nanoparticle formulations. As further validation, previous models by

Thurber et al. [6] for antibody penetration showed that treatments with D = 3 · 10−7 cm2/s

and KD = 8 nM were able to penetrate a depth of at least 200 μm into tumor tissue while

antibodies with KD = 30 pM were not, which is consistent with findings presented here. The

results show that most of the nanoparticle formulations considered are not capable of killing

all 20 cells in the model. Nanoparticles with a high binding affinity (Fig. 2B(a),(c)),

regardless of their speed, accumulate only in cells near the vasculature, and slow

nanoparticles (Fig. 2B(c,d)) fail to accumulate at lethal levels in cells farthest from the

vasculature. Fast nanoparticles with a low binding affinity are able to accumulate at lethal

levels in all cells (Fig. 2B(b)).

However, lowering the affinity beyond the range explored here could result in nanoparticles

that are unable to accumulate at lethal levels in tumor cells. Simulations show this to be true

for nanoparticles with dissociations constants in the micro-molar range. For the remaining

formulations, a balance between nanoparticle speed and binding affinity is required to treat

cells throughout the entire tumor section. Other studies have suggested that multivalency

mostly affects the dissociation rate rather than the association rate [42]. In Fig. 2C we show

that maintaining ka =104 M−1s−1 constant and varying kd in the range [10−6,1] s−1 yields

similar results. Overall, many of the targeted nanoparticle formulations in the literature

would result in binding-site barriers in the scenario proposed here (Fig. 2D and Table 1). To

overcome this barrier, nanoparticles would require a reduction in size to produce a higher

diffusion coefficient or a fine-tuning of their binding affinity. For liposomes, size variation

can be achieved by choosing the appropriate extrusion membrane [43]. Reducing the

valency of the targeting ligand or engineering the ligand itself can reduce affinity [25, 44].

For many nanoparticles formulations however, size and affinity manipulations are time-

consuming and detrimental to nanoparticle function [45].

The common solution to overcome binding-site barriers is to increase the injected dose, ID.

Saturating the first cells after extravasation could enable excess nanoparticles to overcome

the barrier and penetrate deeper into the tissue. To test this hypothesis in simulation, we

determined the minimum injected dose needed for each of the 20 cells to accumulate

sufficient internalized nanoparticles to kill an individual cell, NPc, for each parameter set

(KD, D). Using branch and bound optimization, we computed this minimum injected dose as

the value in the range [IDmin, IDmax] = [0, 33000] mg/kg that maximizes the following

function:
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Cell death was predicted from the deterministic model, which was initialized with the free

nanoparticle population NP0 that corresponds to the computed ID according to Eq. 1. As

shown in Fig. 2E, 400-fold increases in dose from 33 mg/kg would be required to overcome

binding-site barriers for several nanoparticle formulations, leading to systemic toxicity for

the treated mice [41].

3.2 Time-Dependent Binding

Rather than increase the injected dose or fine-tune nanoparticle formulations, we propose a

generalizable solution to achieve targeted deep tissue penetration with a broad range of

nanoparticle designs. We consider a strategy in which nanoparticles are initially prevented

from binding while diffusing through tumor tissue. The nanoparticle binding functionality is

then restored as a function of time or an external human-operated trigger such as light, heat,

magnetic fields, or injected chemicals (Fig. 3A) [46]. In the simplest form of this

implementation, nanoparticles would be prevented from binding for a duration Tdelay before

entirely regaining their original binding capabilities. This scenario is modeled by setting the

association rate constant to zero until time Tdelay and to ka thereafter according to a step

function. For each parameter set (KD, D), we determined the minimum values of Tdelay that

lead to the accumulation of a lethal dose of internalized nanoparticles in each cell. Using

line-search optimization, we computed the minimum Tdelay as the value in the range [0,

Tmax] = [0, 48] h that maximizes the following function:

The minimum Tdelay values that lead to the death of all target cells for each parameter set

(KD, D) are given in Fig. 3B. Fast-diffusing nanoparticles with D = 10−6, 10−7, 10−8 cm2/s

can unveil their binding-moieties as early as Tdelay = 3h00, 3h20, 4h55 after injection to

result in full tissue penetration and target cell death. Slower-diffusing nanoparticles with D =

10−9 cm2/s should wait at least 17h15 as shown in Fig. 3C. A single binding delay of 17h15

therefore has the potential to enable all nanoparticle formulations to overcome binding-site

barriers in our simulated scenario without increasing the injected dose. While most

nanoparticle formulations are retained in the tumor environment due to the enhanced

permeability and retention effect [4, 43], small nanoparticles that are prevented from binding

for too long risk diffusing to the rim of the tumor where the pressure difference between the

tumor and the surrounding tissue will irreversibly drive them out of the tumor [5, 8, 47]. As

a reference, it would take the fastest-diffusing nanoparticles in our model approximately 34

hours to diffuse from the center of the simulated tumor to its rim. If fast tissue clearance is a

concern, bioengineers can implement two binding delay regimes of 4h55 for fast

nanoparticles (D = 10−6, 10−7, 10−8 cm2/s) and 17h15 for slow nanoparticles. Another

concern is non-specific uptake of veiled nanoparticles by macrophages present in the tumor
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environment that could prevent their diffusion deep into the tissue. Based on research by

Thurber et al. [48], we estimate the rate of non-specific cellular uptake by macrophages to

be slow relative to diffusion, even for the smallest diffusion coefficient of 10−9 cm2/s

considered here.

The representative scenario used to design these guidelines was chosen to be challenging.

By relaxing the different parameters of the scenario, we show that the delayed binding

strategy can directly be generalized to a large variety of tumor environments without

modification. In particular, we consider scenarios where the cell receptors are not recycled,

the number of cell receptors is reduced (R = 105), the PID of nanoparticles reaching the

tumor is increased (PID = 10%), nanoparticles accumulate immediately in the tumor section

(Tc = 0), and nanoparticles are loaded with lower amounts of drug (E = 103). The number of

cells killed for each parameter set (KD, D), as predicted by the deterministic model with no

binding delay and ID = 33 mg/kg, is plotted in Fig. 3D. The figure shows that while these

scenarios should intuitively reduce the prevalence of binding-site barriers, the majority of

nanoparticle formulations still result in poor tissue penetration and cellular accumulation.

Fig. 3E shows that delaying the binding by 17h15, as suggested by our guidelines, results in

complete cell death in all scenarios considered. We further tested the impact of slow drug

release by nanoparticles implementing the delayed binding strategy. Results show that

nanoparticles that are only able to deliver 30% of their cargo within 48 hours are still able to

kill all cells for formulations with fast diffusion (D = 10−6, 10−7, 10−8 cm2/s) while killing

half of the cells when the diffusion is slow (D = 10−9 cm2/s).

3.3 Space-Dependent Binding

Beyond targeted deep tissue penetration, we aim to ultimately control the spatial distribution

of nanoparticles in tissue. In our simulations, more nanoparticles internalized in cells located

near the vasculature than in cells present at deeper sites in the tissue. Inverting this gradient,

i.e., achieving low amounts of internalized nanoparticles near the vasculature and high

amounts deep in the tissue, could be beneficial to deliver large doses of drugs deep into

tumors. To produce this inverted gradient, the unveiling of binding-moieties should rely on

local, spatially-dependent signals in the environment rather than on a global external signal

(time- or human-triggered). In the simplest case, nanoparticles can react to natural gradients

in the tumor environment based on pH or enzymatic activity [7, 49–55]. To account for the

impact of the environment, we introduce a new species in our reaction-diffusion system

called unveilers, represented with the symbol U, and a species of veiled freely diffusing

nanoparticles denoted by NPV. Unveilers are abstractions for elements that could be used as

triggers for unveiling binding moieties. As an example, we consider a scenario where the

population level of unveilers, U(x,t), is initially distributed in the tumor model according to

U(x,0) = cx, where c is an arbitrary constant and x is the distance from the vessel. We then

add a reaction to the network described in Eq. 2 in which a veiled nanoparticle NPV that

encounters an unveiler U will become an unveiled nanoparticle NPF at rate constant ku. Fig.

4 shows a tissue penetration profile computed by the stochastic simulator for the original

test-case scenario with c = 5· 107, D = 10−8 cm2/s, KD = 0.01 nM, ku = 6· 102 M−1s−1, and

ID = 33 mg/kg. Without unveilers, these parameter values result in a binding-site barrier, as

shown in Fig. 2A. As illustrated in Fig. 4, the unveilers cause nanoparticles to internalize
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most in cells located far from the vasculature, producing an inverted internalization gradient

and killing cells deep in the tumor tissue. In the future, a better understanding of the tumor

environment and the binding kinetics of nanoparticles could lead to increased control over

nanoparticle distribution in tumor tissue. This level of control could be useful to create

nanoparticle-based beacon systems or maps that point out areas of interest in the body or

produce communication signals that can be sensed by other nanoparticles [56].

4. Discussion

Using computational frameworks, we are able to provide generalizable guidelines for the

design of novel targeted nanoparticles that can accumulate in cells located deep in tumors.

Building on these guidelines, the next step is to engineer nanoparticles in reality with the

identified features. Bioengineers have already designed and constructed a number of

nanoparticles that are able to shield targeting moieties, or non-specific cellular uptake

mechanisms mediated by charge or cell penetrating peptides (CPP), as a function of protease

activity or pH levels in tumor environments [8, 49]. Interestingly, most of these

nanoparticles were intended to increase the macroscopic accumulation of nanoparticles in

tumors as opposed to healthy tissue [50, 52, 57–61]. Results reported here suggest that

repurposing these shielding mechanisms could result in a generalizable strategy to improve

micro-scale distributions of nanoparticles within the tumor tissue itself. In particular,

nanoparticles engineered by Harris et al. [52] are able to unveil most targeting moieties in

tumor environments within 24 hours based on enzymatic activity and have shown increased

tumor penetration as a result. In a similar fashion, MMP-activatable cell-penetrating

peptides were shown to penetrate well beyond the blood vessels from which they extravasate

[57, 59]. Layer-by-layer nanoparticles described by Poon et al. [50] are able to unveil a

positively charged nanoparticle surface as a function of pH within the tumor environment,

with 50% of the unveiling happening within 3 to 4 hours in the tumor. pH titratable iron

oxide nanoparticles produced by Crayton et al. are able to accumulate in acidic tumor

microenvironments by changing from neutral to positively charged [60]. Romberg et al.

review the different mechanisms that can be used to shed nanoparticle PEG coatings to

improve drug release and cellular uptake while increasing circulation time [61]. Lee et al.

propose a remote optical switch for the spatial and temporal control of nanoparticle

functionalities [62]. Finally, work by Partlow et al. [63] suggests that lipid raft transport with

membrane targeted nanoparticles could enable targeted delivery of lipophilic substances

without the need for entire nanoparticle internalization, thereby improving the ability of

nanoparticles to penetrate deep in tissue. Overall, these advances in nanoparticle engineering

are strong indications that the design guidelines identified here can be translated to working

systems in reality.

5. Conclusions

Nanoparticles targeted to cancer cells are designed to specifically deliver treatment cargos.

While they are able to passively accumulate in tumor tissue through the enhanced

permeability and retention effect [4], targeted nanoparticles often internalize in the first cells

they encounter after extravasation. Indeed, the diffusive nature of certain tumor

environments and the strong binding affinity of many nanoparticles in the literature result in
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the development of binding-site barriers. Overcoming these barriers would require large

doses of nanoparticles that could lead to systemic toxicity [41]. Instead, we propose novel

generalizable guidelines that enable a non-toxic dose of nanoparticles to achieve full tissue

penetration and accumulate at effective levels in all target cells. The strategy is to delay

binding until after nanoparticles have had time to diffuse deep into the tissue. By applying

optimization techniques to simulated models of nanoparticle distributions in tumor tissue,

we show that the time delay after which nanoparticle binding should be initiated is

generalizable to a large variety of nanoparticle formulations and tumor scenarios. Recent

advances in nanoparticle shielding technology provide evidence that such a strategy could

be implemented in reality. In the future, we aim to further control the spatial distribution of

nanoparticles in tissue based on local signals in the environment.
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Highlights

• Binding and diffusion affect the penetration of targeted nanoparticles in tumors.

• Simulations show many nanoparticle formulations accumulate in cells near

vessels.

• Shielding prevents nanoparticles from binding until they diffuse deep in tissue.

• Shielding strategy is generalizable to many nanoparticles and tumor scenarios.

• Time or space-dependent binding enables engineered nanoparticle tissue

distributions.
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Fig. 1. Model used to simulate tissue penetration and cellular accumulation of targeted
nanoparticles
A) Targeted nanoparticles are at risk of accumulating mostly in cells close to the

vasculature, leading to binding-site barriers. B) Parameters used to determine the number of

injected nanoparticles that will reach the simulated tumor section. The tissue section model

represents a challenging scenario in which nanoparticles leaving vessels near the necrotic

core of the tumor need to penetrate deep into tumor tissue. C) Reaction-diffusion model used

to simulate the diffusion, binding kinetics, and cellular internalization of targeted

nanoparticles in tumor tissue. Free nanoparticles diffuse throughout the tissue with diffusion

coefficient D. The species in the reaction network are defined as NPF, free nanoparticles;

NPI, internalized nanoparticles; R, receptors; and C, nanoparticle-receptor complexes. ka

and kd are the association and dissociation rate constants and ki is the internalization rate

constant.

Hauert et al. Page 16

Nano Today. Author manuscript; available in PMC 2014 July 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2. Identification of binding-site barriers
A) Number of cells killed depending on the nanoparticle formulation (i.e., diffusion

coefficient D and dissociation constant KD = kd/ka) with kd fixed and ka varying. Complete

tissue penetration is assumed when each of the 20 cells in the model internalizes the number

of nanoparticles required to kill one cell (estimated lethal cell dose), which for this scenario

is over 600 nanoparticles. Results obtained using the deterministic model are validated using

a stochastic simulator. B) Tissue penetration profiles determined using a stochastic simulator

for four combinations of the diffusion coefficients and dissociation constants labeled in Fig.

2A. C) Number of cells killed depending on the nanoparticle formulation with ka fixed and

kd varying (KD = kd/ka). D) Representative nanoparticle formulations identified in the

literature (Table 1). Diffusion coefficients were calculated based on nanoparticle radii and

viscosities ranging from values for water to values for tumor tissue rich in collagen fiber [4].

Many formulations in the literature would perform poorly in our test scenario due to

binding-site barriers, which occur for each parameter set (KD, D) below the dashed line. E)

Minimum injected dose of chemotherapy required to theoretically kill all cells in the

simulated scenario for each nanoparticle formulation. Resulting high doses could cause

systemic toxicity in mice [41].
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Fig. 3. Time-dependent binding strategy for targeted deep tissue penetration
A) The delayed binding strategy allows nanoparticles to diffuse deep into the tissue before

unveiling their targeting moieties as a function of time or an external trigger. B) Minimum

binding delays leading to the death of all target cells for each nanoparticle formulation. For

each diffusion rate, we note the minimum Tdelay value that would result in death of all target

cells across each dissociaiton constant (dashed lines). C) Stochastic simulation of the

delayed binding strategy for a nanoparticle formulation with the Tdelay value indicated in

Fig. 3B. The delay in binding can clearly be seen by the lack of internalization during the

first hours of the simulation. A lethal dose in a cell is reached when the cell accumulates

over 600 nanoparticles. D) Impact of the scenario on the prevalence of binding-site barriers,

as predicted by the deterministic model. Each simulated scenario uses an injected dose of 33

mg/kg, does not implement a binding delay, and varies one of the following parameters:

nanoparticle circulation time, receptor recycling, receptor expression, nanoparticle

accumulation in the tumor, and drug loading. Binding-site barriers arise in all scenarios. E)

Delaying binding by 17h15 for all nanoparticle formulations leads to death of all target cells

in all scenarios without changing the injected dose of 33 mg/kg, thereby demonstrating the

generalization of our guidelines to a large number of tumor environments.
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Fig. 4. Space-dependent binding strategy for targeted deep tissue penetration
Nanoparticles are engineered to unshield targeting moieties as a function of their

environment. The stochastic simulator was used to obtain a tissue penetration profile for

nanoparticles engineered to accumulate most in cells far away from the vasculature; such

inverted internalization gradients could help deliver drugs deep into tumors.
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Table 1

Nanoparticle radii and dissociation constants reported in the literature.

# r [nm] KD [nM] Scenario Ref

1 38 2.84 – 9.08 Iron oxide nanoparticles targeted to FKBP12 [26]

2 4 0.03 – 2.00 Dendrimer-based nanodevices targeted to folate receptors [25]

3 81, 87 0.03, 0.23 Gold nanoparticles targeted to human transferrin [27]

4 94.2, 102.2, 128.9, 117.4 1.98, 2.59, 0.59, 0.38 Liposomal nanoparticles targeted to RGD [28]

5 120 0.18 – 11.76 Liposomes targeted to EGFR [29]

6 2, 10, 25, 40, 50, 70 0.09, 0.005, 0.0009, 0.0004, 0.0003,
0.00015

Gold nanoparticles targeted to ErbB2 [30]

7 90 0.017, 0.04, 0.092, 0.15, 0.2, 3.1, 3.3 Patchy micelles targeted to folate receptors [31]

8 20, 100, 200, 500 142, 3.83, 0.097, 0.026 Polystyrene nanoparticles targeted to endothelial cells [32]
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Table 2

Parameter values for the simulation test-case scenario.

S largest cell dimension 10 μm

NR number of receptors per cell 106

W animal weight 20 g

ID injected dose of doxorubicin 33 mg/kg

PID percentage of injected dose in tumor 1%

E number of molecules of doxorubicin per particle 104

P IC90 of doxorubicin 10 μM

M molar mass of doxorubicin 543.52 g/mol

VT tumor volume 5 mm × 5 mm × 5 mm

L desired tissue penetration depth 200 μm

T time at which PID is measured 48 hours

TC circulation time of the nanoparticles 24 hours
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