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Abstract

We have reported previously that intensive preparation for a standardized test that taxes
reasoning leads to changes in structural and functional connectivity within the frontoparietal
network. Here, we investigated whether reasoning instruction transfers to improvement on
unpracticed tests of reasoning, and whether these improvements are associated with
changes in neural recruitment during reasoning task performance. We found behavioral evi-
dence for transfer to a transitive inference task, but no evidence for transfer to a rule genera-
tion task. Across both tasks, we observed reduced lateral prefrontal activation in the trained
group relative to the control group, consistent with other studies of practice-related changes
in brain activation. In the transitive inference task, we observed enhanced suppression of
task-negative, or default-mode, regions, consistent with work suggesting that better cogni-
tive skills are associated with more efficient switching between networks. In the rule genera-
tion task, we found a pattern consistent with a training-related shift in the balance between
phonological and visuospatial processing. Broadly, we discuss general methodological con-
siderations related to the analysis and interpretation of training-related changes in brain
activation. In summary, we present preliminary evidence for changes in brain activation
associated with practice of high-level cognitive skills.

Introduction

Fluid reasoning, the ability to solve novel problems, was once thought to be a fixed trait, stable
across the lifespan and immutable to environmental factors. However, mounting evidence sug-
gests that it comprises a set of skills that can be strengthened through instruction and/or prac-
tice [1-9]. Previously, we have reported changes in the structural and functional connectivity
of the frontoparietal network following 100 hours of preparation for a standardized exam that
involves reasoning skills (the Law School Admission Test, LSAT) [10,11]. Here, we investigate
whether LSAT preparation, i.e., practice with complex reasoning problems, leads to improve-
ments on transfer tasks of reasoning, and changes in neural recruitment during performance of
these tasks.
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Reasoning involves relational processing, or the identification of individual properties of
complex stimuli, as well as relational integration, or the joint consideration of previously sepa-
rate mental relations [12]. For example, to solve a transitive inference question such as “If Bill
is taller than Dan, and Dan is taller than Matt, is Bill taller than Matt?”, it is necessary to pro-
cess the relationships between Bill and Dan and between Dan and Matt in order to infer the
relationship between Bill and Matt. The Analytical Reasoning subtest of the LSAT taxes rela-
tional processing and integration. As a simplified example, consider the following premises for
ordering objects A through D: 1) A is before B, 2) C is before D, 3) C is not directly next to D,
4) Bis not last, 5) A is not first. These premises need to be integrated to determine the correct
order: CABD.

Tasks requiring relational integration rely on the close cooperation of several prefrontal and
parietal regions [13-15]-in particular, the area around the intraparietal sulcus (IPS), rostrolat-
eral prefrontal cortex (RLPFC), and, depending on the task demands, ventrolateral PFC
(VLPEC) and/or dorsolateral PFC (DLPFC). Reasoning practice, then, could alter patterns of
activation at one or more of these frontoparietal nodes [16], in addition to changing the con-
nectivity between the nodes, as we have observed previously [10,11]. Further, reasoning prac-
tice could lead to a qualitative change in the brain regions involved in reasoning. For example,
because LSAT instruction techniques focus on drawing spatial diagrams to tackle text-based
problems, participants could shift their reasoning strategies from a verbal to a spatial approach,
leading to shifts in the cortical resources brought to bear on reasoning tasks. Finally, because
reasoning involves many cognitive processes in addition to relational processing and integra-
tion, reasoning practice could lead to changes in the interactions between the frontoparietal
network and other networks.

Because reasoning relies on abilities such as perceptual processing, attention, and working
memory, reasoning practice may lead to improvements in these supportive skills. However,
evidence for this type of cross-transfer is mixed [16-21]. Further, the reasoning instruction
paradigm selected for this study intentionally minimized the working memory demands of
complex reasoning problems by teaching students to break problems into tractable pieces and
write down intermediate steps. Because of the nature of the instructional strategies employed
during LSAT preparation, we predicted that we would observe selective gains in relational rea-
soning, but were also interested in assessing the reach of transfer to other cognitive skills.

In the present study, we tested whether reasoning instruction led to improved performance
on two reasoning tasks: a transitive inference task and a rule generation task. Both tasks
included a condition that involved relational processing alone, and a condition that involved
both relational processing and integration. Further, we investigated whether reasoning instruc-
tion was associated with changes in brain activation during performance of these tasks. Finally,
we examined whether reasoning instruction transferred to measures of matrix reasoning,
working memory, and processing speed. To our knowledge, this is the first study to examine
the effects of reasoning instruction on task-related brain activation.

Methods
Ethics Statement

Research was approved by the Committee for the Protection of Human Subjects at the Univer-
sity of California, Berkeley. Written informed consent was obtained from all participants.

Participants

Participants in the LSAT group were recruited from the Blueprint Test Preparation course—an
intensive, effective course that prepares students for the LSAT. This course consisted of 100
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hours of classroom time: 35 for Logical Reasoning, 35 for Analytical Reasoning, and 30 for
Reading Comprehension. Logical Reasoning instruction focused on the rules of formal logic.
Analytical Reasoning instruction taught students to integrate multiple rules to determine the
sequence or arrangement of a group of items. Reading Comprehension instruction covered tips
for answering questions about short passages. A sample test is available at http://www.lsac.org/
docs/default-source/jd-docs/sampleptjune.pdf.

To control for the effects of participating in research at two time points, including practice
effects on tasks, increased familiarity with the scanner environment, and developmental
changes between time points, we also recruited a group of pre-law students who did not pre-
pare for the LSAT between scanning sessions. Control group participants were recruited
through pre-law organizations on campus and online postings. The control group was matched
to the LSAT group on age, sex, IQ, and days between testing sessions (S1-S3 Tables).

During an initial screening session, participants confirmed that they had learned English
before the age of five and did not have a history of psychiatric or neurological disorders. Partici-
pants completed the Adult Self Report [22] (no participants met clinical criteria) and the Wechs-
ler Adult Scale of Intelligence (WASI) Vocabulary and Matrix Reasoning subtests [23]. Control
group participants were included in the study if their IQ scores were within one standard devia-
tion of the mean for the LSAT group. After the initial screening session, participants visited the
lab twice: once within two weeks of the start of their LSAT preparation course, and once within
two weeks after completing the course, with a similar delay period for the control group.

We excluded participants for the following reasons: more than 3 standard deviation change
in self-reported stress (Perceived Stress Scale [24]) or sleep (mean number of hours per night
over previous two weeks; 1 participant from each group excluded from all analyses), head
motion (mean displacement between volumes) of more than 3 standard deviations above the
average across tasks (Transitive Inference: no subjects excluded; Letter Series: 1 from control
group, 2 from LSAT group), or poor performance on the task (Transitive Inference: 2 from
control group, 1 from LSAT group; Letter Series: 1 from control group, 1 from LSAT group).
Poor task performance was defined as performance at or below chance on responded trials
(50% for Transitive Inference, 25% for Letter Series) in either session and in either condition.
One participant was included in the behavioral analysis of the Transitive Inference task but not
the imaging analysis, because only one run was usable at time 2 (fingers slipped to the wrong
buttons in the middle of the second run). Participants with excessive head motion were
included in behavioral analyses. Transitive Inference data were available for 24 LSAT partici-
pants (23 with usable imaging data), and 22 control participants. Letter Series data were avail-
able for 17 LSAT participants (15 with usable imaging data), and 23 control participants (22
with usable imaging data). Demographic details for the participants included in behavioral and
neuroimaging analyses are presented in S1-53 Tables. Group sizes for each behavioral measure
are described in the legend of Table 1.

MRI Data Collection

Scanning was performed on a Siemens 3T Trio at the Brain Imaging Center at the University of
California at Berkeley. Participants underwent a series of scans in the same order for every ses-
sion. The scanning session included a high-resolution structural scan, the Transitive Inference
task, a resting-state scan [10], the Letter Series task, and a diffusion-weighted imaging scan [11].
Both functional tasks were acquired with the same gradient-echo echo-planar imaging (EPI)
sequence (TR = 2000ms, TE = 25ms, 33 axial slices, 2.0x1.8x3.0 mm voxels, no interslice gap,
flip angle = 90°, field of view = 230mm). The Transitive Inference task was collected in 2 runs of
180 volumes each, and the Letter Series task was collected in one run of 165 volumes.
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Table 1. Behavioral Measures. Data are presented as M(SD). Reading Span is Absolute Span. Cross Out data are correct items per second. LSAT Group:
Cattell n = 25, Digit Span n = 18, Spatial Span n = 25, Reading Span n = 25, Cross Out n = 17. Control Group: Cattell n = 24, Digit Span n = 23, Spatial Span

n =24, Reading Span n =24, Cross Outn=17.

Cattell

Digit Span Forward
Backward

Spatial Span Forward
Backward

Reading Span*
Cross Out

*LSAT group t-test is significant (t(24) =2.2, p

doi:10.1371/journal.pone.0137627.t001

LSAT Control

Time 1 Time 2 Time 1 Time 2
28.6 (3.0) 29.7 (5.1) 27.8 (4.4) 29.2 (4.0)
11.2 (2.0) 11.8 (2.0) 11.5(1.9) 11.3 (2.8)
8.4 (2.4) 8.5 (2.3) 8.1 (2.5) 7.8 (2.0)
9.8 (1.6) 9.8 (1.9) 9.3 (2.0) 9.3(1.7)
8.6 (1.7) 8.6 (1.8) 8.8 (1.6) 8.7 (1.2)
39.5 (14.8) 447 (16.1) 37.9 (15.4) 43.2 (15.7)
17 (.02) .18 (.03) 17 (.02) .18 (.02)

= .04).

Transitive Inference

In each trial of this task (modified from [25]), the participant was presented with four “balance
scales” that indicated the relationship between two colored balls. The participant was asked to
make a judgment regarding which of two target balls was heavier, and to press with his/her
right hand index finger if the ball on the left was heavier, and his/her middle finger if the ball
on the right was heavier. In the Relational Integration condition, it was necessary to integrate
relationships provided by two of the four scales (Fig 1A). In the Relational Processing condi-
tion, the visual information was the same, but answering these questions required referencing
only one scale (Fig 1B). This task was presented in an event-related design. Participants were
given up to 6 seconds to answer. Jittered ITIs ranged from 0 to 8 seconds and accounted for
30% of total scan time.

Letter Series Task

The Letter Series task [26] required reasoning about sequences of letters. The Rule Generation
condition required participants to discover a rule common to three of four letter strings, and to
identify the string that did not follow this rule (Fig 2A). The rule changed for every trial. Rules
were based on alphabetical order (e.g., skip two letters), orthographic features (e.g., straight or
curved lines), or consonant/vowel categorizations. The rules became progressively more com-
plex over the course of the session. In the Rule Application condition of the task, participants
were asked to identify which of four letter strings was not in strict alphabetical order (i.e., miss-
ing a letter) (Fig 2B). At time 2, new stimuli were constructed following the same rules as the
items at time 1, but using different letters so that participants would not remember the rules.
The two conditions were completed in alternating 30s blocks of self-paced trials for a total of
five minutes. Participants were instructed to respond only when they were confident that they
were correct. Once a response was recorded, the next trial was presented without delay.
Between blocks, a 3s cue was presented to instruct them of the condition of the next block.

Behavioral Assessments

Behavioral testing occurred at both time points. We included three tests of working memory:
Digit Span (Wechsler Adult Intelligence Scale [27]), Computerized Spatial Span (Lumos Labs),
and Reading Span [28], a complex working memory measure that involved holding a series of
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Fig 1. Transitive Inference task and behavioral results. (A) Sample Relational Integration Trial: The scale on the far left indicates that green is heavier
than yellow, and the scale on the far right indicates that yellow is heavier than red. Therefore, the answer to the question is the left button (pressed with the
index finger) because green is heavier than red. (B) Sample Relational Processing Trial: The scale that is second from the right indicates that purple is
heavier than green, so the answer is the right button, pressed with the middle finger. (C) Accuracy. (D) Response times for correct trials.

doi:10.1371/journal.pone.0137627.g001

letters in mind while judging whether sentences made sense (we report Absolute Reading
Span). We also administered a test of spatial reasoning, the Cattell Culture Fair Intelligence
Test III [29]. This test is a set of four timed tasks in which participants select pictures that com-
plete an array, match an inferred rule, or have the same relationship to a prompt item. We
chose this test because it contains two versions that could be counterbalanced across sessions
by subject, and because it is sufficiently challenging that adult participants would not be
expected to perform at ceiling. The two versions, A and B, were counterbalanced across time
points, i.e., half of the participants took version A at time 1 and version B at time 2, and the
other half took version B at time 1 and version A at time 2. Finally, we collected a measure of
processing speed, Cross Out (Woodcock-Johnson III [30]), for a subset of participants.

PLOS ONE | DOI:10.1371/journal.pone.0137627 September 14,2015 5/18



@'PLOS ‘ ONE

Characterizing Changes Associated with Reasoning Practice

A. Reasoning: Rule Generation

1 2 3 4

FHGI BDCE WXZY KMLN

B. Control: Rule Application

1

2

3 4

OoPQS EFGH WXYZ JKLM

C. Task Performance

25 1

N
o
"

-i
(4]
2

e

# Questions
o

LSAT

Control

Rule Generation

LSAT

Time1|T|me2 Tlme1|T|me2 Time 1| Time 2 | Time 1| Time 2

Control

Rule Application

B|ncorrect
OCorrect

Fig 2. Letter Series task and behavioral results. (A) Sample Rule Generation Trial: Three of the four series are in alphabetical order, but with the middle
two letters switched in order. Choice 3 does not follow this rule, so it is the correct answer (pressed with the ring finger). (B) Sample Rule Application Trial:
Choice 1 is not in sequential alphabetical order (missing "R"), so it is the correct answer (pressed with the index finger). (C) Task Performance: Number of
trials answered correctly (solid, bottom of each bar) and number of trials answered incorrectly (hatched, top of each bar). The LSAT group answered
significantly more Rule Application questions correctly at time 2 compared to time 1 (p <.05). The control group answered significantly more Rule Generation
questions incorrectly at time 2 compared to time 1 (o <.05). No other measures changed significantly.

doi:10.1371/journal.pone.0137627.g002

FMRI Data Analysis
FMRI data preprocessing was consistent across both tasks, and was carried out using FEAT
(FMRI Expert Analysis Tool) Version 6.00, part of FSL (FMRIB's Software Library, www.
fmrib.ox.ac.uk/fsl). The following preprocessing steps were applied: motion correction using
MCEFLIRT [31], slice-timing correction using Fourier-space time-series phase-shifting, non-
brain removal using BET (Brain Extraction Tool [32]), spatial smoothing using a Gaussian ker-
nel of FWHM 5mm, grand-mean intensity normalization of the entire 4D dataset by a single
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multiplicative factor, and high-pass temporal filtering (Gaussian-weighted least-squares
straight line fitting, with sigma = 50.0s). Functional data were registered to anatomical space
using FSL’s implementation of Boundary-Based Registration (BBR) [33]. Anatomical images
were normalized to MNI standard space using linear registration, FLIRT [31,34].

For both tasks, the following covariates were included as nuisance regressors in the subject-
level general linear models (GLMs): six motion parameters, average white matter signal, aver-
age cerebrospinal fluid signal, and average out-of-brain signal. Time-series statistical analysis
was carried out using FILM with local autocorrelation correction [35].

For the event-related Transitive Inference task, the following behavioral regressors were
included: correct Relational Processing trials, correct Relational Integration trials, incorrect
Relational Integration trials, and omitted Relational Integration trials. The duration of each
trial was convolved with a double-gamma hemodynamic response function (HRF). We also
included temporal derivatives of these regressors. Incorrect and omitted Relational Processing
trials were not modeled because they were so infrequent. The two runs of the task were com-
bined in a fixed-effects analysis for each subject. For the blocked Letter Series task, we included
regressors for Rule Generation and Rule Application blocks, convolved with a double-gamma
HRF. We also included temporal derivatives of these regressors.

For both tasks, we calculated the difference between time 1 and time 2 with a fixed-effects
analysis for each subject. These difference images were submitted to mixed-effects analyses
(FLAME1+2) to test for: 1) average activation across groups and times; 2) changes between
time 1 and time 2 for each group; 3) between-group differences in change between time 1 and
time 2 (group x time ANOVA). Z (Gaussianised T/F) statistic images were thresholded using
clusters determined by Z > 2.3 and a corrected cluster significance threshold of p = 0.05 [36].
For visualization, results were registered to a standard template in Freesurfer 5.3 (fsaverage)
[37,38].

Contrasts of parameter estimates were extracted for each subject at both time points from
the clusters identified from the whole-brain analyses. Parameter estimates were averaged
within group and within time point. T-tests were conducted between groups at time 1. Parame-
ter estimates defined from the whole-brain group x time ANOV As were subjected to separate
t-tests within both the LSAT group and control group to determine whether the results were
driven by changes in one or both groups. In addition, parameter estimates defined from the
group x time ANOV As were submitted to group x time analyses of covariance (ANCOV As)
controlling for time 1 values, to investigate whether these interactions were driven by group
differences at time 1.

Results
Reasoning Tasks: Behavioral Results

On the Transitive Inference task, the LSAT group improved significantly on Relational Integra-
tion trial accuracy between time 1 and time 2 (Fig 1C; #(23) = 5.29, p < .0001), and improved
significantly more than the control group (group x time ANOVA F(1,44) = 7.7, p = .008). The
LSAT group also improved significantly on Relational Processing trial accuracy (#(23) = 2.59, p
=.02), but not significantly more than the control group (F(1,44) = 3.0, p = .09), likely due to
ceiling effects. The effect of group on Relational Integration accuracy improvement was signifi-
cant even after controlling for Relational Processing accuracy improvement (#(43) = 2.26, p =
.03), so the improvement in relational integration cannot be fully explained by improved pro-
cessing of individual relations. The LSAT group responded significantly faster for correct
responses at time 2 on both Relational Integration (#(23) = 3.72, p = .001) and Relational Pro-
cessing trials (#(23) = 3.36, p = .003); however, only the improvement in average response time
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(RT) on the Relational Processing trials was significantly greater than in the control group (F
(1,44) =4.53, p = .04) (Fig 1D). There was a trend towards a correlation between decreased RT's
and increased accuracy in both conditions (RI: 7(22) = -.34, p = .1; RP: r(22) = -.34, p = .1), indi-
cating that there was no speed-accuracy tradeoff. Further, the improvement in Relational Inte-
gration accuracy was significantly greater in the LSAT group than in the control group, even
after controlling for changes in RT (#(43) = 2.6, p =.01).

The Letter Series task was self-paced, so the number of questions attempted varied across
individuals. Therefore, the most informative behavioral measures were the numbers of cor-
rectly and incorrectly answered questions for each condition. The LSAT group answered more
Rule Application questions correctly at time 2 than at time 1 (Fig 2C; #(16) = 2.37, p = 0.03)
and the control group did not (p = .26), but this group difference was not significant (p = .48).
Neither group changed significantly from time 1 to time 2 on the number of incorrectly
answered Rule Application questions (ps > .2) or on the number of correctly answered Rule
Generation questions (reasoning condition) (ps > .2). The control group answered signifi-
cantly more Rule Generation questions incorrectly at time 2 compared to time 1 (#(22) = 2.63,
p =0.02), but the LSAT group did not change significantly on this measure (p = .5). There was
no significant difference between groups on change in the number of incorrect Rule Generation
questions (p = .33).

Reasoning Tasks: Neuroimaging Results

Across both groups and both time points, the conditions of both tasks that placed the strongest
demands on reasoning (Relational Integration trials in the Transitive Inference task and Rule
Generation trials in the Letter Series task) engaged partially overlapping areas of bilateral pre-
frontal, parietal, and occipital cortices, namely RLPFC, DLPFC, VLPFC, dorsal anterior cingu-
late, intraparietal sulcus, lateral occipital cortex, and lingual gyrus (Fig 3). Both tasks
additionally engaged areas of the striatum and thalamus.

Transitive Inference results are shown in Fig 4 and Tables 2-3. In the Relational Integration
condition, the LSAT group exhibited increased activation from time 1 to time 2 in bilateral
thalamus. The group x time ANOVA revealed a cluster in left middle frontal gyrus (DLPFC)
that exhibited a significantly greater decrease in activation for the LSAT group than for the
control group. This group difference was specific to the Relational Integration condition:
parameter estimates for the Relational Processing condition extracted from this cluster did not
show a change between time points (#(22) = .25, p = .8). In the Relational Processing condition,
the LSAT group exhibited increased activation in anterior cingulate cortex, decreased activa-
tion in left supramarginal gyrus, and decreased activation in precuneus from near zero to more
negative values. The precuneus decrease for the LSAT group was also significant in the whole-
brain group x time ANOVA. Parameter estimates for the Relational Integration condition
extracted from this cluster show a slight change between time points (R precuneus: #(22) = 2.4,
p =.02; L precuneus: #(22) = 2.6, p = .02). Whole-brain analyses for the control group revealed
no significant changes for either condition of the Transitive Inference task.

Table 3 shows results of follow-up analyses on parameter estimates extracted from clusters
identified at the whole-brain level for the Transitive Inference task. First, for the follow-up tests
of control group change within regions identified by change in the LSAT group, we observed
the following: thalamus, which demonstrated increased activation for Relational Integration in
the LSAT group, demonstrated a similar increase in the control group; in contrast, anterior cin-
gulate and parietal regions that demonstrated changes in the LSAT group for Relational Pro-
cessing did not demonstrate significant change in the control group. Second, for the follow-up
tests on regions identified by the group x time ANOVA, we observed that the decreases for the
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Letter Series
Overlap

Fig 3. Task activation. Activation is averaged across groups and times for the reasoning condition of each task compared to implicit baseline. Voxels that
were significant only in the Transitive Inference task are shown in blue. Voxels that were significant only in the Letter Series task are shown in yellow. Overlap
is shown in green. Statistical maps are corrected for multiple comparisons at Z > 2.3, p < .05. Results were registered to the fsaverage template in Freesurfer,
and displayed on inflated surfaces.

doi:10.1371/journal.pone.0137627.9003

LSAT group relative to controls were driven both by decreases within the LSAT group and also
by smaller increases within the control group. Further, ANCOV As controlling for time 1 acti-
vation revealed that these interactions were not driven by time 1 differences. Although these
latter analyses are necessarily biased (i.e., the p-values are inflated), they serve to clarify the
specificity of changes in the LSAT group and to exclude changes driven by the control group or
by time 1 differences between groups.

Letter Series results are shown in Fig 5 and Tables 4-5. In the Rule Generation condition,
the LSAT group showed increased activation in left occipital cortex. The superior aspect of this
cluster was observed in the group x time ANOVA, as were regions in the left superior parietal
lobule and right precuneus. The LSAT group also showed decreased activation in task-positive
left inferior frontal gyrus (VLPFC) and dorsal medial prefrontal cortex. Changes in activation
in the Rule Application condition appeared quite similar to those observed for Rule
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Fig 4. Changes in Transitive Inference task activation. Results are overlaid on the task activation observed across time points and across groups.
Statistical maps show results of whole-brain analyses and are corrected for multiple comparisons at Z > 2.3, p < .05. Parameter estimates for these clusters
are shown in Table 2.

doi:10.1371/journal.pone.0137627.g004

Generation: the LSAT group showed an increase in left occipital activation and decreases in left
inferior frontal gyrus and dorsal medial prefrontal cortex activation. Increased superior parietal
activation was observed in the group x time ANOVAs of both conditions. A region within left
lateral prefrontal cortex (superior frontal gyrus/middle frontal gyrus) showed a decrease both
in the LSAT t-test and in the group x time ANOVA for the Rule Application condition. Activa-
tion changes for the Rule Generation condition extracted from the clusters identified from the

Table 2. Transitive Inference cluster locations.

Condition Contrast Direction Region Voxels Center of Gravity (MNI)
X Y z
Relational Integration LSAT change Increase L and R thalamus 382 0 -14 5)
LSAT > Control Decrease L middle frontal gyrus 290 -46 17 31
Relational Processing LSAT change Increase L and R anterior cingulate 297 1 44 0
LSAT change Decrease L and R precuneus, L and R cuneus 908 2 -65 19
LSAT change Decrease L supramarginal gyrus 253 -65 -25 43
LSAT > Control Decrease R precuneus 269 12 -66 28
L precuneus 246 -12 -70 23

doi:10.1371/journal.pone.0137627.1002
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Table 3. Transitive Inference cluster statistics. ° clusters significantly differed between groups at time 1 (p <.05). LSAT t and Control t statistics resulted
from paired t-tests comparing Time 1 to Time 2 for each group. ANCOVA F statistics show the impact of group on activation change controlling for activation
attime 1.

Condition Contrast Direction Region LSAT Control LSAT (t) Control ANCOVA
® (F)
Time Time Time Time
1 2 1 2
Relational LSAT change Increase L and R thalamus 125 1870 1280 20.10 +¢ 2.1* N/A
Integration
LSAT > Control Decrease °L middle frontal gyrus 46.22 31.09 24.18 39.11 -4.02*** 3.67** -22.93***
Relational LSAT change Increase  °L and R anterior cingulate  -58.97 -38.96 -46.54 -46.93 t n.s. N/A
Processing
LSAT change Decrease L and R precuneus, L and 062 -23.19 -11.19 916 T n.s. N/A
R cuneus
LSAT change Decrease L supramarginal gyrus 35.74 15.07 2270 1518 ¢ n.s. N/A
LSAT > Control Decrease °R precuneus -8.30 -2852 -26.14 -13.58 -6.70*** 2.63* -25.13%**
°L precuneus -7.92 -31.64 -23.73 -11.44 -5.44%** 234* -21.05%**
*p < .05,
**p<.01,
***p <.001.

n.s. = not significant,

T = result determined by ROI-defining contrast,

N/A = not applicable due to bias by ROI-defining contrast.

Note that all follow-up tests of the LSAT > Control ROls are biased by the ROI-defining contrast, but nevertheless provide critical insight into the observed
interactions.

doi:10.1371/journal.pone.0137627.t003

Rule Application condition were significant (L SPL: #(14) = 2.7, p = .02; L MFG/SFG: #(14) =
3.7, p =.002), as were changes for the Rule Application condition in clusters identified from
the Rule Generation condition (L SPL: #(14) = 2.2, p = .05; R precuneus: #(14) =3.1, p =.009; L
occipital pole/L LOC: #(14) = 4.77, p = .0003). Whole-brain analyses for the control group
revealed a decrease in superior parietal lobule activation for both conditions, as well as a
decrease in left supramarginal gyrus and increase in left occipital pole activation for the Rule
Application condition.

Table 4 shows results of follow-up analyses on parameter estimates extracted from clusters
identified at the whole-brain level for the Letter Series task. First, among the regions that dem-
onstrated change within the LSAT group, only left occipital pole demonstrated corresponding
changes in the control group. Second, in follow-up analyses of ROIs identified in the group x
time ANOVA (all biased by ROI selection but nevertheless informative), the following ROIs
met the criteria that they demonstrated significant increase within the LSAT group, were not
primarily driven by changes in the control group (i.e., LSAT group changes were stronger than
control group changes, if any), and the group x time interactions were significant after control-
ling for time 1 values: right precuneus and left occipital cortex (Rule Generation) and left mid-
dle/superior frontal gyrus (Rule Application). Left superior parietal lobule did not meet these
criteria in either condition.

Results of Behavioral Assessments

Training did not transfer to measures of matrix reasoning (Cattell Culture Fair III), working
memory (Reading Span, Digit Span, Spatial Span), or processing speed (Cross Out) (Table 1).
The only test to show evidence of a practice effect was Reading Span. Both groups improved
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LSAT Change LSAT > Control

Increase Decrease Increase Decrease
I X . 5 ] . 23 I 5

Rule
Generation

Z = 38/64

Rule
Application

Z = 44/64

Fig 5. Changes in Letter Series task activation. Results are overlaid on the task activation observed across time points and across groups. Statistical
maps show results of whole-brain analyses and are corrected for multiple comparisons at Z > 2.3, p < .05. Parameter estimates for these clusters are shown
in Table 4.

doi:10.1371/journal.pone.0137627.g005

from Time 1 to Time 2 (LSAT: #(24) = 2.2, p = .04; Control: #(23) = 1.6, p = .12), and the
group X time ANOVA was not significant (p = .97). For the Cattell test, we found a significant
order effect, i.e., the change between time points differed by version (#(48) = 2.71, p =.009).
Participants who received version A at time 1 improved when they took version B at time 2
(mean gain 3.1 points, SD = 4.9), but participants who received version B at time 1 scored
about the same when they took version A at time 2 (M = -.46, SD = 4.3).

Discussion

Reasoning instruction led to improvement on an unpracticed test of transitive inference. After
three months of intensive practice with reasoning problems, participants demonstrated faster
processing of individual relations and more accurate relational integration. Preparation for the
LSAT consisted of reading multiple rules, and grouping or sequencing items according to the
rules. In contrast, the transitive inference task involved making quick judgments about pictures

PLOS ONE | DOI:10.1371/journal.pone.0137627 September 14,2015 12/18
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Table 4. Letter Series cluster locations.

Condition Contrast Direction Region Voxels Center of Gravity
(MNI)
X Y V4

Rule Generation LSAT Change Increase L occipital pole, L lateral occipital cortex 721 -15 -98
LSAT Change Decrease L frontal operculum, L inferior frontal gyrus 524 -41 26 1
LSAT Change Decrease L and R paracingulate gyrus 323 7 36 29
LSAT > Control Increase L superior parietal lobule 352 -24 -50 63
LSAT > Control Increase R precuneus 257 6 -51 68
LSAT > Control Increase L occipital pole, L lateral occipital cortex 236 -11 -86 36
Control change Decrease L superior parietal lobule 259 -19 -57 61

Rule Application LSAT Change Increase L occipital pole 694 -19 -99 0
LSAT Change Increase L lateral occipital cortex 249 -3 -81 49
LSAT Change Decrease L frontal operculum, L inferior frontal gyrus 550 -45 21 6
LSAT Change Decrease L superior frontal gyrus, L middle frontal gyrus 341 -20 18 63
LSAT Change Decrease L and R paracingulate gyrus 282 5 38 29
LSAT > Control Increase L superior parietal lobule 572 -25 -50 60
LSAT > Control Decrease L superior frontal gyrus, L middle frontal gyrus 283 -25 18 60
Control change Increase L occipital pole 293 -21 -99 2
Control change Decrease L superior parietal lobule, L precentral, L lateral occipital 509 -16 -51 61
Control change Decrease L supramarginal gyrus 367 -55 -32 42

doi:10.1371/journal.pone.0137627.t004

of colored balls. Therefore, the task improvements we observed demonstrated a considerable
degree of transfer. This finding is noteworthy, as transfer to unpracticed tests of reasoning has
been notoriously difficult to observe, not only in cognitive neuroscience studies [17,20], but
also in the classroom [39].

Reasoning instruction did not transfer to rule generation as measured by the Letter Series
task. There are many possible reasons for this null result, including insufficient statistical
power because this task was collected for fewer participants than the other task, and/or individ-
ual differences in the propensity to persevere on challenging trials. Subjects knew that they
could advance to the next trial as soon as they had responded, and differed in their compliance
with the instruction to proceed only once they were certain of the correct answer. These indi-
vidual differences, along with the small number of attempted trials, may have made this task
insensitive to subtle behavioral gains. Alternatively, it may be that the Letter Series task is too
far of a transfer task with respect to LSAT preparation. We conceptualize this task as involving
relational integration as well as the ability to generate and evaluate possible rules. This latter
ability, which involves inductive rather than deductive reasoning, was not practiced as part of
the LSAT course. Therefore, although the LSAT course may have improved relational integra-
tion, as suggested by the improvement on the Transitive Inference task, this boost may have
not been large enough to also improve Letter Series performance, especially if the cognitive bot-
tleneck is in the rule generation process.

Our approach to characterizing training-related changes in reasoning task activation was to
identify regions that showed a group by time interaction, as well as regions that showed a
change within the LSAT group. Group by time interaction analyses tend to identify regions
that show a change in the opposite direction in the control group. Indeed, we see this pattern in
the data presented here. It is possible that these regions randomly showed initial differences at
time 1, and regression to the mean in each group. For this reason, it is important to determine
whether changes are significant after controlling for parameter estimates at time 1. Follow-up
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Table 5. Letter Series cluster statistics. ° clusters significantly differed between groups at time 1 (p <.05). LSAT t and Control t statistics resulted from
paired t-tests comparing Time 1 to Time 2 for each group. ANCOVA F statistics show the impact of group on activation change, controlling for activation at

time 1.

Condition Contrast

Rule LSAT Change

Generation
LSAT Change
LSAT Change
LSAT > Control
Control change

Rule LSAT Change

Application
LSAT Change
LSAT Change
LSAT Change
LSAT Change
LSAT > Control
LSAT > Control
Control change
Control change
Control change

*p<.05

**p<.01,

**¥p < .001.

n.s. = not significant,
+

Direction

Increase

Decrease

Decrease
Increase

Decrease
Increase

Increase
Decrease

Decrease

Decrease
Increase
Decrease

Increase
Decrease

Decrease

= result determined by ROI-defining contrast,

Region

°L occipital pole, L lateral
occipital cortex

°L frontal operculum, L inferior
frontal gyrus

L and R paracingulate gyrus
°L superior parietal lobule
R precuneus

L occipital pole, L lateral occipital
cortex

L superior parietal lobule
L occipital pole

°L lateral occipital cortex

°L frontal operculum, L inferior
frontal gyrus

°L superior frontal gyrus, L
middle frontal gyrus

°L and R paracingulate gyrus
°L superior parietal lobule

°L superior frontal gyrus, L
middle frontal gyrus

L occipital pole

L superior parietal lobule, L
precentral, L lateral occipital

°L supramarginal gyrus

N/A = not applicable due to bias by ROI-defining contrast.
Note that all follow-up tests of the LSAT > Control ROls are biased by the ROI-defining contrast, but nevertheless provide critical insight into the observed

interactions.

doi:10.1371/journal.pone.0137627.t005

LSAT

Time
1

-3.42

16.32

13.73
-16.25
-11.18
-26.31

7.72
11.73

-1.54
25.51

20.43

8.12
-0.79
11.60

17.11
2.78

21.23

Time
2

29.28

-16.82

-11.93
6.59
26.92
2.24

10.29
43.08

38.45
-6.75

-14.57

-18.43
19.27
-20.66

40.68
9.01

17.99

Control
Time Time
1 2
19.37 27.01
2.73 1.19
6.26 1.91
210 -19.49
-1.11  -20.14
-7.70 -28.40
1496 -11.25
33.48 51.20
15.31 6.01
12.08 11.52
-3.07 0.17
-6.22 -9.87
16.10 -6.57
-11.52 -0.96
33.51 59.92
12.78 -14.36
37.01 10.82

LSATt

T
2.7*%

B
4.54%%x

1.

T
2.52*
-5.18%**

4.19***
n.s.

n.s.

Control

t

n.s.

n.s.

n.s.
-5.5*%%
-2.5%
-3.07**

2.93*%*

n.s.
n.s.

n.s.

n.s.
-5.84%**
n.s.

ANCOVA

F

N/A

N/A

N/A
16.33***
18.66***
22.9%**

N/A
N/A

N/A
N/A

N/A

N/A
21.78***
-7.59%%

N/A
N/A

N/A

analyses on the parameter estimates extracted from whole-brain results are biased, but are
meant to be exclusionary rather than confirmatory: clusters that did not meet the criteria out-

lined above are unlikely to reflect true changes associated with reasoning instruction.

For the Transitive Inference task, reasoning instruction was associated with decreased

DLPFC activation relative to the change in the control group during the reasoning condition of
the task. Training-related decreases in DLPFC activation have been interpreted as evidence of
greater neural efficiency, or less cognitive effort [40-43]. This interpretation has been criticized
as simply a reinterpretation of the data rather than a mechanism [44], but fMRI methodology

does not permit the exploration of cellular mechanisms. Reasoning instruction was also associ-

ated with decreased precuneus activation during the control condition of the task. In contrast
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to the group difference in changes in task-positive DLPFC activation, a decrease in task-nega-
tive precuneus activation in the trained group can be interpreted as a greater suppression of a
node of the default mode network (DMN). DMN suppression during task performance has
been associated with attention to the task [45], and better cognitive functioning more broadly
[46]. Intriguingly, DMN activation has been shown to increase—or, rather, become less sup-
pressed—as tasks become highly practiced and less effortful [47]. Observing the reverse pat-
tern, as we did here, suggests that the reasoning task has not become rote (which stands to
reason, because it was not explicitly practiced during LSAT preparation), but rather that
instruction was associated with an improved ability to harness cognitive resources.

Reasoning instruction was associated with increased recruitment of occipital cortex for both
conditions of the Letter Series task, possibly reflecting increased top-down control of visual
attention [48,49]. Decreases in medial and lateral prefrontal regions were also observed, which,
as described above, could reflect a reduction in the effort involved for attentional control to
achieve the same level of behavioral performance. Indeed, given prior analyses of resting-state
functional connectivity for this dataset, in which we found increases in temporal coupling
among distant brain regions as a result of reasoning instruction [10], it is plausible that the
increased occipital activation stems from increased functional connectivity with control-related
regions. Alternatively, it is possible that reasoning instruction drove a shift in the balance
between visuospatial and phonological processing strategies. In other words, participants may
have used visual imagery rather than rehearsing the alphabet to detect patterns within letters
sequences. This post hoc interpretation is based on the combination of observed increases in
occipital regions and concomitant decrease in left inferior frontal gyrus (VLPFC) activation
observed for the LSAT group. Although we did not observe significant behavioral benefits asso-
ciated with these neural changes, it is possible that the behavioral data were not as sensitive as
the neural data, or that a strategy shift did not translate to performance gains.

Across these two tasks, we observed preliminary evidence of three types of brain changes: 1)
greater neural efficiency (decreased activation in task-positive regions in both tasks), 2) greater
suppression of task-irrelevant networks (decreased activation in task-negative regions in the
Transitive Inference task), and 3) a change in the cortical regions involved, perhaps due to a
change in strategy in the Letter Series task. Future research with larger sample sizes and a larger
range of tasks will be necessary to confirm these patterns and investigate the relationships
between brain changes and behavioral improvements.

We found that reasoning instruction did not transfer to measures of either simple or com-
plex working memory. Because the working memory demands of complex reasoning problems
were intentionally minimized by the course instructors, it is not surprising that we did not
observe working memory gains here (but note that we have previously found that practicing
visuospatial reasoning games transfers to improved spatial working memory in children [1]).
We also did not find transfer to our measures of processing speed or matrix reasoning. How-
ever, the matrix reasoning results were inconclusive, given that the two versions of the Cattell
Culture Fair task differed in difficulty. More generally, it is difficult to draw strong conclusions
about transfer with only one test per cognitive ability [20,50]. Indeed, it is possible that transfer
was broader than we could observe with our limited test battery. In this way, functional and
structural brain imaging could provide clues as to which kinds of cognitive changes are neuro-
biologically plausible, informing the selection of cognitive assessments for follow-up studies of
cognitive transfer.

There are two important caveats regarding the results we have presented here. First, the
intensity and unique characteristics of the reasoning training paradigm limited the choice of
control groups, and therefore, for this first study, we opted for a passive control group with
well-matched demographics. Including a passive control group was critical to rule out
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explanations such as practice effects on the task, increased familiarity with the research envi-
ronment (especially the MRI scanner), and developmental changes. To confirm that the
observed effects were due specifically to reasoning instruction and not generally to participat-
ing in an intensive course, it will be necessary to conduct additional research with an active
control group. The use of an active control group would also alleviate the concern that the con-
trols may have participated in other, undocumented, activities that drove changes in brain and
behavior. To confirm that observed changes were not due to pre-existing differences between
the groups, future work will need to involve random assignment to either the trained or the
control group. The second caveat is that we present several behavioral and neuroimaging mea-
sures, which presents a multiple comparisons problem. As such, the results should be treated
as a complete, but preliminary, account of the data collected in this study. The purpose of this
work is to inspire more specific predictions about the scope of neural and behavioral changes
associated with real-world learning.

In conclusion, we showed that practice with reasoning problems led to improved perfor-
mance on an unpracticed task of relational integration, and shifts in neural recruitment during
reasoning tasks. We took the worthwhile and underutilized approach of including two func-
tional tasks to examine the reach of learning. This study provides more evidence that the neural
circuitry that supports reasoning is malleable in adulthood.
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