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Abstract
The development of social behavior is strongly influenced by the serotonin system. Seroto-

nin 2c receptor (5-HT2cR) is particularly interesting in this context considering that pharma-

cological modulation of 5-HT2cR activity alters social interaction in adult rodents. However,

the role of 5-HT2cR in the development of social behavior is unexplored. Here we address

this using Htr2c knockout mice, which lack 5-HT2cR. We found that these animals exhibit

social behavior deficits as adults but not as juveniles. Moreover, we found that the age of

onset of these deficits displays similar timing as the onset of susceptibility to spontaneous

death and audiogenic-seizures, consistent with the hypothesis that imbalanced excitation

and inhibition (E/I) may contribute to social behavioral deficits. Given that autism spectrum

disorder (ASD) features social behavioral deficits and is often co-morbid with epilepsy, and

given that 5-HT2cR physically interacts with Pten, we tested whether a second site mutation

in the ASD risk gene Pten can modify these phenotypes. The age of spontaneous death

is accelerated in mice double mutant for Pten and Htr2c relative to single mutants. We

hypothesized that pharmacological antagonism of 5-HT2cR activity in adult animals, which

does not cause seizures, might modify social behavioral deficits in Pten haploinsufficient

mice. SB 242084, a 5-HT2cR selective antagonist, can reverse the social behavior deficits

observed in Pten haploinsufficient mice. Together, these results elucidate a role of 5-HT2cR

in the modulation of social behavior and seizure susceptibility in the context of normal devel-

opment and Pten haploinsufficiency.

Introduction
Serotonin (5-HT) is a key neurotransmitter that appeared early in evolution [1] and influences
a variety of social processes [2] across species, from humans [3] to primates [4], rodents [5]
and flies [6]. The serotonin receptor 5-Ht2cR, encoded by the 5Htr2c gene, is a G protein-cou-
pled receptor (GPCR) that is coupled to Gq/G11 and modulates cellular excitability [7].
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Pharmacological studies in animal models have demonstrated roles for 5-Ht2cR in communica-
tion [8, 9] and social interaction. For example, activation of 5-Ht2cR by mCPP [10, 11], a non-
selective agonist, or by SSRI (selective serotonin reuptake inhibitor, indirect agonist via inhibi-
tion of the serotonin transporter SLC6A4) [12] reduces social interaction in rodents. Con-
versely, administration of the selective 5-Ht2cR antagonist SB 242084 in rats increases social
interaction [11] and rescues social deficits caused by stress [13] or mCPP [10, 11].

Dysregulated activity of 5-HT2cR has been implicated in autism spectrum disorder (ASD),
which features deficits in social interaction and communication (DSM-V, American Psychiat-
ric Publishing, 2013). For example, hyperactivity of 5-HT2cR has been reported in two mouse
models of ASD risk factors: in mice with chromosome 15q11-13 duplication due to overexpres-
sion of the 5-HT2cR-editing snoRNAMBII52 [14], and in mice with a loss of function muta-
tion for methyl-CpG binding protein 1 [15]. In addition, there is evidence of a physical
interaction between 5-HT2cR and Pten [16, 17], a negative regulator of the PI3-kinase pathway
[18] and a risk factor for ASD [19–22]. However, it is not known how chronic alteration in
5-HT2cR activity during development affects social behavior. Thus, we examined the social
behavior of juvenile and adultHtr2c knockout mice, which lack 5-HT2cR.

Interestingly, null mutant mice lacking 5-HT2cR are extremely susceptible to audiogenic sei-
zures [23, 24], suggesting an underlying elevation of the ratio of cellular excitation to inhibition
(E/I balance) in these mice. It has been speculated that social and cognitive deficits might arise
from a modification in this E/I balance, for example, through increased activity in excitatory
neurons or reduced inhibitory neuron activity [25–29]. Supporting this idea, elevation of the E/
I balance in the prefrontal cortex in mice elicits a profound impairment of social behavior [30].
To examine this relationship, we also investigated the onset of audiogenic seizure susceptibility
inHtr2c knockout mice.

Material and Methods

Animals
Strains used were B6.129-Htr2ctm1Jke [31] (from The Jackson Laboratory) and B6.129-
Htr2ctm1Jul [24] (from The Jackson Laboratory). Both lines were crossed to a C57BL/6J back-
ground for at least 10 generations to reach congenicity. Mice of the B6.129-Ptentm1Rps line [32]
were obtained from the repository at the National Cancer Institute at Frederick, where they
were already backcrossed onto a congenic C57BL/6J background by the Donating Investigator.
The line has been maintained by backcrossing to C57BL/6J mice for more than 10 generations.
For behavioral experiments female Htr2ctm1Jke/+ mice were crossed with C57BL/6J males, thus
producing Htr2ctm1Jke/Y (referred to as Htr2c-/Y) and Htr2c+/Y (referred to as wild-type) male
offspring. For the analysis of spontaneous death, female Htr2ctm1Jul/+ orHtr2ctm1Jke/+ mice
were crossed with Ptentm1Rps/+ males, resulting inHtr2+/Y, Ptentm1Rps/+ (referred to as Pten+/-)
andHtr2Jke/Y; Ptentm1Rps/+ (referred to as Htr2c-/Y; Pten+/-) male offspring. No distinction is
made between the Htr2ctm1Jul andHtr2ctm1Jke lines in the analysis of spontaneous death as they
are phenotypically equivalent. Due to the localization of theHtr2c gene on the X chromosome
and to random X chromosome inactivation, no female Htr2c+/- mice were used in this study to
avoid complications arising from mosaicism.

Behavioral testing occurred between postnatal days 21 to 26 (P21–26) for juveniles and
P85–90 for adults. All animals were housed in mixed-genotype groups of 2–5 mice per cage,
with no differences in housing between genotypes. Food and water were provided ad libitum
and animals were kept on a reversed 12-h light/dark cycle. All behavioral testing was per-
formed during the dark (active) phase of the light cycle. Experiments were performed in accor-
dance with National Institute of Health and Association for Assessment and Accreditation of
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Laboratory Animal Care guidelines and approved by The Scripps Research Institute’s Institu-
tional Animal Care and Use Committee.

Three-chamber social approach and social novelty
Juvenile and adult mice were tested as previously described [33, 34] under white-light condi-
tions. Briefly, test mice were each placed into the center of a black acrylic center arena (60 x
30 x 30 cm) that was divided into three equal compartments (each 20 x 30 x 30 cm). Mice were
habituated to the empty arena for 5 min on each of the two days prior to testing. The test day
consisted of three phases: 5 min acclimation to the empty arena, 10 min sociability testing
[choice between two acrylic tubes (20 cm tall, 10 cm in diameter, with 16 ¼” diameter holes in
the bottom half of the cylinder), one containing a novel, same-sex conspecific (location coun-
terbalanced across mice), the other being empty], and 10 min social novelty testing (novel,
same-sex conspecific placed in the previously empty tube). Tubes and chambers were cleaned
with quatricide and paper towel-dried between mice. Ethovision (Noldus Information Tech-
nology, Wageningen, The Netherlands) was used to score the time spent in each chamber, as
well as the velocity and distance traveled, for each mouse. Different cohorts of mice were used
for juvenile and adult experiments.

Audiogenic seizure (AGS) testing
Juvenile (P25) and adult animals (P90) were moved to the testing area and left undisturbed for
1–3h prior to testing. AGS testing was performed using a Phenotyper box (29.2 x 29 x 30.5 cm,
Pten-T10/N, Noldus Information Technology, Wageningen, The Netherlands) equipped with
a speaker and clear walls, each inside a noise-attenuating box with fans on. Behavior was moni-
tored via a CCD camera mounted on the ceiling of the box and recorded by Ethovision. After a
30 s period of acclimation to the chamber, a 108-dB white noise stimulus was maintained for
60 s or until overt seizure had occurred. Mice that exhibited no sign of seizure during the stim-
ulus were then monitored for 30 min. The motor response to audiogenic stimulus was classified
as described previously [35]: no response (NR), wild running (WR), clonic seizure (CS), tonic
seizure (TS), respiratory arrest/death (RA).

Lifespan Study
A total of 68 mice were used in the lifespan study with 20 wild-type mice, 21 Pten+/-, 15 Htr2c-/
Y; Pten+/- and 12Htr2c-/Y; Pten+/-. Mice were maintained in standard conditions with 5 mice
per cage and were permitted to live out their lives until death due to natural causes. The mice
used in the lifespan study were not disturbed except to check on the mice twice each day and
were euthanized if any sign of distress was observed following AAALAC recommendations.

Drug treatment
20 minutes prior to testing, mice tested for social approach with 5-HT2cR antagonist were
given an intraperitoneal injection of SB 242084 (Sigma-Aldrich) diluted to 0.3mg/ml in a 10%
(2-hydroxypropyl)-β-cyclodextrin (Sigma-Aldrich) in sterile 25mM citric acid vehicle, or
equivalent volume vehicle. For all injections, care was taken to handle animals gently to mini-
mize stress.

Data analysis
Independent-sample t-tests were used to assess the effects of genotype (wild-type,Htr2c-/Y)
on behavior, and paired-sample t-tests were used to analyze chamber preferences for the
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three-chamber social approach (% time in mouse chamber vs. % time in empty tube chamber)
and novelty test (% time in novel mouse chamber vs. % time in familiar mouse chamber) for
each genotype. Additionally, approach-avoidance scores [time in chamber with a social stimu-
lus minus time in chamber with the empty tube; [34, 36]] were calculated, and genotypes were
compared using independent-sample t-tests (wild-type,Htr2c-/Y) or two-way analyses of vari-
ance (drug: vehicle, 0.3mg/kg SB 242084; genotype: wild-type, Htr2c-/Y). Kaplan-Meier survival
analysis was used with Log-Rank test followed by pairwise comparison (Holm-Sidak) to ana-
lyze the data. For the pharmacogenetic study, planned comparisons between genotypes for
each drug (vehicle: wild-type vs. Htr2c-/Y, SB 242084: wild-type vs. Htr2c-/Y) and between drug
treatment for each genotype (wild-type: vehicle vs. SB 242084, Htr2c-/Y: vehicle vs. SB 242084),
were performed using independent-sample t-tests. In all cases, normality was assessed using
Levene’s test. All statistics were performed using PASW 18 (IBM Corporation, Armonk, NY,
USA), with significance set at p<0.05. All graphs represent mean +/- SEM.

Results
We assessed the development of social behavior inHtr2c knockout mice using the three-cham-
ber social approach and social novelty assay [33, 34] as juveniles (P21–26) or adults (P85–90).
Both wild-type andHtr2c-/Y juvenile males spent significantly more time in the chamber with
the novel social stimulus versus the chamber with the object control during the social approach
assay (t(8) = 2.39, p<0.05 and t(8) = 2.35, p<0.05 respectively, Fig 1A left) and in the chamber
with the novel social stimulus versus the chamber with the familiar social stimulus during the
social novelty assay (t(8) = 2.34, p<0.05 and t(8) = 2.64, p<0.05 respectively, Fig 1A right).
Correspondingly, we did not find a significant difference between wild-type and Htr2c-/Y

juvenile mice for the approach-avoidance score (t(16) = 0.30, p = 0.77, Fig 1B). In order to
determine the proportion of mice that show a strong preference for the mouse chamber, we
designed a preference index, calculated as: (number of mice where the time in chamber 1 (con-
taining stimulus mouse in cage) was� 10% of the time spent in chamber 3 (containing empty
cage))–(number of mice where the time in chamber 1 was< 10% of the time spent in chamber
3) / (total number of mice). Both wild-type mice (55.5%) and Htr2c-/Y mice (33.3%) presented
a high positive preference index, showing that more than half of the mice had a strong prefer-
ence for the mouse chamber (Fig 1C). Additionally, there was no significant difference in veloc-
ity or distance traveled in the social approach phase (t(16) = 0.73, p = 0.47 and t(16) = 0.62,
p = 0.55 respectively, Fig 1D). These results suggest thatHtr2c deletion does not impact social
behavior of juvenile mice. Next, we wanted to test if constitutive deletion of Htr2c affects social
behavior in adult mice.

Wild-type adult males spent significantly more time with the social stimulus during social
approach (t(15) = 7.90, p<0.001, Fig 2A left), and with the novel social stimulus during social
novelty (t(15) = 3.28, p<0.01, Fig 2A right), whileHtr2c-/Y adult males showed no significant dif-
ferences in chamber time during these assays (t(16) = 1.19, p = 0.25 and t(16) = 1.31, p = 0.21
respectively, Fig 2A). Analyzing these data using a social approach-avoidance score, we found
that the time spent interacting with a stimulus mouse was significantly less inHtr2c-/Y than in
wild-type mice (t(22.3) = 2.47, p<0.05, Fig 2B). The individual approach-avoidance score of
Htr2c-/Ymice showed a bimodal distribution that was reflected by a higher variation in this score
than in wild-type mice (Levene’s test for equality of variance: F = 14.91, p<0.01, Fig 2C). Using
the preference index, we found a high preference index for wild-type mice (87.5%) whileHtr2c-/Y

mice showed a negative score (-12.5%; Fig 2D) confirming that less than half of these mice
showed a preference for the mouse chamber. Moreover, we found that velocity and distance trav-
eled in the social approach assay were significantly increased inHtr2c-/Y compared to wild-type
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mice (t(30) = 2.13, p<0.05 and t(30) = 2.46, p<0.05 respectively, Fig 2E) confirming previous
studies [31, 37]. Thus, constitutive deletion ofHtr2c decreased social interaction and increased
locomotor activity in adult mice.

Adult Htr2c knockout mice feature spontaneous death and audiogenic seizures (AGS),
which has been interpreted as reflecting a role for 5-HT2cR in tonic inhibition of excitability in
neuronal networks [24, 38]. E/I imbalance within neural networks has been hypothesized as
underlying social behavioral deficits in ASD and a variety of other neuropsychiatric disorders
[25–28]. In light of this hypothesis, we find it interesting that adult, but not juvenile, Htr2c
knockout mice display deficits in sociability. To further explore the relationship between social
behavioral deficits and seizure susceptibility, we tested for AGS at P25 and P90, after social
behavioral testing was complete in juvenile and adult cohorts of mice, respectively. No Htr2c-/Y

mice displayed seizures at P25, confirming previous findings that juvenile Htr2c-/Y mice are not
susceptible to AGSs [23]. At P90, we found that all Htr2c-/Y mice, but no wild-type mice, exhib-
ited tonic-clonic seizures manifested by a brief forelimb and hindlimb flexion followed by a
rigid and prolonged hindlimb extension (Fig 3). The latency to the tonic-clonic phase was
extremely short, ranging from 2 to 6 seconds after the start of the white noise (average: 4.12 s).
This confirms that the timing of social behavior deficits coincides with the onset of seizure sus-
ceptibility inHtr2cmice. It remains to be determined whether a causal relationship exists
between these two phenotypes.

Pten is a significant risk factor for ASD in humans [19–22] and various mouse models of
Pten deletion show a deficit in social behavior [33, 34, 39, 40]. It has been shown previously
that haploinsufficiency for the Slc6a4 gene, encoding the serotonin transporter, can exacerbate
the social behavior deficits observed in Pten+/- mice [34]. Moreover, Pten and 5-HT2cR recep-
tor interact biochemically in dopaminergic neurons of the ventral tegmental area [17], making
mutations in Pten a strong candidate for modifying the phenotypes observed in Htr2c-/Y mice.
AsHtr2c deletion did not affect the preference of the juvenile mice in the 3-chamber assay
(Fig 1), we aimed to investigate the social behavior of Htr2c-/Y; Pten+/- adults. However, we
found that only 20% ofHtr2c-/Y; Pten+/- mice survived to P90 (Fig 4). This made adult social
behavioral testing impractical in these animals. Wild-type (n = 20) and Pten+/- mice (n = 21)
did not exhibit any spontaneous death within the timeframe examined (up to P180). An
autopsy of mice that died spontaneously did not reveal any noticeable health problems such as
hemorrhage, infarction, ischemia, hamartomas or tumors. Thus, as previously observed for
Htr2c-/Y mice [24], we conjecture that the early lethality ofHtr2c-/Y; Pten+/- mice may be attrib-
uted to an increase in spontaneous epileptic seizures. Using a Kaplan-Meier analysis, we found
that there was a significant effect of genotype on survival (Log-Rank test: F(2) = 36, p<0.001).
Pairwise comparisons revealed a significant difference on the survival of Pten+/- mice vs.
Htr2c-/Y (p<0.001) and Htr2c-/Y; Pten+/- mice (p<0.001) and also between Htr2c-/Y and Htr2c-/
Y; Pten+/-mice (p<0.05). We interpret these results as consistent with mutations in Pten and
Htr2c interacting to influence spontaneous death, possibly via an exacerbation of the epileptic
mechanism present in Htr2c knockout mice. However, because of the accelerated age of death,
we were prevented from testing social behavior in these compound mutant animals.

As an alternative approach to explore whether Pten and 5-HT2cR interact to influence social
behavior, we used SB 242084, a selective antagonist of 5-HT2cR that has been shown to increase
social interaction behavior [11] and rescue social investigation deficits associated with stress

Fig 1. Three-chamber social approach and social novelty test in Htr2c-/Y juvenile male mice. (A) Time spent in each chamber. (B) Approach-
avoidance scores. (C) Preference index: [(number of mice where the time in the mouse chamber was� 10% than the time spent in the tube chamber)–
(number of mice where the time in the mouse chamber was < 10% than the time spent in the tube chamber)]/(total number of mice). (D) Velocity and distance
traveled. n = 9 per genotype. *: p<0.05, NS: non-significant difference with paired samples t-test (A) and independent-samples t-test (B andD).

doi:10.1371/journal.pone.0136494.g001

5-HT2cR and Development of Social Behavior

PLOS ONE | DOI:10.1371/journal.pone.0136494 August 26, 2015 6 / 15



5-HT2cR and Development of Social Behavior

PLOS ONE | DOI:10.1371/journal.pone.0136494 August 26, 2015 7 / 15



[13] without increasing seizure susceptibility [11] in rodents. We used adult female Pten hap-
loinsufficient and wild-type female mice as social approach deficits in female Pten+/- mice are
well described [33, 34]. We administered 5-HT2cR antagonist SB 242084 systemically at 0.3
mg/kg, a dose that has been shown to significantly increase social interactions in rats [11, 13],
and tested social approach behavior using a three-chamber social approach apparatus. Vehicle-
treated wild-type animals spent significantly more time in the chamber containing the social
stimulus mouse than the chamber containing an empty tube, while vehicle-treated Pten+/- mice
did not display this preference (t(15) = 5.23, p<0.001 and t(16) = 0.40, p = 0.70, Fig 5A), indi-
cating a deficit in sociability consistent with previous findings in untreated Pten+/- animals [33,
34]. Wild-type and Pten+/- mice treated with SB 242084 both displayed a significant preference
for the chamber containing the social stimulus mouse (t(14) = 4.32, p<0.001 and t(15) = 4.38,
p<0.001, Fig 5A). Analyzing these data using a social approach-avoidance score, we found a
significant effect of genotype or SB 242084 treatment on the time spent to interacting with the
stimulus mouse (Two-way ANOVA: Effect of genotype: F (1, 63) = 5.32, p<0.05. Effect of SB
242084 treatment: F (1, 63) = 6.32, p<0.05. Interaction between genotype and SB 242084 treat-
ment: F (1, 63) = 1.97, p = 0.17 (n.s.), Fig 5B). Planned comparisons revealed a significant dif-
ference between Pten+/- mice treated with vehicle only and Pten+/- mice treated with SB 242084
(t(31) = 2.73, p<0.01) and between wild-type mice treated with vehicle and Pten+/-mice treated
with vehicle (t(31) = 2.82, p<0.01), but no significant difference between wild-type treated
with vehicle and wild-type treated with SB 242084 (t(29) = 0.76, p = 0.45) and between wild-
type mice treated with SB 242084 and Pten+/- mice treated with SB 242084 (t(29) = 0.56,
p = 0.58). Additionally, we found that, while Pten+/-mice treated with vehicle presented a very
low preference index (5%), wild-type mice treated with vehicle or SB 242084 and Pten+/- mice
treated with SB 242084 all presented a high positive preference index (50, 60 and 37.5% respec-
tively). There was no spontaneous death or other evidence of seizures in Pten+/- mice treated
with SB 242084. These results show that SB 242084 treatment suppresses the social behavior
deficits exhibited by Pten+/- mice.

Discussion
We report here that adultHtr2c null mutant mice present social behavior deficits and that
these deficits are restricted to adult mice and are not present in juvenile mice. It has been
hypothesized that dysregulated E/I balance may contribute to social behavioral deficits in neu-
ropsychiatric disorders such as ASD [25–29] and consistent with this idea, it has been shown
that elevation of cellular E/I balance within the mouse medial prefrontal cortex elicits an
impairment of social behavior [30]. Evidence supports that E/I imbalance is also responsible
for seizure susceptibility and spontaneous death in Htr2cmutant mice [24, 41, 42]. Interest-
ingly, similar to social behavior deficits, Htr2c null mutant mice present a susceptibility to AGS
only in adulthood [23, 24, 31] (and Fig 3). Given this, together with the observation that phar-
macological antagonism of 5-HT2cR does not increase susceptibility to seizures and can
increase social investigation in rodents [10, 11, 13], it is reasonable to speculate that E/I imbal-
ance in adultHtr2c knockout mice is responsible for both social behavior deficits and suscepti-
bility to spontaneous and audiogenic seizures. Similarly, E/I imbalance might be responsible
for both social behavioral deficits and epilepsy in some ASD patients, as it has been shown that

Fig 2. Three-chamber social approach and social novelty test in Htr2c-/Y adult male mice. (A) Time spent in each chamber. (B) Approach-avoidance
scores. (C) Individual approach-avoidance scores of adult males. (D) Preference index: [(number of mice where the time in the mouse chamber was� 10%
than the time spent in the tube chamber)–(number of mice where the time in the mouse chamber was < 10% than the time spent in the tube chamber)]/(total
number of mice). (E) Velocity and distance traveled. n = 16 per genotype. *: p<0.05, **: p<0.01, ***: p<0.001 with paired samples t-test (A) and
independent-samples t-test (B and E).

doi:10.1371/journal.pone.0136494.g002
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30% of ASD patients can present a co-morbidity for epilepsy [43]. Alternatively, it is possible
that mutations inHtr2c lead to an early dysregulation of growth and connectivity that results
in abnormal neural circuitry going into the critical period for social learning, with social deficits

Fig 3. Audiogenic seizures inHtr2c-/Y adult male mice. (A) Htr2c-/Y adult mice (P90) show a severe response to audiogenic stimulus (RA: n = 16) while
Htr2c-/Y juvenile mice (P25) or wild-type adult and juvenile did not exhibit any response (NR: n = 4, 16, 4 respectively). NR, no reponse; WR, wild running;
CS, clonic seizure; TS, tonic seizure; RA, respiratory arrest/death. (B) The seizure severity score indicated a fully penetrant phenotype in adult Htr2c-/Y mice.

doi:10.1371/journal.pone.0136494.g003
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not manifesting until after the critical period closes. It has been shown, for example, that social
isolation that occurs in a critical period of 2 weeks after weaning alters prefrontal cortex func-
tion and myelination and these phenotypes are not reversible after reintroduction into a social
environment [44]. For this hypothesis, dopaminergic neurons are a strong candidate cell type
since they are important for social behavior [33, 45–49] and express 5-Ht2cR [50]. Future
experiments using timed conditional deletions of Htr2c will help answer this question.

We also find that a second site mutation in Pten accelerates the spontaneous death rate
observed inHtr2c-/Y mice [23, 24]. Consistent with previous reports inHtr2c-/Y mice [24],
autopsy of these mice did not reveal any noticeable health problems suggesting that the early
lethality of Htr2c-/Y; Pten+/- is caused by an increase in spontaneous epileptic seizures. An
increased susceptibility to seizures has been reported in different models of Pten conditional
deletion [39, 40, 51, 52], and ASD patients with a PTENmutation can also present with epi-
lepsy [53]. Although we did not observe any spontaneous seizures in germline Pten+/- mice, it
is possible thatHtr2cmutation uncovers a susceptibility masked by the C57BL/6 background,
which is normally seizure resistant [54]. This enhancement of a seizure-prone phenotype in
Htr2c-/Y; Pten+/- mice might seem surprising given that Pten physically interacts with 5-HT2cR
to repress its activity [17], thus one might predict that Pten and Htr2cmutations would have
opposing phenotypic effects. Indeed, we have demonstrated that pharmacological antagonism
of 5-HT2cR with SB 242084 in Pten haploinsufficient mice is capable of restoring a preference
for social investigation in a three-chamber social approach assay. In interpreting these results,
it is worth considering that chronic treatment using a 5-HT2cR antagonist does not increase

Fig 4. Spontaneous death inHtr2c-/Y mice is accelerated by a second-site mutation in Pten. Time course of spontaneous death in Htr2c-/Y (n = 15),
Pten+/- (n = 21) andHtr2c-/Y; Pten+/- (n = 12) mice.

doi:10.1371/journal.pone.0136494.g004
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seizure susceptibility [11] and we did not observe any spontaneous seizures in Pten haploinsuf-
ficient mice treated with SB 242084, indicating that gross E/I balance is normal. Thus, it is pos-
sible that mutations inHtr2c and Ptenmay act in different cell types to influence E/I balance in
a manner that is not recapitulated by pharmacological antagonism of 5-HT2cR. For example,
mutations in Htr2cmight result in decreased activity of GABAergic neurons [55–58] while
Ptenmutations result in increased activity of excitatory neurons [59], resulting in a synergistic
elevation of E/I balance. Another possibility is that Pten and 5-HT2cR might have different
periods and mechanisms of interaction: one complementary interaction in early development
that sets up a later vulnerability to seizures, and another antagonistic interaction in mature cir-
cuitry that can reverse social behavioral deficits. Additionally, SB 242084 might rescue the
social behavior deficits observed in Pten haploinsufficient mice through an anxiolytic effect,
for example by modulating release of dopamine in the limbic system [60]. While the precise
mechanism remains to be discovered, the above data are consistent with the hypothesis that
5-HT2cR interacts with Pten to modulate both E/I balance and the circuitry influencing social
behavior. Important issues to address in future work will be to determine the degree to which
modulating 5-HT2cR is significant for the ASD-therapeutic effects of drugs such as risperidone,
fluoxetine and olanzapine, which target a broad range of molecules, including 5-HT2cR.
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