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Abstract
Is it possible to extract tethering forces applied on chromatin from the statistics of a single

locus trajectories imaged in vivo? Chromatin fragments interact with many partners such as

the nuclear membrane, other chromosomes or nuclear bodies, but the resulting forces can-

not be directly measured in vivo. However, they impact chromatin dynamics and should be

reflected in particular in the motion of a single locus. We present here a method based on

polymer models and statistics of single trajectories to extract the force characteristics and

in particular when they are generated by the gradient of a quadratic potential well. Using

numerical simulations of a Rouse polymer and live cell imaging of the MAT-locus located on

the yeast Saccharomyces cerevisiae chromosome III, we recover the amplitude and the dis-

tance between the observed and the interacting monomer. To conclude, the confined trajec-

tories we observed in vivo reflect local interaction on chromatin.

Author Summary

Is it possible to recover the local environment, the external and internal forces acting on a
polymer from a single locus trajectories? To study this question, we resolve this reverse cell
biology problem by developing a method that uses in vivo live single locus trajectories to
extract physical forces applied on chromatin. We applied the method to the statistics of
the S. cerevisiaeMAT-locus motion and recover tethering forces acting on the chromatin.
The local confinement of a chromatin locus can either be due to crowding or to local inter-
actions with partners such as the surface of the nuclear membrane, other chromosomes or
nuclear bodies that cannot be directly measured. We conclude here that confined trajecto-
ries of a single chromatin locus can be generated by local tethering interactions. This
approach is applicable to cells under various conditions, such as during double-stranded
DNA break repair.
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Introduction
What can we learn about the local environment, the external and internal forces and the chro-
matin itself from the motion of a chromatin locus? This motion can be driven by local diffusion
and/or forces between monomers of the model polymer [1–3]. Monomers motion is highly
correlated due the polymer hierarchy of relaxation times [4, 5], leading in particular to anoma-
lous diffusion [6, 7]. This anomalous behavior is well documented for chromatin loci [8–10]
and we propose here to examine the effect of local external interactions on a locus motion.
Much of the chromatin dynamics is reflected in the motion of a single chromosomal locus and
conversely, a locus motion allows probing the chromatin dynamics [11, 12] at tens of nanome-
ters and millisecond scales resolution [13–15]. When this motion is described as a free or con-
fined Brownian motion, classical statistical tools such as the mean square displacement (MSD)
and radius of confinement [16–18] can be used to extract the values of physical parameters.
Other methods have been developed to extract kinetic rates about molecular events from forces
imposed in pulling experiments [19, 20] or in the context of atomic force microscopy [21, 22].

Polymer models can account for various forces acting on chromatin, such as bending elas-
ticity, internal rigidity, torsion and Lennard-Jones interactions [2]. In addition, the chromatin
fiber can experience local fluctuations driven by ATP [23, 24], identified by micrometer long-
range coherent [25] and active motion [26]. Other interactions can be due to repulsive forces
or self-avoiding interactions with other chromatin parts, attractive forces driven by anchoring
a locus at a nuclear pore [27] or tethering to the spindle pole body through the centromere [28]
or with other chromosomes mediated by protein-protein interactions. While these interactions
are local and extend to tens or hundreds nanometers, they can influence the polymer dynamics
and in particular on this polymer, even if positioned far away from the interacting site (Fig 1a).
We present here a method based on polymer models and statistical analysis of single particle
trajectories, to estimate the local interactions acting on chromatin (Fig 2a). A sufficiently large
ensemble of single tagged locus trajectories is the key ingredient of the method. When applied
forces are stationary over the time course of the trajectory recording, we extract interactions or
their mirror deterministic forces by deriving formulas that link the empirical velocity distribu-
tion of a locus to forces applied to a distant single monomer. The present method allows
distinguishing external forces applied on a single monomer from intrinsic forces acting on
monomers. The principle and the difficulty of the method can be understood as follows: for a
single stochastic particle modeled by the Smoluchowski’s limit of the Langevin equation, the
velocity of the particle v is proportional to a force f applied on the particle plus an additional
white noise, summarized as

gv ¼ f þ g
ffiffiffiffiffiffi
2D

p
_w; ð1Þ

where γ is the friction coefficient, D the diffusion coefficient and w is the normalized Wiener
process. Thus by averaging over the ensemble of velocity realizations, it is possible to recover
the first moment, which is the force field [29]. However, for a polymer chain, there are internal
forces between monomers and thus, the difficulty that needs to be resolved here, as the data are
measured at a single monomer, is to separate the internal forces acting on the measured mono-
mer from the external ones acting on a monomer further away. This problem is resolved here,
but the inversion formula to recover the force depends on the polymer model. When the exter-
nal applied force is the gradient of a quadratic potential (second inversion formula) we explicit
the formula analytically and show that the motion of the observed monomer is characterized
by an effective force, with an effective elastic spring constant kc that we compute. We simulate
a Rouse polymer [4], which serves as a model for the chromatin structure [8, 30]. The locus
motion cannot simply be approximated as an Ornstein-Uhlenbeck (OU) process, with an
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effective harmonic potential well, but we show that the effective force acting on the observed
monomer decays with the distance along the chain between the interacting and the observed
monomer. The effective spring constant kc decays slower with this distance for a general class
of polymers (β–polymer [31]) compared to Rouse. Applying the present approach to live cell-
imaging data of the MAT-locus in yeast [32], which appears to be constrained shows that con-
fined trajectories can either be due to local crowding or to direct interactions. Using Single
Particle Trajectories (SPTs), we extract forces acting on that locus and show that trajectory
localization is mediated by direct forces. This result validates the model predictions and the
relation between the strength of a force applied on the chromatin locus and the radius of con-
finement. We conclude that local forces and not only crowding do confine chromatin motion.
The present approach can further be applied to other situations, such as yeast telomeres
anchored to the nuclear periphery [32], changes in single locus dynamics or repositioning fol-
lowing the induction of double-stranded DNA breaks.

Fig 1. A polymer interacting with multiple potential wells. (a) Schematic representation of a polymer,
where some monomers (red) interact with fixed harmonic potential wells, while monomer c (blue) is observed.
(b-c) Stochastic trajectories of three monomers, part of a polymer, where the two extremities interact with two
potential wells fixed at the origin and at position μ = (5b, 0, 0) respectively. The middle monomer trajectory
(blue) is more extended than the two others, as shown for a polymer of length N = 21 (b) and N = 41 (c).

doi:10.1371/journal.pcbi.1004433.g001
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Results

Polymer framework
When an external force, which is the gradient of the potential Uext(R) is applied to a Rouse
polymer, the interaction is described by the energy

�ðRÞ ¼ k
2

XN
j¼2

ðRj � Rj�1Þ2 þ Uext Rð Þ; ð2Þ

where R = (R1, R2, . . ., RN) is the ensemble of monomers, connected by a spring of strength κ =
dkB T/b

2. b is the standard-deviation of the distance between adjacent monomers [4], kB the
Boltzmann coefficient, T the temperature and d the dimensionality (dim 2 or 3). In the Smolu-
chowski’s limit of the Langevin equation [33], the dynamics of monomer Rn is described by

dRj

dt
¼ �DrRj

�ðRÞ þ
ffiffiffiffiffiffi
2D

p dwj

dt
; ð3Þ

for j = 1, . . . N and each wj is an independent d-dimensional white noise with mean zero and

Fig 2. Dynamics of interacting versus observed locus. (a) Schematic representation of the nucleus, where one locus is observed and followed with a
florescent label while another (non-visible) chromatin locus is interacting with another nuclear element. (b-c) Stochastic trajectories of monomers, part of a
polymer (N = 30) where one extremity interacts with a harmonic potential well of strength κ = 2KB T/b2. When the observed monomer is the interacting
monomer (red), the trajectory is well localized (b). When the middle monomer of the polymer is tracked, the trajectory (blue) is more extended (c).

doi:10.1371/journal.pcbi.1004433.g002
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variance 1, D is the monomer diffusion coefficient. We will describe specifically the field ofrRj

Uext(R) in the next subsection.
When the chromatin motion is described by Rouse chain, the effective diffusion coefficient

can be estimated from data. We shall choose a reference monomer Rc, which represents the
tagged locus. One of the key results of the present analysis is the following formula, which links
the velocity or first moment of the monomer of Rc (averaged over all realizations) to the poly-
mer configuration distribution:

General inversion formula:

lim
Dt!0

EfRcðt þ DtÞ � RcðtÞ
Dt

jRc ¼ xg ¼ �D
Z
O

dR1::

Z
O

dRNðrRc
�ÞPðRjRc ¼ xÞ; ð4Þ

where E{.jRc = x} denotes ensemble averaging under the condition that the tagged monomer is
at position Rc = x. Formula 4 is generic and does not depend on the particular expression of the
external forces acting on the polymer. Moreover, we do not impose here any restriction on the
domain O where the polymer evolves. The polymer is reflected on the boundary @O. The con-
ditional probability P(RjRc = x) is computed from equilibrium probability distribution function
(pdf) P(R1, R2, . . ., RN), which satisfies the Fokker-Planck equation (FPE) in the phase space O
× ..O� R

3N,

0 ¼ DPðRÞ þ r � ðr� PðRÞÞ; ð5Þ
with boundary condition

�
@P
@ni

þ P
@�

@ni
¼ 0 for Ri 2 @O for i ¼ 1::N;

where ni is the normal vector to the boundary @O at position Ri.

The external field of forces −rUext(R)
A permanent force located at position μ can be approximated at order two by a harmonic well.
We suppose that this force is applied to monomer n. The force applied on Rn is the gradient of
the harmonic potential (Fig 1a)

UextðRnÞ ¼
1

2
kðμ� RnÞ2 ; ð6Þ

where k is the force constant. The monomer n that experiences the force is different from the
tagged monomer c and we shall assume that n< c. As we shall see now, this potential well
affects the dynamics of the entire polymer and specifically the observed locus c.

Extracting an applied force from the ensemble of an observed monomer
To extract the strength of the potential well applied on monomer n, from the measured velocity
of locus c, we derive an analytical expression for formula 4. First, the force acting on monomer
c, when its position is x is given by

Fc
Rc¼x ¼ �rRc

�ðRc�1;Rc;Rcþ1ÞRc¼x

¼ �kðx� Rc�1Þ � kðx� Rcþ1Þ;
ð7Þ

where the potential ϕ is defined in Eq (2). We take for now a potential well localized at the ori-
gin (μ = 0) in Eq (6). Moreover, the pdf at equilibrium is the Boltzmann distribution,
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conditioned on Rc = x, that is

PðRjRc ¼ xÞ ¼ N e��ðR1 ;:::;Rc�1 ;x;Rcþ1 ;::;RN Þ; ð8Þ

where the normalization factor is

N �1 ¼
R

O
::

R
O

Q
i 6¼c

PðRjRc ¼ xÞ: ð9Þ

Finally, computing Gaussian integrals (see S1 Text for details) we find that the normaliza-
tion factor is (for μ = 0, otherwise we need to replace x by x − μ),

1

N
¼ ð2pÞN�1k2�N

ðkþ jc� njkÞ
� �3=2

e�
x2ðk2þðc� nþ 1ÞkkÞ

2ðkþ ðc� nÞkÞ : ð10Þ

Substituting Eqs (7)–(10) into Eq (4), we obtain (S1 Text) an explicit inversion formula for the
mean velocity of monomer c.

Second inversion formula:

lim
Dt!0

EfRcðt þ DtÞ � RcðtÞ
Dt

jRcðtÞ ¼ xg ¼ �Dkcnx;

kcn ¼ kk
kþ ðc� nÞk :

ð11Þ

Expression 11 is one the key result here: it links the average velocity over empirical trajectories
of the observed monomer c to a permanent force applied on monomer n. The coefficient kcn
depends on the harmonic well strength k, the inter-monomer spring constant κ and is inversely
proportional to the distance jn − cj between monomers n and c along the chain. Furthermore,
the steady state variance Rc = limt ! 1 Rc(t) of the monomer’s position (see S1 Text) can be
related to the dimension d and the coefficient kcn by

hR2
c i ¼

d
kcn

; ð12Þ

when hRci = 0. Relation 12 is reminiscent of long time asymptotic of classical Ornstein-Uhlen-
beck processes. The dynamics of monomer Rc generated by Brownian simulations is shown in
Fig 2b and 2c. In the limit of large k (pinned monomer), an analogue of formula 12 was used
for analyzing chromatin organization [28] and DNA [34]. Inversion formula 1 assumes the
Boltzmann distribution for the single monomer and that the entire polymer has reached equi-
librium at the time scale of the simulation or the experiment (from Eq 8). Finally, formula 1
reveals how internal and external polymer forces mix together to influence the monomer veloc-
ity. It also shows the explicit decay of the force amplitude with the distance between the
observed and forced monomer.

Locus dynamics for a polymer constricted by two potential wells
We now study the consequences on the motion of a DNA locus of two forces acting on two
monomers, located on two opposite sites of the tracked locus. The two monomers n andm (n
<m) are interacting with two distinct potential wells applied at positions μn and μm (Fig 1a),
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the total potential energy of the Rouse polymer is

UextðRÞ ¼
1

2
knðRn � μnÞ2 þ

1

2
kmðRm � μmÞ2; ð13Þ

In that case, the average steady state position of the tagged monomer c can be computed
exactly and is given by (see S1 Text for details)

hRci ¼

μnknðkþ jm� cjkmÞ þ μmkmðkþ jc� njknÞ
knkmjm� nj þ ðkn þ kmÞk

; n < c < m;

knμnkþ kmμmðkþ jm� njknÞ
knkmjm� nj þ kðkn þ kmÞ

; n < m < c

8>>>><
>>>>:

and similarly to the previous inversion formula, we can relate the velocity of Rc to the applied
forces, summarized in this new formula

Third inversion formula

lim
Dt!0

EfRcðt þ DtÞ � RcðtÞ
Dt

j~xg ¼ �Dkcnm~x; ð14Þ

where ~x ¼ x� hRci and

kcnm ¼

kcn þ kcm; for n < c < m

ð2kþ jm� njkÞkk
k2 þ j2c�m� njkkþ jðm� nÞðc�mÞjk2 ; for n < m < c

8>>><
>>>:

where kcn and kcm are given by Eq (11) (see S1 Text). For n<m< c, in the limitm − n� 1, we
obtain the limiting formula kcnm * jc −mj−1 κ. Thus, the spring coefficient depends on the dis-
tance to the closest anchoring point only. However, when n< c<m, the effective spring coeffi-
cient depends on the distance between the two wells. Finally, the variance of the monomer
position with respect to its mean position Eq (14) is given by

hðRc � hRciÞ2i ¼
d

kcnm
: ð15Þ

The computations are described in the S1 Text. We conclude at this stage that the distance
scanned by the tagged monomer is proportional to the distance to the anchoring point (see Fig
1b and 1c). Several interacting forces can certainly be considered, but for a given locus, the two
adjacent neighboring interacting monomers are probably enough to characterize the motion,
because other forces should be screen by these proximity forces. We shall now extend the
inversion formula to other polymer model with a prescribed anomalous exponent.

Inversion formula for polymer models with a prescribed anomalous
exponent
Some refinement of the chromatin dynamics can be accounted for by a class of polymer models
(β-polymer), generalizing the classical Rouse model. These polymer models account for long-
range interactions between monomers, that decay with the distance along the chain [31].
Moreover, the characteristic of this class of model is to specify long-range forces acting on
monomers so that a given monomer has a prescribed anomalous exponent [31]. Conversely,
once the anomalous exponent is measured, it is then possible to construct a polymer with such
given exponent. In that context, deriving an inversion formula for such polymer models is key
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to relate the velocity of a tagged locus to the external force, where the difficulty is to subtract
the long-range internal forces between monomers, associated with the β-polymer to the total
force and thus to recover the external forces applied to a different monomer than the one
observed.

We recall that for a polymer of Nmonomers, the dynamics of monomer c is govern by

Rc ¼ ac
0u0 þ

XN�1

p¼1

acpup; ð16Þ

where

acp ¼

ffiffiffiffi
1

N

r
; p ¼ 0

ffiffiffiffi
2

N

r
cos ðc� 1=2Þ pp

N

� �
; otherwise:

ð17Þ

8>>><
>>>:

and

dup
dt

¼ �Dp~kpup þ
ffiffiffiffiffiffi
2D

p d~wp

dt
; ð18Þ

where D0 = D/N and Dp = D (p> 0), ~wp are white noises with mean zero and variance 1, the

coefficients are ~kp ¼ 4ksin pp
2N

� �b
(2> β> 1). At intermediate time, the cross-correlation func-

tion of a locus behaves as

hðRcðt0 þ tÞ � Rcðt0ÞÞ2i / ta; ð19Þ

with a ¼ 1� 1
b [31]. When a gradient force (see Eq (6)) acts on monomer Rn of a β-polymer,

the expectation of the velocity of monomer c (c> n) is:
Generalized inversion formula:

lim
Dt!0

EfRcðt þ DtÞ � RcðtÞ
Dt

jRcðtÞ ¼ xg ¼ �Dkcnðb;N; l;mÞx; ð20Þ

where μ = 0 and

kcnðb;N; l;mÞ ¼ Ac;c �
X
l;m6¼c

Al;cAm;c
~C�1

l;k ; ð21Þ

where ~C is a block matrix, the i-th block of which is

~Ci
j;k ¼ Ai

j;k þ kdi;ndj;n; ð22Þ

and [31]

Aj;k ¼
XN�1

p¼0

~kpa
j
pa

k
p: ð23Þ

To conclude, inversion formula Eq 20 for a β-polymer is similar to the one derived for a Rouse
polymer Eq (11), but the dependency with the parameters is now implicit. Numerical simula-
tions of Eqs 21–23 reveal that the apparent spring constant kcn(β, N, l,m) decays slower with
the distance jc − nj (between the interacting and the observed monomer) for smaller β (Fig 3a
and 3b). When the chromatin experiences several interactions between distant sites along the
chain, the external interactions propagate along the chain.
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Recovering a local force acting on a chromatin locus
In the previous section, we showed how to extract the local interaction between the underlying
polymer and the surrounding environment from the trajectories of an observed locus. When
the force is applied far away from the tagged locus, it is possible to recover the strength of the
force and the distance where it was applied from the statistics of trajectories. The three inver-
sion formulas we derived above can be used for different polymer models. In this section, we
apply these formulas to extract parameter from numerical simulations and then we present a

Fig 3. Recovering an external force of an interacting polymer. (a)Apparent force acting on a tagged monomer. The apparent spring constant kc is
computed from formula 11 and 20, for a polymer of length N = 100, where monomer n = 50 interacts with an harmonic potential Eq (6) with k = 2kBT/b

2, while
κ = 3kBT/b

2. The constant kc is computed for increasing distances |c − n|, between the observed and the interacting monomers for β = 2 (Rouse polymer)
(blue), β = 1.5 (green) and β = 1.2 (red). (b-d) Brownian simulations of a Rouse polymer (N = 30), where the first monomer interacts with a harmonic well at
the origin (k = 2kBT/b

2). A scatter plot (blue asterisk) of the steps distribution (dRi) against the position for the first monomer (b), middle monomer (c) and end
monomer (d). The data clouds are fitted with a linear regression procedure (green line). The apparent spring constant kc Sim is empirically estimated from
simulations using Eq (24) and compared with the theoretical value Eq 11 (kcn = kκ/(κ+|c-n|k)). We found kc sim = 2±91, 0.18±0.03, 0.084±0.01 and kcn = 2;
0.182; 0.098 respectively, for b, c, d. In the simulations, Δt = 0.01b2/D.

doi:10.1371/journal.pcbi.1004433.g003
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computational method to recover forces (chromatin interactions) from trajectories of the
MAT-locus imaged in living yeast cells.

Empirical estimators to extract from Single particle trajectories, forces acting on a single
locus. To extract the empirical effective spring coefficient kc from a trajectory given by
Rc(hΔt) (h = 1..Np), where Np is the number of points, we start by computing the differential
quotient in Eq 11. This first step allows extracting the mean position of the locus. Once the
steady state is reached, the time average of the locus position is computed from

hRci �
1

Np

XNp

h¼1

RcðhDtÞ:

When the polymer interacts with a single interacting potential, the average position hRci esti-
mates the location where the force is applied. An upper bound for the number of points Np is

of order (τr/Δt), where tr ¼ jc�njb
Dkpb is the relaxation time for a portion of the chain between c and

n of a β-polymer [31].
In the next step, we assume that the diffusion coefficient D has been estimated, which can

be done using second moment estimators [29]. We also consider that the inter-monomer
spring constant κ is known, which reflects an intrinsic property of the chromatin. To estimate
the force from the constant kcn in Eq 11, we use the linearity of the force with respect to the
position of the locus (see Eq 6). The step size (R(Δt(h + 1))−R(Δth)) is thus proportional to the
locus position (R(Δt(h + 1))−hRci) (Fig 3b–3d). In the isotropic case, the apparent force con-
stant kcn acting on monomer c is computed from the trajectories of Rc(t)

kc �
1

dðNp � 1Þ
Xd

i¼1

XNp�1

h¼1

Ri
cððhþ 1ÞDtÞ � Ri

cðhDtÞ
DDtðRi

cðhDtÞ � hRi
ciÞ

; ð24Þ

(d is the dimension and Np is the number of points). To demonstrate the efficiency of inversion
formula 1, we ran stochastic simulations of a Rouse polymer and applied the procedure
described above with formula 26 to extract from trajectories the coefficient kcn (Fig 3b–3d). A
potential well is applied on the first monomer n = 1, and we present three cases where the
tagged monomer is the first (c = 1), the middle (c = N/2) or the last one (c = N). Using a linear
regression, we recover the theoretical apparent force constant kcn in formula (6) from stochas-
tic simulations. Once the parameter kcn is computed, we are left with two unknown parameters:
the spring force k and the distance jc − nj. For a strong anchoring (k� κ), we can approximate
kc� κjc − nj−1. In that case, the empirical effective spring constant can be used to estimate the
distance to the interacting monomer.

For a long enough sampled trajectory and a force derived from a stationary potential well,
the effective spring coefficient can be recovered directly either from the empirical estimator Eq
(24) or by using the reciprocal of the variance Eq (12). However, trajectories are often mea-
sured with a small sampling time Δt allowing probing the fine behavior of the chromatin and
recovering accurately the diffusion coefficient. The total length of a trajectory is however lim-
ited by photo bleaching effects [35]. Thus, the length of a trajectory may be shorter than the
equilibration time scale, and thus acquired before equilibrium is reached. In that case, formula
Eq (24) can still be applied to recover the parameter kc, while formula Eq 12, which implies
equilibrium, cannot be used. The standard error of the mean position is s=

ffiffiffiffiffi
Np

p
(where by defi-

nition σ2 = hRc − hRci)2i) and the standard error of the variance is s2
ffiffiffiffiffiffiffiffi
2

Np�1

q
[36], thus a good

estimate of the mean (position) requires less points than for computing the variance.
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Recovering forces from the auto-correlation function. How is the force applied to a
polymer reflected in the auto-correlation function C(c, t1, t2) = h[Rc(t1)−hRc(t1)i][Rc(t2)
−hRc(t2)i]i of the tagged monomer c? We shall demonstrate here that the auto-correlation
function can be used to recover the spring constant k. Indeed, by decomposing the external
potential Eq (6) on the basis up, that diagonalizes the Rouse potential Eq (17), we get

UextðRnÞ ¼
1

2
k μ�

XN�1

p¼0
anpup

	 
2

ð25Þ

and the Rouse Eq (18) for the polymer are

dup
dt

¼ D kanpμ� ððanpÞ2kþ ~kpÞup

� �
� Dkanp

XN�1

q¼0;q 6¼p

an
quqx þ

ffiffiffiffiffiffi
2D

p d~wp

dt
: ð26Þ

for p = 0..N−1. The force applied on monomer n couples the modes dynamics (there are non-
diagonal terms). However, when the strength of the coupling term is relatively weak

ðanpÞ2k � ~kp, we can neglect the coupling. This will be the case for higher modes given that k

< κ and N large. Thus the expansion of the auto-correlation function is

Cðc; t1; t2Þ ¼
d
k
e�Dðan

0
Þ2kðt2�t1Þ þ

XN�1

p¼1

dðacpÞ2
ðanpÞ2kþ ~kp

e�Dððanp Þ2kþ~kpÞðt2�t1Þ: ð27Þ

Thus the auto-correlation function decays exponentially and the exponent of the dominant

term is proportional to Dðan0Þ2k. Thus when the diffusion coefficient D is known, it is possible
to extract the spring constant k.

Extracting forces from live cell imaging in yeast. We now apply the present analysis to
the dynamics of a chromatin locus. We monitored the time fluctuations of the chromatin fiber
by following a GFP tagged DNA locus in the yeast S. cerevisiae (see materials and methods and
[24]). We followed the MAT-locus (Fig 4a and 4b) for 100sec with a time resolution of
Δt = 0.33sec and found that the trajectories were exploring a small region of the nuclear vol-
ume. The trajectory shown in Fig 4a was contained in a ball of radius 221nm (the nucleus is
approximately a ball of the radius 1.5μm). Thus the locus is restricted to a small region of the
nucleus. To extract the possible forces constraining this motion, we analyzed independently
the trajectories of the MAT-locus in several cells. As cells are observed in the G1 phase, this
analysis assumes that interactions on the chromatin do not change transiently, but rather have
reached steady state, compared to the time scale of few minutes of the recording.

Within the hypothesis that the chromatin was interacting locally with other nuclear ele-
ments, we extracted the overall force resulting from these interactions by applying formula Eq
(24) to estimate the effective force constant kc from the sampled trajectories. The trajectories
are acquired in three dimensions. However, due to the precision difference in the XY plane
(65nm×65nm) compare to the z axis (300nm), we only used the x− and y− projections to evalu-
ate the constant kc.

Applying the extraction procedure to 21 cells, we found a large heterogeneity between cells
for the values of kc (Fig 4c), with a mean of hkci = 67 ± 22kB T/μm

2. This heterogeneity suggests
that in different cells the locus interacts differently with various nuclear elements. To verify
that the motion of the chromatin locus is indeed impacted by external interactions, we plotted
in Fig 4c, the force constant kc for each cell with respect to the locus position averaged over tra-

jectories, (empirically estimated by hR2
c i ¼ 1

T

PNph¼1ðRcðhDtÞ � hRciÞ2). The distribution of

points confirms the prediction of the power law relation 17 between kc and hR2
c i, given by
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kc ¼ 3:0

hR2c i0:94
. This relation was predicted by formula Eq (12), although the expected value for the

coefficient is d = 2 and not 3. This relation should hold for long trajectories so that the equilib-
rium distribution is sufficiently sampled. This condition may not hold in general, but the
power law decay suggests that the origin of the localization is due to interactions.

To test that the polymer model we are using, gives a self-consistent framework for interpret-
ing the MAT-locus dynamics, we computed the auto-correlation function for the MAT-locus
trajectory [33],

CðtÞ ¼ 1

Np � t

Xd

i¼1

XNp�t

k¼1

Ri
cðkDtÞRi

cððkþ 1ÞDtÞ; ð28Þ

in Fig 4d. Fractional Brownian motion has been previously used to model the dynamics of

Fig 4. Single locus dynamics andmean applied force on the Yeast chromatin. (a) Trajectory of the chromatin MAT-locus located on chromosome III in
the yeast SS. The locus trajectory (red) inside the nucleus is projected on the XY plane. The nuclear membrane (gray scale) was stained with the
nup49-mCherry fusion protein. The time resolution is Δt = 0.33 seconds during an acquisition time of approximately 100 seconds. (b) Three-dimensional
trajectories: the color codes for time propagation. Initially (t = 0) the trajectory is red and gradually becomes green (t = 100sec). The convex hull is the nuclear
envelope reconstruction. (c) Scatter plot of the effective spring coefficient kc and the variance (R2

c) of the locus trajectory estimated in two-dimensions,
extracted for 21 cells. The constant kc is estimated using formula Eq (24), fitted to a power law, kc ¼ a

hR2
cib
, with a = 3.03 ± 1.05 kBT and b = 0.94 ± 0.1. (d) Auto-

correlation function computed using formula Eq (28) for the trajectory shown in a. The fit uses the sum of two exponentials: CðtÞ ¼ a1e
�t=t1 þ a2e

�t=t2 , with τ1 =
45.7 ± 0.005s and τ2 = 2.4 ± 0.35 s, a1 = 109 ± 5 × 10−3 μm2, a2 = 8.38 ± 4.94 × 10−3 μm2.

doi:10.1371/journal.pcbi.1004433.g004
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chromatin loci [1, 18, 37]. For fractional Brownian motion, the auto-correlation function C(t)
decays as a sum of power laws [38]. Thus we first fitted C(t) with a power law, but could not
obtained a satisfactory approximation, suggesting that the description of the locus motion as a
fractional Brownian motion alone is not sufficient. However, we obtain a good fitting of the
function C(t) by a sum of two exponentials

CðtÞ � a1e
�t=t1 þ a2e

�t=t2 ;

with τ1 = 45.7 ± 0.005sec,τ2 = 2.4 ± 0.35sec and a1 = 109 ± 5 × 10−3 μm2, a2 = 8.38 ± 4.94 × 10−3

μm2. This fit suggests that the auto-correlation function for the locus position is well described
by a sum of two exponentials, as predicted by formula Eq (27) derived for general polymer
model.

We conclude that polymer models, such as Rouse or β− polymer account for the dynamics
of a chromatin locus. In that context, it was possible to extract from SPTs, characteristics of the
DNA locus, its dynamics, external forces and some properties of the polymer model. At this
stage, we cannot determine the nature and physical origin of the anchoring forces. Forces may
occur at the centromere, which is anchored to the nuclear membrane in yeast through interac-
tion with the spindle pole body and/or at the telomeres, which are interacting with the nuclear
membrane through several pathways [39]. The large variability of the locus position suggests
that the extracted forces can happen at sub-telomere regions or with other chromosomes.
Future investigations are needed to clarify the nature of these measured forces.

Discussion
We have shown here how to extract from single locus trajectories, chromatin tethering medi-
ated by interactions with its surrounding environment. The presented method allows recover-
ing an external force applied on chromatin although this one occurs far away from the
observed locus. We note that this analysis is valid, although the recorded trajectories are possi-
bly shorter than the relaxation time of the anchored chromatin. However, it is not yet possible
to discern the forces from a locus positioned between two different interacting potential wells
from the one generated by a single force located far away from the observed locus. In the com-
plex nuclear environment, interactions of different strength can be randomly and transiently
distributed along the chromatin. However, the resulting force on a single locus should mostly
be generated by the sum of the two nearest interacting forces (derived from two stable potential
wells). The distribution of the spring values kc shown in Fig 4c can be attributed to different
interaction strength (k—Eq 6) or to the distances between the observed locus and the nearest
interacting wells Eq (15). Other traps beyond the two nearest ones should certainly have an
additional but lower contribution that needs to be estimated.

A refined description of interactions on the chromatin would require monitoring simulta-
neously several loci. The present approach is also applicable for higher order organized poly-
mer, modeled by β-polymers and we extracted here in vivo interactions of the chromatin with
other nuclear element that were reflected in the motion of the MAT-locus. These interactions
are responsible for constraining the locus in a small fraction of the nucleus.

The motion of the chromatin is driven by both thermal fluctuations and by active ATP-
dependent forces [25]. While our modeling is relevant to extract an interaction that does not
change during the time acquisition of the trajectory, the spring constant kc that would be
extracted during an active chromatin motion could be differentiated from the thermal one by
projecting the dynamics perpendicular to the direction of motion. Finally, the present approach
could also be used to study how chromatin modifications occurring during gene transcription
or double stranded DNA repair affect the dynamics of a given locus.
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Materials and Methods

Experimental procedure: Yeast and growth conditions
Yeast strains used in this study are all derivatives of the JKM179 strain [11] which is MATα
ade1 leu2-3, leu2-112 lys5 trp1::HisG ura3-52. The strain was obtained through insertion of
both a Lac operator array (256 lacOp repeats), a Nup49-mCherry fusion and a non-tetrameriz-
ing lac repressor-GFP fusion under the HIS3 promoter into JKM179. To serve as a static refer-
ence point in the nucleus, the Spc42 protein was fused to yEGFP. All insertions or deletions
were verified by PCR and phenotypic assays.

Movies analysis. Microscopy Images were captured with a ×100 magnification oil-immer-
sion objective (1.46 numerical aperture) on a Leica DMI 6000B microscope (Leica Microsys-
tems) equipped with a piezoelectric translator (PIFOC, Physik Instrumente), a ORCA-Flash
4.0 camera (Hamamatsu) an illumination system with leds (Lumencore) and rapid imaging
software (Metamorph). Wavelengths of the leds used are 475nm (for GFP, 205mW), and/or
575nm (for mCherry, 300MW). Two-minute movies with a stack of 10 optical slices separated
by 300nm every 338ms. Each slice was exposed for 30ms for a total of 338ms per stack. All
microscopy was done in a temperature-controlled environment set to 25°C. The raw images
were deconvolved using the Autoquant software. The movies were then tracking using ImageJ
[40] with the Mosaic macro [41] to produce 3D+t trajectories. Further processing and analysis
of the movies was done using Matlab.

Brownian simulations. To simulate the dynamics of the polymer, we used the Euler’s
method to discretize the equations into

dRn ¼ rn�ðRÞdt þ
ffiffiffiffiffiffi
2D

p
dw; ð29Þ

where ϕ(R) is given by Eq (2), D is the diffusion coefficient and w are the three dimensional
white Gaussian noise, with mean zero and variance 1.

Supporting Information
S1 Text. This Supplementary information contains the detail of the computations and anal-
ysis to extract the strength of a potential well for a Rouse polymer.
(PDF)
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