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Abstract

Causal analysis in program evaluation has primarily focused on the question about whether

or not a program, or package of policies, has an impact on the targeted outcome of interest.

However, it is often of scientific and practical importance to also explain why such impacts

occur. In this paper, we introduce causal mediation analysis, a statistical framework for analyzing

causal mechanisms that has become increasingly popular in social and medical sciences in recent

years. The framework enables us to show exactly what assumptions are sufficient for identifying

causal mediation effects for the mechanisms of interest, derive a general algorithm for estimating

such mechanism-specific effects, and formulate a sensitivity analysis for the violation of those

identification assumptions. We also discuss an extension of the framework to analyze causal

mechanisms in the presence of treatment noncompliance, a common problem in randomized

evaluation studies. The methods are illustrated via applications to two intervention studies on

pre-school classes and job training workshops.
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Introduction

In program evaluation, researchers often use randomized interventions to analyze the causal rela-

tionships between policies and social outcomes. The typical goal in evaluation studies is to assess

the impact of a given policy. Although impact assessment is certainly of primary importance in

many substantive contexts, an exclusive focus on the question of whether and how much has often

invited criticisms from scholars both within and outside of the policy community (e.g., Skrabanek,

1994; Heckman & Smith, 1995; Brady & Collier, 2004; Deaton, 2010a,b). Rather, it is often of both

scientific and practical interest to explain why a policy intervention works (Bloom, 2006, pg.18).

Answering such questions will not only enhance the understanding of causal mechanisms behind the

policy, but may also enable policymakers to prescribe better policy alternatives.

In this paper, we introduce a statistical framework for the analysis of causal mechanisms that

is becoming increasingly popular in many disciplines of social and medical sciences, including epi-

demiology, psychology, and political science (Greenland & Robins, 1994; Jo, 2008; Imai et al., 2011).

This framework, often referred to as causal mediation analysis in the recent literature on causal

inference, defines a mechanism as a process where a causal variable of interest, i.e., a treatment,

influences an outcome through an intermediate variable, which is referred to as a mediator. The

goal in such analysis is to decompose the total treatment effect on the outcome into the indirect and

direct effects. In this type of analysis, the indirect effect reflects one possible explanation for why

the treatment works, and the direct effect represents all other possible explanations.

While the statistical analysis of causal mechanisms has not historically been widespread in eco-

nomics and public policy, there has recently been increasing awareness of the importance of mech-

anisms in policy analysis. Indeed, a recent review article highlights how understanding mechanisms

in policy analyses plays a “crucial and underappreciated role” (Ludwig et al., 2011, p.20). A re-

cent speech by the President of the William T. Grant foundation noted how “(t)he next generation

of policy research in education will advance if it offers more evidence on mechanisms so that the

key elements of programs can be supported, and the key problems in programs that fail to reach

their goals can be repaired” (Gamoran, 2013). A recent special issue of the Journal of Research

on Educational Effectiveness focused on mediation analyses. The lead editorial to this special issue
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noted that “such efforts (in mediation analysis) are fundamentally important to knowledge building,

hence should be a central part of an evaluation study rather than an optional ‘add-on’ ” (Hong,

2012). In the large literature on neighborhood effects, recent work has called for an increased focus

on mechanisms (Galster, 2011; Harding et al., 2011).1

The primary goal of the current paper is to provide an outline of recent theoretical advances on

causal mediation analysis and discuss their implications for the analysis of mechanisms behind social

and policy interventions with empirical illustrations. Below, we discuss three important aspects of

investigating causal mechanisms in the specific context of program evaluation. First, we outline

the assumptions that are sufficient for identifying a causal mechanism from observed information.

A clear understanding of the key assumption at a minimum provides important insights into how

researchers should design their studies to increase the credibility of the analysis. The identification

result we present is nonparametric, in the sense that it is true regardless of the specific statistical

models chosen by the analyst in a given empirical context. This result has led to a flexible estimation

algorithm that helps policy analysts since it allows for a range of statistical estimators unavailable

in previous approaches to mediation (Imai et al., 2010a).

Second, we discuss how sensitivity analyses can be used to probe the key assumption in causal

mediation analysis. Sensitivity analysis is a general framework for investigating the extent to which

substantive conclusions rely on key assumptions (e.g., Rosenbaum, 2002b). Sensitivity analysis is

essential in causal mediation analysis because, unlike the identification of total treatment effects,

identifying direct and indirect effects requires assumptions that are not simply satisfied by random-

izing the treatment. This implies that, although studies can be designed to enhance the plausibility

of those assumptions, it is fundamentally impossible to guarantee their satisfaction. Thus, sensitivity

analysis consists a crucial element of causal mediation analysis by allowing policy analysts to report

how strongly their conclusions rely on those assumptions, rather than hiding behind them.

Third, we engage with the problem of treatment noncompliance, an issue that is of central

importance in policy analysis but has been understudied in the methodological literature on causal

mechanisms. Noncompliance with assigned treatment status is widespread in policy intervention

1Recent examples of empirical research focusing on causal mechanisms in policy analysis include Flores & Flores-

Lagunes (2009) and Simonsen & Skipper (2006).
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studies (Magat et al., 1986; Puma & Burstein, 1994; Hill et al., 2002), and policy analysts are

often interested in causal mechanisms behind interventions in the presence of noncompliance. For

example, in a recent study reported in this journal, Wolf et al. (2013) investigate the effects of offers

to participate in the District of Columbia’s Opportunity Scholarship Program on various educational

outcomes and speculate about the potential mechanisms driving those effects by highlighting several

possibilities (pg.266). The study suffered from the problem of noncompliance because the offers were

not always accepted. Ignoring the noncompliance problem and analyzing those mechanisms with

standard techniques would have lead to biased inferences. Below, we outline how the intention-to-

treat (ITT) effect of the treatment assignment and the average treatment effect on the treated units

(ATT) may be decomposed into the direct and indirect effects under the assumptions similar to

those commonly made in the instrumental variables literature (Angrist et al., 1996).

To help make abstract concepts concrete, we present original analyses of two well-known policy

interventions. In the first application, we analyze data from the Perry Preschool project (Schweinhart

& Weikart, 1981). We focus on the causal mechanisms behind the impact of this early education

program on high school graduation rates, an outcome that has never been examined in previous

research, including a recent study focusing on indirect effects by Heckman & Pinto (2014). In the

second application, we analyze data from the JOBS II job training intervention (Vinokur et al.,

1995). The JOBS II study is one intervention where a large component of the study was devoted to

understanding casual mechanisms and a number of studies have conducted mediation analyses using

data from this randomized trial (Imai et al., 2010a; Jo, 2008; Vinokur & Schul, 1997). However,

previous analyses have not accounted for the widespread levels of noncompliance that were present

in JOBS II. Below, we demonstrate how noncompliance has important implications for a mediation

analysis of the data from JOBS II.

The rest of the paper proceeds as follows. In next section, we describe the two empirical ex-

amples that showcase the importance of understanding the causal mechanisms present in policy

interventions. Then we lay out our statistical approach to causal mediation analysis and illustrates

the approach with the first example. Next, we extend our approach to the setting where there is

treatment noncompliance, and we analyzes the second example to illustrate the approach. Finally,
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we conclude and discusses a variety of practical considerations that our paper gives rise to, including

issues of cost and ethical considerations.

Examples of Causal Mechanisms in Program Evaluation

We first introduce the two empirical examples we use as illustrations to motivate the concepts. In the

first application, we use data from the Perry Preschool Project randomized trial. The Perry project

was a preschool program targeted at disadvantaged African American children during the mid-1960s

in Ypsilanti, Michigan. The Perry program was designed to test the effect of preschool classes on a

wide range of outcomes. Participants all entered at age 3. The first cohort participated for one year,

and the second cohort participated for two years. Following Heckman et al. (2010a) and Heckman

et al. (2010b) we ignore dose and measure treatment as a binary indicator.Heckman et al. (2010a)

and Heckman et al. (2010b) have shown that the Perry Program affected a diverse set of outcomes

including income and criminal behavior later in life. One remarkable aspect of the Perry Program

is that it appears to have produced beneficial effects such as higher incomes, better educational

outcomes, better health and lower levels of criminality at later ages. A standard analysis of data can

only reveal that the Perry program had such impacts on those who participated. These estimates,

however, tell us nothing about why the Perry program worked. Did the preschool program change

intermediate covariates like cognitive ability that in turn produced these outcomes? A mediation

analysis can provide some evidence for why a preschool intervention had lasting effects on outcomes

measured many years later. Here, we focus on the question of how much of the Perry program effect

on children’s high school graduation rate can be attributed to the fact that the treatment increased

cognitive ability at an early age. Evidence for a mechanism would suggest that future interventions

might accentuate the aspects of the Perry project designed to increase cognitive ability. Here, our

goal is to uncover a mechanism that has not been discovered.

In the second application, we use data from the Job Search Intervention Study (JOBS II) (Vi-

nokur et al., 1995; Vinokur & Schul, 1997). JOBS II was a randomized job training intervention for

unemployed workers. The program was designed with two goals in mind: to increase reemployment

for those that are unemployed and improve the job seeker’s mental health. Later analysis found

that the JOBS II intervention did in fact increase employment outcomes and improve mental health
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(Vinokur et al., 1995). What explains the effects of the program on employment and mental health?

The study analysts hypothesized that workshop attendance would lead to increases in employment

and mental health by improving confidence in job search ability (Vinokur et al., 1995; Vinokur &

Schul, 1997). Because the intervention was specifically designed to improve employment outcomes by

enhancing the participants’ mental well-being, it is of theoretical interest to analyze whether its over-

all effect can be attributed to improvement in indicators of mental attitude such as self-confidence.

If, on the other hand, the total treatment effect is found to be predominantly due to the direct

effect, it may be concluded that the effect of the intervention was primarily through other chan-

nels, including the acquisition of more technical job-search skills.Again, like the Perry intervention,

the JOBS treatment is multi-faceted. Evidence for a mechanism suggest that future intervention

should emphasize elements that improve confidence. Here, our goal is to question conclusions from

a previously discovered mechanism.

Like in many policy interventions, noncompliance with assigned treatment status was a common

feature of the JOBS II study. Indeed, a substantial proportion of those assigned to the intervention

failed to participate in the job training seminars, while those assigned to the control group were not

given access to the treatment. While those assigned to control could have sought out other similar

job services, they could not access the JOBS II intervention, and given the novelty of JOBS II, it is

unlikely similar services were available. Because the workers in the treatment group selected them-

selves into either participation or non-participation in job-skills workshops, identification of causal

relationships requires additional assumptions. In fact, as we highlight in below, such noncompliance

creates more complications for the identification of causal mechanisms than for the analysis of total

treatment effects.

Framework for Causal Mechanism Research in Policy Analysis

Following prior work (e.g., Robins & Greenland, 1992; Pearl, 2001; Glynn, 2008; Imai et al., 2010c),

we use the potential outcomes framework (e.g., Holland, 1986) to define causal mediation effects.

Without reference to specific statistical models, the potential outcomes framework clarifies what

assumptions are necessary for valid calculation of causal mediation effects. This framework also

enables the formal analysis of a situation that is of specific interest to policy analysts, treatment
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noncompliance, the issue we take up later.

Potential Outcomes and Causal Effects

The causal effect of a policy intervention can be defined as the difference between one potential

outcome that would be realized if the subject participated in the intervention, and the other potential

outcome that would be realized if the subject did not participate. Formally, let Ti be a treatment

indicator, which takes on the value of 1 when unit i receives the treatment and 0 otherwise. We

here focus on binary treatment for simplicity, but the methods can be extended easily to non-binary

treatment (see Imai et al., 2010a). We then use Yi(t) to denote the potential outcome that would

result when unit i is under the treatment status t.2 The outcome variable is allowed to be any type of

random variable (continuous, binary, categorical, etc.). Although there are two potential outcomes

for each subject, only the one that corresponds to his or her actual treatment status is observed.

Thus, if we use Yi to denote the observed outcome, we have Yi = Yi(Ti) for each i. For example, in

the Perry project, Ti = 1 if child i is assigned to the preschool program and Ti = 0 if not. Here,

Yi(1) represents whether child i graduates from high school if she is in the program and Yi(0) is the

potential high school graduation indicator for the same student not in the program.

Under the potential outcomes framework, the causal effect of Ti on the outcome is typically

defined as difference in the two potential outcomes, τi ≡ Yi(1) − Yi(0). Of course, this quantity

cannot be identified because only either Yi(1) or Yi(0) is observable. Thus, researchers often focus

on the identification and estimation of the average causal effect, which is defined as τ̄ ≡ E(Yi(1) −

Yi(0)) where the expectation is taken with respect to the random sampling of units from a target

population.3 In a randomized experiment like the Perry project, Ti is statistically independent of

2This notation implicitly assumes the Stable Unit Treatment Value Assumption (SUTVA; Rubin, 1990), which

requires that (1) there be no multiple versions of the treatment and (2) there be no interference between units. In

particular, the latter implies that potential outcomes for a given unit cannot depend on the treatment assignment of

other units. This assumption can be made more plausible by carefully designing the study, for example by not studying

individuals from the same household.
3This implies that our target causal quantity τ̄ is the population average causal effect, as opposed to the sample

average causal effect where the expectation operator is replaced with an average over the units in a given sample. Here

and for the rest of the paper, we focus on inference for population-level causal effects which are more often the target

quantities in public policy applications.
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(Yi(1), Yi(0)) because the probability of receiving the treatment is unrelated to the characteristics

of units; formally, we write (Yi(1), Yi(0)) ⊥⊥ Ti. When this is true, the average causal effect can be

identified as the observed difference in mean outcomes between the treatment and control groups,

since E(Yi(1) − Yi(0)) = E(Yi(1) | Ti = 1) − E(Yi(0) | Ti = 0) = E(Yi | Ti = 1) − E(Yi | Ti = 0).

Therefore, in randomized experiments, the difference-in-means estimator is unbiased for the average

causal effect. In the mediation analysis, the average causal effect is referred to as the total effect for

reasons that will be clear in the next section.

Causal Mediation Effects

The potential outcomes framework can be extended to define and analyze causal mediation effects.

Let Mi(t) denote the potential mediator, the value of the mediator that would be realized under

the treatment status t. Similarly to the outcome variable, the mediator is allowed to be any type

of random variable. In the Perry project, Mi(t) represents child i’s cognitive ability at at ages 6–8

(measured by her IQ score at that time) that would be observed if she had been in the preschool

program (t = 1) or not (t = 0). As before, only the potential mediator that corresponds to the actual

treatment for child i can be observed, so that the observed mediator is written as Mi = Mi(Ti).

Next, we use Yi(t,m) to represent the potential outcome that would result if the treatment and

mediating variables equaled t and m for i, respectively. For example, in the Perry project, Yi(1, 100)

represents the high school graduation indicator for child i that would be observed if she had been

in the preschool program and her cognitive ability equaled the IQ score of 100. Again, we only

observe one of the (possibly infinitely many) potential outcomes, and the observed outcome Yi

equals Yi(Ti,Mi(Ti)).

Using this notation, we define causal mediation effects for each unit i as follows,

δi(t) ≡ Yi(t,Mi(1))− Yi(t,Mi(0)), (1)

for t = 0, 1. In this definition, the causal mediation effect represents the indirect effects of the treat-

ment on the outcome through the mediating variable (Pearl, 2001; Robins, 2003). The indirect effect

essentially answers the following counterfactual question: What change would occur to the outcome

if the mediator changed from what would be realized under the treatment condition, i.e., Mi(1), to
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what would be observed under the control condition, i.e., Mi(0), while holding the treatment status

at t? Although Yi(t,Mi(t)) is observable for units with Ti = t, Yi(t,Mi(1− t)) can never be observed

for any unit. In the Perry project, Yi(1,Mi(1)) represents high school graduation for child i with

the IQ score at age 6–8 after participating in the preschool program, and Yi(1,Mi(0)) represents

high school graduation for the same child that participated in the program but had the IQ score as

if she had not been in the Perry program. This indirect effect represents a posited mechanism or

explanation for why the treatment worked. In our example, the mechanism posits that the reason

the Perry intervention (at least partially) worked is because it increased cognitive ability at age 6–8.

Similarly, we can define the direct effects of the treatment for each unit as

ζi(t) ≡ Yi(1,Mi(t))− Yi(0,Mi(t)), (2)

for t = 0, 1. In the Perry project, for example, this is the direct effect of the preschool program on

child i’s high school graduation while holding the mediator, IQ score at age 6–8, at the level that

would be realized if she had not been in the program.4 The direct effect represents all other possible

mechanism or explanations for why the treatment worked.

The total effect of the treatment, τi, can be decomposed into the indirect and direct effects in the

following manner, τi ≡ Yi(1,Mi(1))−Yi(0,Mi(0)) = δi(1)+ζi(0) = δi(0)+ζi(1).5 In addition, if direct

and causal mediation effects do not vary as functions of treatment status (i.e., δi = δi(1) = δi(0) and

ζi = ζi(1) = ζi(0), the assumption often called the no-interaction assumption), then the total effect

is the simple sum of the mediation and direct effects, i.e., τi = δi + ζi. The total effect is equivalent

to the unit-level causal effect of Ti as defined in the previous section.

The causal mediation effect, direct effect and total effect are defined at the unit level, which

means that they are not directly identifiable without unrealistic assumptions. The reason is that

they are defined with respect to multiple potential outcomes for the same individual and only one of

4Pearl (2001) calls ζi(t) the natural direct effects to distinguish them from the controlled direct effects of the

treatment. Imai, Tingley, & Yamamoto (2013) argue that the former better represents the notion of causal mechanisms,

whereas the latter represents the causal effects of directly manipulating the mediator.
5These two alternative ways of decomposition arise due to the presence of the interaction effect. VanderWeele

(2013) proposes a three-way decomposition which isolates the term representing the interaction effect from the sum of

the pure direct and indirect effects, δi(0) + ζi(0).
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those potential outcomes is observed in reality. We thus focus on the population averages of those

effects. First, the average causal mediation effects (ACME) can be defined as,

δ̄(t) ≡ E(Yi(t,Mi(1))− Yi(t,Mi(0))),

for t = 0, 1. The ACME can be interpreted similarly to the individual-level mediation effect (equa-

tion (1)), except that it now represents the average of those individual effects. Thus in the Perry

project, δ̄(t) represents the portion of the average effect of the preschool program on high school

graduation that is transmitted by the change in cognitive ability at ages 6–8 induced by the Perry

intervention. Similarly, we can define the average direct effect (ADE) and average total effect as

ζ̄(t) ≡ E(Yi(1,Mi(t))−Yi(0,Mi(t))) and τ̄ ≡ E(Yi(1,Mi(1))−Yi(0,Mi(0))) = δ̄(0)+ζ̄(1) = δ̄(1)+ζ̄(0),

respectively. Again, if we make the no-interaction assumption, the average direct effect and average

causal mediation effect simply sum to the average (total) causal effect defined in the previous section,

i.e., τ̄ = δ̄ + ζ̄.

The definitions of the ACME and ADE make the goal of a causal mediation clear: to take the total

effect and decompose it into its indirect and direct components. The indirect component represents

a posited explanation for why the treatment works, while the direct component represents all other

possible explanations. Interest often focuses on what proportion of the total effect is indirect.

Nonparametric Identification under Sequential Ignorability

Given the counterfactual nature of the ACME and ADE, a key question is what assumptions will

allow them to be nonparametrically identified. In general, a causal quantity is said to be identified

under a certain set of assumptions if it can be estimated with an infinite amount of data. If the set of

assumptions for identification does not involve any distributional or functional form assumptions, it

is said that the identification is achieved nonparametrically. Only after nonparametric identifiability

of a causal parameter is established is it meaningful to consider the questions of statistical inference

for the parameter (Manski, 1995, 2007).

As we discussed above, only the randomization of the treatment is required for the nonparametric

identification of the average (total) causal effect, τ̄ (as well as the SUTVA; see footnote 2). The

ACME and ADE, however, require additional assumptions for identification. Let Xi ∈ X be a vector
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of the observed pretreatment confounders for unit i where X denotes the support of the distribution

of Xi. Given these observed pretreatment confounders, Imai et al. (2010c) show that the ACME

and ADE can be nonparametrically identified under the following condition.

Assumption 1 (Sequential Ignorability (Imai et al., 2010c)) The following two statements

of conditional independence are assumed to hold,

[Yi(t
′,m),Mi(t)] ⊥⊥ Ti | Xi = x, (3)

Yi(t
′,m) ⊥⊥ Mi | Ti = t,Xi = x, (4)

where 0 < Pr(Ti = t | Xi = x) and 0 < p(Mi = m | Ti = t,Xi = x) for t = 0, 1, and all x ∈ X and

m ∈M.

In the program evaluation literature, Flores & Flores-Lagunes (2009) use a similar identification

assumption in the context of an analysis of the Job Corps, but impose an additional functional

form assumption. They also ignore the problem of treatment noncompliance, which we discuss later.

Flores & Flores-Lagunes (2010) also examine mechanisms but do so using a partial identification

approach.

Assumption 1 is called sequential ignorability because two ignorability assumptions are sequen-

tially made (Imai et al., 2011).6 First, given the observed pretreatment confounders, the treatment

assignment is assumed to be ignorable, i.e., statistically independent of potential outcomes and

potential mediators. This part of Assumption 1 is guaranteed to be satisfied in a randomized ex-

periment like the Perry project, since the treatment assignment is explicitly randomized by the

researchers. If randomization was not used to assign T , then this part of the assumption is much

less certain, since the subjects that select into the treatment may be different than those who do not

in many ways observable and unobservable.

The second part of Assumption 1, however, requires particular attention. Unlike the first part, the

second part may not be satisfied even in an ideal randomized experiment, since randomization of the

treatment assignment does not imply that this second part of the assumption holds. For the second

6The term “sequential ignorability” was originally used by Robins (2003) and it referred to an assumption that is

slightly weaker than Assumption 1 but based on the same substantive intuition of a sequential natural experiment.

See Imai et al. (2010c) and Robins & Richardson (2010) for discussions about the technical and conceptual differences

among alternative assumptions for mediation analysis.
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(a) Example with observed covariate.
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(b) Example with unobserved covariate.

Figure 1: Figure 1a is an example with an observed pretreatment covariate, X, that affects the treat-
ment, mediator and outcome. Conditioning on X satisfies the sequential ignorability assumption.
In Figure 1b sequential ignorability does not hold even after conditioning on X, since there is an
unobserved pretreatment covariate, U , that affects mediator and outcome.

part of the assumption to hold, if there are any pre-treatment covariates that affect both the mediator

and the outcome, we must condition on those covariates to identify the indirect and direct effects. The

second stage of sequential ignorability is a strong assumption, since there can always be unobserved

variables confounding the relationship between the mediator and the outcome even if the treatment

is randomized and all observed covariates are controlled for. Furthermore, the conditioning set of

covariates must be pre-treatment variables. Indeed, without an additional assumption, we cannot

condition on the post-treatment confounders even if such variables are observed by researchers (Avin

et al., 2005). The implication is that it is difficult to know for certain whether or not the ignorability of

the mediator holds even after researchers collect as many pretreatment confounders as possible. This

gives causal mediation analysis the character of observational studies, where confounding between

M and Y must be ruled out “on faith” to some extent.

The diagrams in Figure 1 demonstrate two contrasting situations: one where the sequential

ignorability assumption holds and another where it does not. In Panel 1a, X is an observed pre-

treatment covariate that affects T , M , and Y . So long as we condition on X, sequential ignorability

will hold and the ACME and ADE can be nonparametrically identified. Randomization of T simply

eliminates the arrow from X to T , but we would still need to condition on X to address the M -Y

confounding for identification. In Panel 1b, an unobserved pretreatment covariate, U , affects both

M and Y . Under such conditions, sequential ignorability does not hold and the ACME and ADE

are not identified.
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In the Perry project, the second part of sequential ignorability implies that cognitive ability at

ages 6–8 must be regarded as “as-if” randomized among the children who have the same treatment

status (participation in the preschool program or not) and the same pre-treatment characteristics.

To satisfy this second part of the sequential ignorability assumption, we must control for all pre-

treatment covariates that may confound the relationship between cognitive ability and high school

graduation. The Perry data contain some pretreatment covariates, including the pretreatment level

of the mediator which we regard as a key covariate to condition on, but there is always the possibility

that this set of covariates is not sufficient. Later, we outline a sensitivity analyses to quantify how

robust the empirical findings based on the sequential ignorability assumption are to the violation of

that assumption. When having to make nonrefutable assumptions, sensitivity analyses are partic-

ularly valuable because they allow the researcher to examine the consequences of violations of the

assumption.

One might assume that randomizing both the mediator and the treatment might solve this

identification problem. However, randomizing both the treatment and mediator by intervention will

not be sufficient for the identification of ACME or ADE in the underlying causal relationships. This

is because intervening on the mediator merely fixes its value to an artificial level, instead of making

the natural level of the mediator (Mi(t)) itself randomized or as-if random. Hence the “causal chain”

approach, where in one experiment the treatment is randomized to identify its effect on the mediator

and in a second experiment the mediator is randomized to identify its effect on the outcome (Spencer

et al., 2005), does not identify the ACME or ADE. Unfortunately, even though the treatment and

mediator are each guaranteed to be exogenous in these two experiments, simply combining the two

is not sufficient for identification. For further discussion and proofs of these points, see Imai et al.

(2011, 2013).

Implications for Design

The sequential ignorability assumption has important implications for the design of policy interven-

tions. Given that randomized experiments rule out unmeasured confounding between the treatment

and outcome, pretreatment covariates are often of secondary importance when the goal is to sim-

ply estimate the total treatment effects. While covariates may increase the precision of estimated
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treatment effects, these estimates are guaranteed to be unbiased without collecting a rich set of pre-

treatment covariates. However, if a causal mediation analysis will be part of the analysis, collection

of pretreatment covariates is of critical importance. A richer set of covariates will help bolster the

plausibility of the sequential ignorability assumption.

In particular, baseline measurements of the outcome and mediator are worth collecting. In

evaluations where such measurements are possible, the plausibility of sequential ignorability will be

much stronger. One example would be in education interventions where the outcome is measured

by test scores. Test scores are often fairly stable over time and past scores explain a large amount of

the variation in present scores. As an example, Shapka & Keating (2003) study whether single-sex

classrooms increase math scores. They explore whether math anxiety acts as a mediator. Here, the

outcome is measured using mathematics test scores. In a study of this type, measures of both the

mediator and outcome can be collected at baseline. Moreover, the study was conducted over a two

year period. Given this time frame there are fewer alternative reasons why either math scores or

anxiety should be higher, and past measures of math anxiety and math scores should explain large

amount of the variation in measures used in the mediation analysis.

Contrast this study with the original mediation analysis of the Perry preschool program (Heckman

et al., 2013). While measures of cognitive ability were collected at baseline, other mediators such

as academic motivation were not collected at baseline, and there is no way to collect pretreatment

measures of outcomes such as employment status at age 27. In sum, analysts can enhance the

plausibility of identification assumptions by considering the possibility of mediation analysis from

the beginning of an evaluation study. A clear understanding of the key identification assumption

underscores the attention that needs to be paid to the specification requirements in a mediation

analysis. Even in a randomized experiment, it is essential to collect information on pretreatment

covariates that are likely to affect the mediator and outcome, including the baseline values of those

variables whenever feasible. The need for additional data at baseline may also create trade-offs in

terms of the resources that are needed for such data collection efforts.
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Estimation of Causal Mediation Effects

We now turn to the subject of estimation. First, we outline how LSEM may be used to estimate

causal mediation effects when an additional set of assumptions are satisfied. We then review a more

general method of estimation that allows for a wide class of nonlinear models.

0.0.1 Relationship to Identification Within the Structural Equation Framework

Here, we briefly demonstrate how mediation analysis using traditional linear structural equation

models (LSEM) is encompassed by the potential outcomes framework. For illustration, consider the

following set of linear equations,

Mi = α2 + β2Ti + ξ>2 Xi + εi2, (5)

Yi = α3 + β3Ti + γMi + ξ>3 Xi + εi3, (6)

Under the popular Baron-Kenny approach to mediation (Baron & Kenny, 1986) researchers would

conduct a set of significance tests on the estimated coefficients β̂2 and γ̂, as well as on the effect

of the treatment on the outcome variable without controlling for the mediator. This procedure,

however, both does not give an actual estimate of the mediation effect but also breaks down when

the coefficients on β̂2 and γ̂ are in opposite directions (known as “inconsistent mediation” MacKinnon

et al., 2000). In order to get an estimate of the mediation effect, one can use the product of coefficients

method which uses β̂2γ̂ as an estimated mediation effect (MacKinnon et al., 2002).

Imai et al. (2010c) prove that the estimate based on the product of coefficients method can be

interpreted as a consistent estimate of the causal mediation effect only under the following conditions:

(1) Assumption 1 is satisfied, (2) the effect of the mediator on the outcome does not interact with

the treatment status, and (3) the conditional expectations of the potential mediator and outcome

are indeed linear and additive as specified in equations (5) and (6) (see also Jo, 2008). Next, we

discuss a more general estimation framework that can be used even when conditions (2) and (3) do

not hold.
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A General Method of Estimation

While we can use LSEMs to estimate causal mediation effects, the linearity assumptions required

with LSEMs are often inappropriate. For example, in the Perry program example, the outcome of

interest is the binary indicator of whether or not the student graduated from high school. Imai et al.

(2010a) develop a general algorithm for computing the ACME and the ADE that can accommodate

any statistical model so long as sequential ignorability holds. Here, we provide a brief summary of

the two-step algorithm,7 and refer interested readers to Imai et al. (2010a, in particular Appendix

D and E) who provide theoretical justification as well as Monte-Carlo based evidence for its finite

sample performance. The algorithm is implemented in the R package, mediation.

First, analysts posit and fit regression models for the mediator and outcome of interest. Corre-

sponding to the sequential ignorability assumption, the mediator model should include as predictors

the treatment and any relevant pretreatment covariates. Similarly, the outcome should be modeled

as a function of the mediator, the treatment, and the pretreatment covariates. The algorithm can

accommodate any form of model for the mediator and outcome. For example, the models can be

nonlinear (e.g., logit, probit, poisson, etc.) or even nonparametric or semiparametric (e.g. general-

ized additive models).8 Based on the fitted mediator model, we then generate two sets of predicted

mediator values for each observation in the sample, one under the treatment and the other under

the control conditions. In the Perry project example, we would generate predicted levels of IQ scores

for the children with and without participation in the program.

Next, we use the outcome model to impute potential outcomes. First, we obtain the predicted

value of the outcome corresponding to the treatment condition (t = 1) and the predicted mediator

value for the treatment condition we obtained in the previous step. Second, we generate the predicted

counterfactual outcome, where the treatment indicator is still set to 1 but the mediator is set to

its predicted value under the control, again obtained in the previous step of the algorithm. The

ACME, then, is computed by averaging the differences between the predicted outcome under the

two values of the mediator across observations in the data. For the Perry project example, this would

7Huber (2012) considers an alternative estimation strategy based on inverse probability weighting.
8The resulting algorithm, therefore, can be considered either parametric, semi-parametric or nonparametric, de-

pending on the specific models used in the application.
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correspond to the average difference in high school graduation rates under the treatment across the

levels of IQ scores at ages 6–8 with and without participation in the program.

Finally, we repeat the two simulation steps many times in order to obtain uncertainty estimates.

In addition to prediction uncertainty, which is incorporated through those two steps, we also need

to take into account sampling variability in order to correctly represent the overall estimation un-

certainty for the quantity of interest. This can be achieved in two alternative ways. First, one can

simulate model parameters for the mediator and outcome models from their (asymptotically normal)

sampling distributions and conduct the two prediction steps for each copy of the simulated model

parameters. This approach is based on King et al. (2000). Second, one can simply resample the ob-

servations with replacement and apply the two-step procedure to each resample. This nonparametric

bootstrap method is more generally applicable, but often slower than the first approach. With esti-

mates of uncertainty, one can use hypothesis tests to understand whether indirect and direct effects

are statistically different from zero. For example, in the Perry project analysis, we can test whether

the indirect effect of the treatment through cognitive ability is statistically significant.

Sensitivity Analysis

The identification results and estimation procedures we discussed above are only valid under the

sequential ignorability assumption. Unfortunately, observed data in an experiment like the Perry

project cannot be used to test whether the assumption is satisfied. Even when researchers have

theoretical reasons to believe that they have appropriately controlled for confounding variables, such

arguments will rarely be dispositive. A powerful approach to address the concern about unobserved

confounding that might still remain is to examine how sensitive their results are to the existence of

such confounders. As we describe next, a formal sensitivity analysis can be done to quantify how

results would change as the sequential ignorability assumption was relaxed. Results that become

statistically insignificant, or even change signs, with small violations of the assumption are considered

to be sensitive and unreliable.

Imai et al. (2010a,c) develop procedures for conducting such sensitivity analyses under the linear

and non-linear structural equations models such as equations (5) and (6). Their analysis is based

on the idea that the degree of violation of equation (4), i.e., the second part of the sequential
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ignorability assumption, can be represented by the correlation coefficient between the two error terms,

εi2 and εi3. This is because omitted pretreatment covariates that confound the mediator-outcome

relationship will be components of both error terms, resulting in nonzero correlation between εi2

and εi3. Formally, let ρ represent this correlation: When ρ = 0, the two error terms do not contain

any common component, implying that equation (4) is satisfied. Conversely, if ρ 6= 0, existence of

unobserved confounding is implied and therefore the sequential ignorability assumption is violated.

Thus, varying ρ between −1 and 1 and inspecting how the ACME and ADE change enable us to

analyze sensitivity against unobserved mediator-outcome confounding.9 Imai et al. (2010c) show

that the ACME and ADE can be consistently estimated for any assumed value of ρ in this range,

and that standard errors for those estimates can be obtained via the simulation-based procedures

similar to those described above. For example, in the Perry project, we may not have controlled for

confounders that affect both cognitive ability at ages 6–8 and high school graduation. A sensitivity

analysis would calculate the ρ at which the ACME or ADE is zero (or their confidence intervals

contain zero).

The above method uses error correlation as a means of quantifying the severity of unobserved

mediator-outcome confounding. This approach, while statistically straightforward, has the impor-

tant drawback that the sensitivity parameter itself is rather difficult to interpret directly. Here, we

present an alternative method for the interpretation of the sensitivity analysis. Imai et al. (2010d)

show how to interpret the same sensitivity analysis using the following decomposition of the error

terms for equations (5) and (6),

εij = λjUi + ε′ij

for j = 2, 3 where Ui is an unobserved pre-treatment confounder that influences both the mediator

and the outcome, and λj represents an unknown coefficient for each equation. They show that ρ can

be written as a function of the coefficients of determination, i.e., R2s. This allows for the sensitivity

analysis to be based on the magnitude of an effect of the omitted variable. Here, the sensitivity anal-

9This form of sensitivity analysis is related to methods that Altonji et al. (2005) develop to analyze the effectiveness of

Catholic schools. Imbens (2003) also develops a similar sensitivity analysis for the problem of selection on unobservables

in the standard program evaluation context.
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ysis is based on the proportion of original variance that is explained by the unobserved confounder

in the mediator and outcome regressions. These terms are R̃2
M ≡ {Var(εi2)−Var(ε′i2)}/Var(Mi) and

R̃2
Y ≡ {Var(εi3)−Var(ε′i3)}/Var(Yi), respectively.

The expression for ρ is given by sgn(λ2λ3)R̃M R̃Y /
√

(1−R2
M )(1−R2

Y ) where and R2
M and R2

Y

are the usual coefficients of determination for the mediator and outcome regressions. Thus, in all

cases considered in this section, we can interpret the value of ρ using two alternative coefficients of

determination. This implies that, as before, we can analyze the sensitivity of ACME and ADE esti-

mates against unobserved mediator-outcome confounding by varying R̃2
M and R̃2

Y and reestimating

the implied ACME and ADE under the assumed level of unobserved confounding. Again, a result

that is strong would be one where the omitted confounder would need to explain a large amount of

variation in either the mediator or outcome in order for the substantive results to change. Although

mathematically equivalent to the error correlation approach, the variance decomposition approach

has the advantage of allowing the mediator and outcome to be separately analyzed.

Sensitivity analysis is not without its limitations. These limitations range from conceptual to

more practical ones. Conceptually, the above sensitivity analysis itself presupposes certain causal

relationships. First, the causal ordering between the treatment, mediator, outcome and observed co-

variates assumed by the analyst must be correct in the first place. Second, the treatment is assumed

to be ignorable conditional on the pretreatment covariates (equation 3). These conditions, however,

can often be made plausible by careful research design (e.g. randomizing the treatment and defin-

ing and measuring the mediator and outcome in accordance with the assumed ordering), whereas

the mediator-outcome confounding (equation 4) is more difficult to be controlled by the researcher.

Third, the above sensitivity analysis can only be used for pretreatment mediator-outcome confound-

ing and does not address posttreatment confounding. For example, if the omitted confounder is itself

influenced by the treatment, and then influences the mediator and outcome, this type of sensitivity

analysis is no longer appropriate. Alternative procedures have recently been developed to address

such situations (e.g. Imai & Yamamoto, 2013; Albert & Nelson, 2011).10

10A related issue is the choice of conditioning sets. When the treatment is not randomized, and researchers must

appeal to the use of control variables to establish the ignorability of the treatment, there arises the issue of what

pretreatment covariates to include in the mediator and outcome models. The recent exchange between Pearl (2014)
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There are two more practical limitations. First, there is no accepted threshold for which a

particular result can be dichotomously judged to be unacceptable, as is the case with similar forms

of sensitivity analyses in general. We echo the common recommendation that the degree of sensitivity

be assessed via cross-study comparisons (Rosenbaum, 2002a, p.325). It is important to note that

such comparisons can only be practiced if sensitivity analyses are routinely conducted and reported

in empirical research. Second, the existing sensitivity analysis methods for unobserved mediator-

outcome confounding are highly model-specific, in that a different procedure has to be derived for

each particular combination of mediator and outcome models. While the existing procedures do

cover the most commonly used parametric models, future research could derive methods for other

types of models.

Instrumental Variables and Mediation Effects

In program evaluation, researchers often rely on instrumental variables (IV) and related statistical

methods to analyze causal relationships. Such techniques are typically used when the causal variable

of interest, e.g. actual reception of a policy intervention, cannot be plausibly regarded as ignorable.

Since the identification of the ACME and ADE requires ignorability assumptions, it is unsurprising

that IVs can play valuable roles in the analysis of causal mechanisms. Here, we provide a brief

overview and conceptual clarification for the various existing IV-based methods for analyzing causal

mechanisms. We think this clarification is important since in one case IV is ill-suited to mechanisms,

but useful in two other contexts.

Indeed, there are at least three distinct ways in which researchers can use IV-based methods for

causal mechanisms. The three approaches can best be differentiated by focusing on what variable

performs the role analogous to the “instrument” in the standard IV framework. The first, most

traditional approach treats the treatment itself (Ti in the above notation) as the instrumental variable

and apply a standard IV estimation method for the ACME. This approach originates in Holland

(1988) and has recently been further explored by several researchers (Albert, 2008; Jo, 2008; Sobel,

and Imai et al. (2014) reveals that substantial ambiguity is likely to remain in practice with respect to the choice of

conditioning sets, which suggests another important dimension for sensitivity analysis (see Imai et al., 2014, for some

initial ideas). We, however, emphasize that such considerations are not relevant if the treatment is randomized.
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2008). This approach relies on the rather strong assumption that the direct effect is zero. In the

jargon of IV methods, this assumption implies that the treatment satisfies the exclusion restrictions

with respect to the mediator and outcome, i.e., the treatment can only affect the outcome through its

effect on the mediator. Under this assumption and the ignorability of the treatment (i.e. equation 3,

the first stage of sequential ignorability), the standard IV methods can be used to obtain valid

estimates of the causal mediation effects. The primary advantage of this approach is that it is no

longer necessary to assume the absence of unobserved mediator-outcome confounding (equation 4).

The obvious drawback, however, is that it assumes a priori that there are no alternative causal

mechanisms other than the mediator of interest. For example, in the context of the Perry project,

this approach will be valid only if the effect of the preschool program on high school graduation

is entirely mediated through cognitive ability at ages 6–8. This approach is often invoked under

the rubric of principal stratification (Page, 2012), but has been criticized due to the reliance on the

exclusion restriction (VanderWeele, 2012).

The second approach, proposed by Imai et al. (2013), uses an IV in order to cope with the

possible existence of unobserved confounding between the mediator and outcome (i.e. violation of

equation 4). This approach presupposes the situation where researchers can partially manipulate

the mediating variable by random encouragement. It can then be shown that, if the encouragement

is applied to a randomly selected subset of the sample, and the encouragement satisfies the standard

set of IV assumptions (exclusion restrictions and monotonicity), then the ACME and ADE can be

nonparametrically bounded for a meaningful subgroup of the population defined by their compliance

to the encouragement. Since such direct manipulation of mediating variables is relatively uncommon

(though certainly not impossible) in program evaluation, we omit further details and refer interested

readers to the aforementioned article.

A third approach developed by Yamamoto (2013) uses the IV framework for causal mediation

analysis in yet another way. Unlike the above two methods, this approach is designed to address

the nonignorability of the treatment variable (i.e. violation of equation 3) due to treatment non-

compliance, a common problem in randomized evaluation studies. Indeed, as mentioned in above,

the JOBS II study involved a substantial number of participants who were assigned to the job train-
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ing workshops but did not comply with their assigned treatment. Thus, the identification results

and estimation methods discussed thus far cannot be applied to the JOBS II example. Given the

prevalence of treatment noncompliance in program evaluation, we discuss this approach in detail in

Sections 0.0.1 and 0.0.1.

Mediation Effects in the Perry Preschool Program

We now present a causal mediation analysis for the Perry program study. Our focus is to illustrate

how interpretation in a mediation analysis differs from a standard analysis of total treatment effects.

As described previously, we study whether the Perry program increased their likelihood of graduating

from high school by improving childrens’ cognitive ability at early ages. Our mediator of interest is

therefore cognitive skills (as measured by IQ scores at ages 6–8)11 and the outcome is the indicator

of high school graduation.

Children in the Perry Preschool Project were randomized to either two-years of specialized

preschool classes that lasted 2.5 hours for five days a week or were excluded from the special-

ized preschool classes. Treated students were also visited by teachers at home for 1.5 hour sessions

designed to engage parents in the development of their children (Schweinhart & Weikart, 1981).

Overall there were 123 participants. The experiment suffered very little from usual complications

such as attrition and noncompliance. All outcomes are observed for high school graduation, and

all participants complied with the assigned treatment (Schweinhart & Weikart, 1981; Weikart et al.,

1978). Because admission to the program was randomized and compliance was perfect, we can safely

assume that the first stage of sequential ignorability (equation 3) is satisfied in the Perry study.

Another key feature of the Perry program data is that they contain a number of pretreatment

covariates, including the mother’s level of education, whether the mother works or not, whether

the father was present in the home, the mother’s age, whether the father did unskilled work, the

density of people living in the child’s home, the child’s sex, and baseline levels of cognitive skills.

As discussed above, the second stage of sequential ignorability (equation 4) crucially depends on

the quality of this pretreatment data. That is, if there are unobserved pretreatment covariates that

affect both cognitive ability and high school graduation, this assumption will be violated and the

11Cognitive ability is just one of three mediators analyzed in Heckman & Pinto (2014).
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ACME and ADE will not be identified.

How plausible, then, is the second stage of sequential ignorability in the Perry study? The rich

set of pretreatment covariates is a big plus. In particular, we do have a measure for the mediator

at baseline, and it is logically impossible to consider the baseline measurement of the outcome.

However, the possibility of unobserved confounding still remains. For example, consider depressive

symptoms at baseline, which were not measured. Clinical depression may both reduce cognitive

ability as measured by IQ test and reduce the likelihood of graduating from high school, especially

if it goes untreated. Ruling out the presence of possible unobserved confounding completely is

unfortunately impossible. Nevertheless, as we discussed below, we can address the possibility of

unobserved pretreatment confounding via a sensitivity analysis.

We first estimate the ACME and ADE assuming sequential ignorability. Because the outcome is

a binary indicator, we model it by a logistic regression model with the mediator, treatment, and the

full set of pretreatment covariates listed above. For the mediator, we use a normal linear regression

model including the treatment and the same set of pretreatment covariates. We then apply the

general estimation procedure described above, which easily accommodates the combination of these

two different types of statistical models.12

Table 1 shows the estimated ACME, ADE and average total effect. The average total effect

(bottom row), which is equivalent to the usual average treatment effect, is estimated to be 0.224 with

the 95% confidence interval ranging between 0.044 and 0.408. Thus, the Perry program increased

the percent chance of high school graduation by just over 22 points. This estimate strongly suggests

that the Perry program increased the graduation rate by a significant margin, both statistically and

substantively. In an analysis of the causal mechanism, however, the primary goal is to decompose

this effect into direct and indirect effects. To reiterate, the indirect effect (ACME) is the portion

of the average total effect that is transmitted through higher cognitive ability, and the direct effect

(ADE) is the remaining portion of the Perry program effect attributable to all other possible causal

12We omit an interaction term between the treatment and the mediator variable from the specifications of our

models, as we found no evidence for such an interaction. Inclusion of this interaction would allow the ACME and ADE

to differ depending on the baseline condition. For a focused discussion about how to interpret treatment/mediator

interactions, see Muller et al. (2005).
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Table 1: Estimated Causal Quantities of Interest for Perry Preschool
Project.

Graduate High School

Average Causal Mediation Effects δ̄ 0.069
[0.002, 0.154]

Average Direct Effects ζ̄ 0.169
[−0.011, 0.334]

Average Total Effect τ̄ 0.224
[0.044, 0.408]

Note: N = 123. Outcome is whether a student graduated from
high school and the mediator is cognitive ability as measured by
an average of IQ scores across ages 6–8. In square brackets are
95% bootstrap percentile confidence intervals. The model for the
outcome is a logistic regression, and the model for the mediator is
a linear regression model. Both models are specified with a num-
ber of covariates. Estimates are on a probability scale.

mechanisms. Here, we find that a substantial portion of the average total effect is due to changes

in cognitive ability at ages 6–8. That is, the ACME for the cognitive ability (top row) is estimated

to be approximately 0.069, with the 95% confidence interval ranging from 0.001 to 0.154 points.

This implies that treatment-induced changes in cognitive ability account for about 29% of the total

effect. On the other hand, the estimated Perry program ADE, which represents all other possible

mechanisms, is 0.169, with a 95% confidence interval of -0.011 to 0.334. Overall, the analysis suggests

that the Perry program increases high school graduation rates and some of that change is due to

an increase in cognitive ability at ages 6–8. The mediation results suggest that components of the

intervention that increase cognitive ability are important.

The analysis thus far rests on the strong assumption that there is not a common unobserved

confounder that affects both cognitive ability and high school graduation. As discussed above, this

part of the sequential ignorability assumption is required for identification of the ACME and ADE

but is not guaranteed to hold even in a randomized intervention like the Perry Preschool project.

Indeed, it is not unreasonable to think this assumption may have been violated in the Perry program

study. As we noted above, depression is one possible confounder that is not measure at baseline but
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Figure 2: Sensitivity analysis for the Perry Preschool Project study, with high school graduation
status as outcome. In the left panel, the correlation between the error terms in the mediator and
outcome regression models (ρ) is plotted against the true ACME. The estimated ACME (assuming
sequential ignorability) is the dashed line and 95% confidence intervals represented by the shaded
regions. The right panel plots the true ACME as a function of the proportion of the total mediator
variance (horizontal axis) and the total outcome variance (vertical axis) explained by an unobserved
confounder. In this graph the mediator and outcome variables are assumed to be affected in the
same directions by the confounder. Note that the contour lines terminate at the maximum allowable
values of the sensitivity parameters implied by the observed information.

could affect both cognitive ability and high school graduation. Therefore, a sensitivity analysis is

necessary in order to understand whether our conclusion is highly contingent on the assumption of

no unobserved mediator-outcome confounding.

We now apply the sensitivity analysis discussed above. First, we conduct the analysis based on

the ρ parameter. Recall that ρ represents the correlation between the error terms of the mediation

and outcome models. When the second part of the sequential ignorability assumption holds, ρ is

zero. Therefore, nonzero values of ρ represent violations of the key identifying assumption. In the

sensitivity analysis, we can compute the indirect effect as a function of ρ. If the indirect effect is zero

for small values of ρ that indicates that a minor violation of the sequential ignorability assumption

would reverse the conclusions in the study. The result is shown in the left panel of Figure 2. We

find that, for this outcome, the estimated ACME equals zero when ρ equals 0.3. However, given

sampling uncertainty the confidence intervals for ρ always include zero. Thus if there were a modest

violation of the sequential ignorability assumption, the true ACME could be zero.

We can also express the degree of sensitivity in terms of the R̃2 parameters, i.e., how much of
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the observed variations in the mediator and outcome variables are each explained by a hypothesized

omitted confounder. In the right panel of Figure 2, the true ACME is plotted as contour lines against

the two sensitivity parameters. On the horizontal axis is R̃2
M , the proportion of the variance in the

mediator, and on the vertical axis is R̃2
Y , the proportion of the variance for the outcome, that are

each explained by the unobserved confounder. In this example, we let the unobserved confounder

affect the mediator and outcome in the same direction, though analysts can just as easily explore

the alternative case. The dark line in the plot represents the combination of the values of R̃2
M and

R̃2
Y for which the ACME would be zero. Note that, as is evident in the figure, these two sensitivity

parameters are each bounded above by one minus the overall R2 of the observed models, which

represents the proportion of the variance that is not yet explained by the observed predictors in

each model. Here, we find that the true ACME changes sign if the product of these proportions are

greater than 0.037 and the confounder affects both cognitive ability and high school graduation in

the same direction. For example, suppose that clinical depression was the unmeasured pretreatment

confounder, which would most likely decrease both cognitive ability and high school graduation

rate. Then, the true ACME would be zero or negative if depression explained about 20 percent of

the variances in both of these variables. This level of sensitivity, again, is largely comparable to

existing empirical studies (Imai et al., 2010c,a, 2011). In sum, our sensitivity analysis suggests that

the positive mediation effect of cognitive ability for the effect of the Perry program on high school

graduation is moderately robust to the possible unobserved pretreatment confounding.

Causal Mediation Analysis with Noncompliance

In the discussion so far, we have assumed that all subjects comply with the assigned treatment

status. However, many randomized evaluation studies suffer from treatment noncompliance. For

example, in the JOBS II study, 39% of the workers who were assigned to the treatment group did

not actually participate in the job-skills workshops. Noncompliant subjects present a substantial

challenge to randomized studies because those who actually take the treatment are no longer a

randomly selected group of subjects; the compliers and non-compliers may systematically differ in

their unobserved characteristics. A näıve comparison of average employment outcomes between the

actual participants in the workshops and those who did not participate will therefore lead to a biased
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estimate of the average causal effect of the treatment.

In the presence of treatment noncompliance, the methods from above are no longer valid because

the actual treatment status is no longer ignorable. That is, equation (3) in Assumption 1 is violated.

Hence, it is crucial to understand the basis under which causal mechanisms can be studied when

there is noncompliance, which often occurs in policy interventions. Given the interest in studying

mechanisms when noncompliance exists, it is important that we know exactly what assumptions are

necessary and what quantities can be estimated from the data.

Alternative Causal Mediation Effects with Noncompliance

We now modify our framework to incorporate treatment noncompliance in causal mediation analysis.

In addition to the actual treatment received by the workers (which we continue to denote by Ti), we

consider the assigned treatment status Zi, which equals 1 if worker i is assigned to (but does not

necessarily take) the treatment and 0 otherwise. Then, under the assumption that the treatment

assignment itself does not directly affect the mediator (exclusion restriction; see Appendix A.1), we

can rewrite the potential mediator in terms of the treatment assignment alone, Mi(z), where the

dependence on the actual treatment is kept implicit. Likewise, if we assume that the treatment

assignment can only affect the outcome through the actual treatment, the potential outcome can be

written as Yi(z,m). In this alternative representation, the observed mediator and outcome can then

be expressed as Mi = Mi(Zi) and Yi = Yi(Zi,Mi(Zi)), respectively.

What causal quantities might we be interested in, when treatment noncompliance exists and our

substantive goal is to analyze the causal mechanism represented by the mediator? The quantities

we examined earlier in the paper, the ACME and ADE, are difficult to identify without strong

assumptions because the observed actual treatment is unlikely to be ignorable. We instead focus

on two alternative sets of mechanism-related causal quantities that can be identified under more

plausible assumptions.

First, consider the intention-to-treat (ITT) effect, the average effect of treatment assignment

itself on the outcome of interest. This effect is the usual estimand in the “reduced-form” analysis of

randomized evaluation studies with noncompliance (e.g. Angrist et al., 1996) and can be written in

our current modified notation as τ̄ITT ≡ E[Yi(1,Mi(1))− Yi(0,Mi(0))]. Our first set of mechanism-
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related quantities decompose this effect. That is, the mediated and unmediated ITT effects are

defined as

λ̄(z) ≡ E[Yi(z,Mi(1))− Yi(z,Mi(0))], (7)

µ̄(z) ≡ E[Yi(1,Mi(z))− Yi(0,Mi(z))], (8)

for z ∈ {0, 1} respectively. These quantities are identical to the ACME and ADE defined in above

except that they are defined with respect to treatment assignment, not actual treatment. That is,

the mediated ITT effect is the portion of the average effect of the treatment assignment itself on the

outcome that goes through changes in the mediator values, regardless of the actual treatment. In

the JOBS II study, λ̄(z) represents the average change in the employment in response to the change

in self-efficacy induced by assignment to job-skills workshops (regardless of actual participation),

holding the actual participation variable at the value workers would naturally choose under one of

the assignment conditions. Similarly, the unmediated ITT effect, µ̄(z), represents the portion of the

average effect of the assignment on the outcome that does not go through the mediator. It can be

shown that the mediated and unmediated ITT effects sum up to the total ITT effect, τ̄ITT .

Second, we consider decomposing an alternative total effect, the average treatment effect on

the treated (ATT). This quantity represents the (total) causal effect of the actual treatment on

the outcome among the subjects who actually received the treatment. Under the assumption that

(as was true in the JOBS II study) no worker assigned to the control group can actually take

the treatment (one-sided noncompliance; see Appendix A.1), this quantity can be written as τ̃ ≡

E[Yi(1,Mi(1)) − Yi(0,Mi(0)) | Ti = 1]. Now we define the average causal mediation effect on the

treated (ACMET) and average natural direct effect on the treated (ANDET) respectively as,

δ̃(z) ≡ E[Yi(z,Mi(1))− Yi(z,Mi(0)) | Ti = 1], (9)

ζ̃(z) ≡ E[Yi(1,Mi(z))− Yi(0,Mi(z)) | Ti = 1], (10)

for z ∈ {0, 1}. These quantities are equivalent to the ACME and ADE, except that they refer to the

average indirect and direct effects among those who are actually treated.13 In the JOBS II study,

13Because Pr(Zi = 1 | Ti = 1) = 1 under one-sided noncompliance, δ̃(z) and ζ̃(z) represent both the decomposed

effects of the treatment assignment and the actual treatment.
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these effects correspond to the effects of participation in the job-skills workshops on employment

probability mediated and unmediated through self-efficacy among the workers who actually partici-

pated in the workshops. Again, it can be mathematically shown that the sum of these two effects is

equal to the (total) ATT.

Nonparametric Identification under Local Sequential Ignorability

When can we identify the alternative mediation effects defined in the previous section? Using the

more general result of Yamamoto (2013), we can show that the following assumption is sufficient:

Assumption 2 (Local Sequential Ignorability among the Treated)

{
Yi(t,m),Mi(t

′), Ti(z)
}
⊥⊥ Zi | Xi, (11)

Yi(t
′,m) ⊥⊥ Mi | Ti = 1, Xi, (12)

for all z, t, t′ ∈ {0, 1} and m ∈ M, where Ti(z) denotes the potential treatment given assignment to

z.

Details are provided in Appendix A.1. Assumption 2 is similar to Assumption 1 but differs from

the latter in several important respects. First, equation (11) is satisfied if the treatment assignment

Zi, instead of the actual treatment, is either randomized or can be regarded as if randomized con-

ditional on pretreatment covariates Xi. Since the assignment to job-skills workshops was randomly

made in the JOBS II study, equation (11) is guaranteed to hold in our JOBS II dataset. Second,

equation (12) is typically more plausible than equation (4) because it assumes the independence of

the potential outcomes and the observed mediator only among the treated workers. In the JOBS

II study, equation (12) will be satisfied if the observed levels of self-efficacy among the actual par-

ticipants of the job-skills workshops can be regarded as close to random after controlling for the

observed pretreatment covariates that may systematically affect both self-efficacy and employment.

A General Estimation Procedure

Once the nonparametric identification of these alternative mediation effects are achieved under As-

sumption 2, they can be consistently estimated using the flexible procedure proposed by Yamamoto

(2013). The procedure is similar to the general algorithm for the perfect compliance case discussed
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before, in that it accommodates various types of parametric and semi-parametric models. Specifi-

cally, the estimation procedure entails three regression-like models for the outcome, mediator, and

actual treatment.

First, analysts should posit and fit a regression model for the outcome. The model, which we

denote by S(m, t, z, x) ≡ E[Yi|Mi = m,Ti = t, Zi = z,Xi = x], should include the mediator, ac-

tual treatment, assigned treatment and pretreatment covariates as predictors, and can be fitted via

standard estimators such as least squares and maximum likelihood estimators. Second, the analysts

should model the conditional density of the mediator, using the actual treatment, assigned treatment

and pretreatment covariates as predictors. The model, denoted by G(m, t, z, x) ≡ p(Mi = m | Ti =

t, Zi = z,Xi = z), can again be estimated via standard procedures. Finally, the conditional proba-

bility of the actual treatment should similarly be modelled as a function of the assigned treatment

and covariates. We denote this model by Q(t, z, x) ≡ Pr(Ti = t|Zi = z,Xi = x).

The mediated and unmediated ITTs, ACMET, and ANDET can then be estimated by combining

these estimates of the conditional expectations and densities. The exact formulas that generally apply

for any types of models are given by Yamamoto (2013) and implemented by the ivmediate function

in the R package mediation (Imai et al., 2010b); here, we provide an illustration for the case of a

binary mediator and no pretreatment covariate, focusing on the ACMET for the treatment baseline.

Using the fitted models Ŝ(m, t, z), Ĝ(m, t, z) and Q̂(t, z), this mediation effect can be estimated by

the following expression,

δ̂(1) =
1∑

m=0

Ŝ(m, 1, 1)

{
Ĝ(m, 1, 1) +

Q̂(0, 1)

Q̂(1, 1)
Ĝ(m, 0, 1)− Q̂(0, 0)

Q̂(1, 1)
Ĝ(m, 0, 0)

}
. (13)

Each of the quantities in the above equation are predicted quantities from the three fitted models

with treatment assignment and status set to the appropriate values. For example, Q̂(1, 1) is the

predicted values from this model: Pr(Ti = t|Zi = z,Xi = x) with t and z set to zero.

Valid uncertainty estimates for these quantities can be obtained via the bootstrap. One such

procedure, implemented in ivmediate, consists of randomly resampling n observations from the

sample of size n with replacement, calculating the estimates of mediation effects such as equation (13)

for each of the resamples, and using the empirical quantiles of the resulting distributions as confidence

intervals. Yamamoto (2013) shows evidence based on a series of Monte Carlo simulations suggesting
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that this procedure works well for a reasonably large sample and if compliance rate is not too low.

Mediation Effects in the JOBS II Study

Now we apply the method in the previous section to the JOBS II dataset for illustration. As we dis-

cussed before, the study’s analysts were interested in how much of the causal effects of participation

in job-skills workshops on depressive symptoms and employment were due to participants’ increased

confidence in their ability to search for a job. In the Job Search Intervention Study (JOBS II) pro-

gram a pre-screening questionnaire was given to 1,801 unemployed workers, after which treatment

and control groups were randomly assigned. Job-skills workshops were provided to the treatment

group which covered job-search skills as well as techniques for coping with difficulties in finding a

job. Individuals in the control group were given a booklet that gave them tips on finding a job. Two

key outcome variables were measured: the Hopkins Symptom Checklist which measures depressive

symptoms (continuous), and an indicator for whether employment had been obtained (binary).

Here, we focus on the ACMET and ANDET of the workshop attendance on the depression

and employment outcomes with respect to the self-efficacy mediator, which respectively represent

the portions of the total average effect of the workshop attendance among the actual participants

in the workshops that can and cannot be attributed to their increased sense of self-efficacy. We

estimate these causal effects of interest based on a series of regression models which include a large

set of pretreatment covariates (participants’ sex, age, occupation, marital status, race, educational

attainment, pre-intervention income, and pre-intervention level of depressive symptoms) to make

Assumption 2 more plausible. The sample for our analysis (N = 1050) includes all observations

for which all key variables were measured without missingness. Of these observations, 441 actually

participated in the job-skills workshops, and our estimates apply to those 441 actually treated

observations. Results are reported in Table 2.

We begin with a discussion of the results for the depression outcome (left column). As discussed

in before, these estimates are obtained by first fitting three models for the outcome, mediator, and

treatment compliance, and then combining them into the ACMET and ANDET estimates. Here,

we use linear regressions for all three models. The estimate of the average treatment effect on the

treated (τ̃ , bottom row) represents the total effect of workshop participation. Here, we observe a
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Table 2: Estimated Causal Quantities of Interest for JOBS II Study.

Depression Employment Status

Average Causal Mediation δ̃(1) −.034 .001
Effects on the Treated (ACMET) [−.071, −.005] [−.011, .012]

δ̃(0) −.044 .002
[−.103, −.006] [−.028, .021]

Average Natural Direct ζ̃(1) −.009 .102
Effects on the Treated (ANDET) [−.128, .117] [.012, .192]

ζ̃(0) −.019 .104
[−.140, .107] [.017, .187]

Average Treatment Effect τ̃ −.053 .104
on the Treated (ATT) [−.174, .074] [.018, .186]

Note: N = 1050. Mediator is a continuous measure of job-search self-efficacy
measured in the post-intervention interviews. Depression outcome is a continu-
ous measure of depressive symptoms. Employment status outcome is whether a
respondent was working more than 20 hours per week after the training sessions.
In square brackets are 95% bootstrap percentile confidence intervals. Models for
the outcome and mediator were specified with a number of covariates including
measures of depressive symptoms measured prior to treatment.

slight decrease in depressive symptoms (about −.053 points on the scale of 1 to 5). The estimate

does not reach the conventional levels of statistical significance, with the 95% confidence interval

of [−.174, .074]. The ACMET (δ̃(1) and δ̃(0), top two rows), however, is negative both under the

treatment and control baselines (−.034 and −.044, respectively) with the 95% confidence interval

not overlapping with zero ([−.071,−.005] and [−.103,−.006]). This suggest that the workshop at-

tendance slightly but significantly decreased the depressive symptoms among the actual participants

by increasing the participants’ sense of self-efficacy in job-search process. The ANDET (ζ̃(1) and

ζ̃(0), middle two rows), on the other hand, is even smaller in magnitude (−.009 and −.019) and

statistically insignificant ([−.128, .117] and [−.140, .107]), implying that the treatment effect mostly

goes through the self-efficacy mechanism among the workshop participants.

Turning to the employment outcome (right column), we use logistic regression to model this

variable because it takes on binary values (employed or unemployed). As in the case where treatment

compliance is perfect (Sections and 0.0.1), the estimation method used here can accommodate a
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large variety of outcome and mediator models. Here, we observe that the treatment increased the

probability of obtaining a job among the actual workshop participants by 10.4 percentage points,

with the 95% confidence interval of [.018, .186]. The estimates of the ACMET and ANDET, however,

implies that this statistically significant increase in the employment probability cannot be attributed

to the self-efficacy mechanism. The ACMET is very close to zero for both the treatment and control

baselines, while the ANDET is estimated to be almost as large as the total effect on the treated for

both baseline conditions, with the 95% confidence intervals not overlapping with zero. This suggests

that the components of the JOBS II intervention designed to activate self-efficacy were of lesser

importance.

Concluding Remarks on Causal Mediation Analysis

In program evaluation, analysts tend to focus solely on the study of policy impact. There is good

reason for this since, with randomization, we can estimate average treatment effects under relatively

weak assumptions. Policymakers may, however, demand deeper explanations for why interventions

matter. Analysts may be able to use causal mechanisms to provide such explanations.

Here, we have outlined the assumptions and methods needed for going beyond average treat-

ment effects to the estimation of causal mechanisms. Researchers often attempt to estimate causal

mechanisms without fully understanding the assumptions needed. The key assumption, sequential

ignorability, cannot be made plausible without careful attention to study design, especially in terms

of collecting a full set of possible pretreatment covariates that might confound the indirect effect.

The sensitivity analysis discussed in this paper allows researchers to formally evaluate the robustness

of their conclusions to the potential violations of those assumptions. Strong assumptions such as

sequential ignorability deserve great care and require a combination of innovative statistical methods

and research designs. We also engaged with the issue of treatment noncompliance, a problem that

may be of particular importance in policy analysis. We showed that alternative assumptions are

necessary to identify the role of a mechanism and that a simple, flexible estimation procedure can

be used under those assumptions.

Recent work has explored how analysts can use creative experimental designs to shed light on

causal mechanisms. The two examples in this paper both involved a single randomization of the

32



treatment. The problem with the single experiment design, however, is that we cannot be sure

that the observed mediator is ignorable conditional on the treatment and pretreatment covariates.

As noted in Howard Bloom’s acceptance remarks to the Peter Rossi award, “The three keys to

success are ‘design, design, design’... No form of statistical analysis can fully rescue a weak research

design” (Bloom, 2010). Above we lay out the importance of research designs that collect relevant

confounding variables in designs where only the treatment is randomized. Pushing the importance

of design further, Imai et al. (2013) propose several different experimental designs and derive their

identification power under a minimal set of assumptions. These alternative designs can often provide

informative bounds on mediation effects under assumptions that may be more plausible than those

required with a single experiment. As such, policy analysts have a number of tools, both statistical

and design-based, available when they are interested in moving beyond standard impact assessment.

We conclude with a discussion of an important practical aspect of causal mediation analysis in the

field of policy analysis. The need to collect extensive sets of pretreatment covariates suggests increase

in cost, compared to traditional intervention studies. A similar consideration arises in measuring

mediating variables, since it often means that policy researchers will need to revisit the subjects in

their study sample multiple times to collect these measures prior to the ultimate outcomes. And

of course, some mediators may be more or less easily measured. Given the likely increase in cost

for mediation studies, the role of federal, state and local government funders will be crucial. In the

end, we consider it of fundamental importance to answer questions of how and why experimental

manipulations work in a policy setting. Equipped with the appropriate statistical tools, like those

outlined in this paper, policy analysts can accumulate important knowledge that speaks to pressing

public policy concerns.
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Appendices

A.1 Mathematical Details for the Noncompliance Case

In this appendix, we provide a formal representation of the two assumptions discussed in Section 0.0.1

and provide a proof of the nonparametric identification result for the mediated and unmediated ITT,

ACMET and ANDET.

The two assumptions, exclusion restrictions and one-sided compliance, are commonly made in

the analysis of randomized experiments with treatment noncompliance (Angrist et al., 1996). Using

the notation introduced in Section 0.0.1, the assumptions can be formally represented as follows.

Assumption 3 (Exclusion Restrictions)

Mi(z, t) = Mi(z
′, t) and Yi(z, t,m) = Yi(z

′, t,m) for any z, z′, t ∈ {0, 1} and m ∈M.

Assumption 4 (One-sided Noncompliance)

Ti(0) = 0 for all i = 1, ..., N.

Now, we show that the more general result of Yamamoto (2013) implies the nonparametric iden-

tification of the mediated and unmediated ITT effects, ACMET and ANDET under Assump-

tions 2, 3 and 4. In fact, the result is immediate by noting that Assumption 4 implies the mono-

tonicity assumption in Yamamoto (2013) and that the ACMET, ANDET and Assumption 2 are

equivalent to the local average causal mediation effect, local average natural direct effect and the

local sequential ignorability assumption in Yamamoto (2013) under Assumption 4, respectively.

The expressions for the identified effects can also be obtained as special cases of the results by

Yamamoto (2013). For example, the ACMET for the treatment baseline condition is given by,

δ̃(1) =

∫ ∫
E[Yi |Mi = m,Ti = Zi = 1, Xi = x]

×
{
p(m | Ti = Zi = 1, Xi = x) +

Pr(Ti = 0 | Zi = 1, Xi = x)

Pr(Ti = 1 | Zi = 1, Xi = x)
p(m | Ti = 0, Zi = 1, Xi = x)

−Pr(Ti = 0 | Zi = 0, Xi = x)

Pr(Ti = 1 | Zi = 1, Xi = x)
p(m | Ti = Zi = 0, Xi = x)

}
dm dF (x), (14)
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where p(m | ·) represents the conditional density of the mediator. Note that this expression differs

from the intuitively appealing estimator analogous to the usual Wald estimator for the local average

treatment effect (Angrist et al., 1996). That is, one might be tempted to first estimate the mediated

ITT effects by simply “ignoring” the actual treatment and applying the estimation procedure in

Section to the assigned treatment, mediator and outcome, and then dividing the resulting quantity

by the estimated compliance probability to obtain an estimate of ACMET. Unfortunately, this näıve

approach leads to a biased estimate even under Assumptions 3, 4 and 2. The reason is that the

actual treatment plays the role of a posttreatment mediator-outcome confounder, which renders the

mediated ITT effects unidentified without additional assumptions about how Ti(1) and Ti(0) are

jointly distributed (see Yamamoto, 2013, for more detailed discussion).

A.2 Software Details

In this section, we illustrate the use of the R package mediation (Tingley et al., 2013) for the

application of the methods discussed in the main text. Specifically, we show the steps required

to reproduce the empirical results in Sections 0.0.1 and 0.0.1. See Tingley et al. (2014) for a full

overview of mediation analysis in R with the mediation package.

First, we show the steps for producing the results in Table 1 and Figure 2. The data from the

Perry Preschool program requires a license, so we are unable to distribute the data with a replication

file. The code is, however, available from the authors and partially reproduced below.

# First, load the mediation package

library(mediation)

# Fit model for mediator as a function of treatment and baseline covariates.

d <- lm(cogn ~ treat + female + fhome + medu + mwork + fskilled + mage

+ binet + density, data=perry)

# Fit outcome model as a function of treatment, mediator, and baseline covariates.

# Note that we omit an interaction between treatment and the mediator.

e <- glm(hs ~ treat + cogn + female + fhome + medu + mwork + fskilled + mage

+ binet + density, data=perry, family=binomial("probit"))

# Estimation with inference via the nonparametric bootstrap

# The two model objects above are passed to the mediate function.

binary.boot <- mediate(d, e, boot=TRUE, sims=5000, treat="treat", mediator="cogn")

# We now summarize the results which are reported in Table 1
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summary(binary.boot)

# Next, we pass the output from the mediate function to the medsens function.

# The medsens function then performs the sensitivity analysis.

sens.binary <- medsens(binary.boot, rho.by=.1, eps=.01, effect.type="indirect")

# Use summary function to display results

summary(sens.binary)

# Plot results from sensitivity analysis

plot(sens.binary, main="", ylim=c(-.25,.25), ask=FALSE)

plot(sens.binary, sens.par="R2", sign.prod=1, r.type=2,

ylim=c(0,0.4), xlim=c(0,0.7), ylab = "", xlab = "", main="")

title(ylab="Proportion of Total Variance in \n Y Explained by Confounder",

line=2.5, cex.lab=.85)

title(xlab="Proportion of Total Variance in \n M Explained by Confounder",

line=3, cex.lab=.85)

Next, we provide the code for producing the results in Table 2 using the JOBS II data. The full

code and data set are available from the authors as part of the replication materials.

# Variable labels for the pretreatment covariates

Xnames <- c("sex", "age", "occp", "marital", "nonwhite",

"educ", "income", "depress_base")

# Fit models for the treatment, mediator and outcomes

fit.T <- lm(formula(paste(c("comply~treat", Xnames), collapse="+")),

data=data)

fit.M <- lm(formula(paste(c("job_seek~comply+treat", Xnames), collapse="+")),

data=data)

fit.Y1 <- lm(formula(paste(c("depress2~job_seek*(comply+treat)", Xnames),

collapse="+")), data=data)

fit.Y2 <- glm(formula(paste(c("work~job_seek*(comply+treat)", Xnames),

collapse="+")), data=data, family=binomial)

# Now estimate the mediation effects

out1 <- ivmediate(fit.T, fit.M, fit.Y1, sims = 2000, boot = TRUE,

enc = "treat", treat = "comply", mediator = "job_seek",

conf.level = c(.90,.95), multicore = TRUE, mc.cores=20)

summary(out1, conf.level=.95)

out2 <- ivmediate(fit.T, fit.M, fit.Y2, sims = 2000, boot = TRUE,

enc = "treat", treat = "comply", mediator = "job_seek",

conf.level = c(.90,.95), multicore = TRUE, mc.cores=20)

summary(out2, conf.level=.95)
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