
Mahimahi: A Lightweight Toolkit for
Reproducible Web Measurement

Ravi Netravali, Anirudh Sivaraman, Keith Winstein,
Somak Das, Ameesh Goyal, and Hari Balakrishnan
MIT Computer Science and Artificial Intelligence Laboratory

{ravinet, anirudh, keithw, somakrdas, ameesh, hari}@csail.mit.edu

ABSTRACT
This demo presents a measurement toolkit, Mahimahi, that records
websites and replays them under emulated network conditions.
Mahimahi is structured as a set of arbitrarily composable UNIX
shells. It includes two shells to record and replay Web pages,
RecordShell and ReplayShell, as well as two shells for network em-
ulation, DelayShell and LinkShell. In addition, Mahimahi includes
a corpus of recorded websites along with benchmark results and
link traces (https://github.com/ravinet/sites).

Mahimahi improves on prior record-and-replay frameworks in
three ways. First, it preserves the multi-origin nature of Web pages,
present in approximately 98% of the Alexa U.S. Top 500, when re-
playing. Second, Mahimahi isolates its own network traffic, allow-
ing multiple instances to run concurrently with no impact on the
host machine and collected measurements. Finally, Mahimahi is
not inherently tied to browsers and can be used to evaluate many
different applications.

A demo of Mahimahi recording and replaying a Web page over
an emulated link can be found at http://youtu.be/vytwDKBA-8s.
The source code and instructions to use Mahimahi are available at
http://mahimahi.mit.edu/.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement Techniques; H.3.5
[Information Storage and Retrieval]: Online Information Ser-
vices

Keywords
Page Load Time; Record-and-Replay; Web Measurements

1. INTRODUCTION
Mahimahi is a toolkit that can be used to evaluate how effective

techniques that aim to make the Web faster perform over different
network conditions. This question is of interest to network protocol
designers who seek to understand the application-level impact of
new multiplexing protocols, Web developers who wish to speed
up access to their websites, and browser developers who need to
evaluate how changes to their DOM and JavaScript parsers impact

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s). Copyright is held by the author/owner(s).
SIGCOMM’14, August 17–22, 2014, Chicago, IL, USA.
ACM 978-1-4503-2836-4/14/08.
http://dx.doi.org/10.1145/2619239.2631455.

User%Computer%

Private%Network%Namespace%

Browser%

HTTP%
Proxy%

Recorded%
Site%

Internet%

(a) RecordShell

User%Computer%

Private%Network%Namespace%

Browser%

Apache%
Server%

CGI%

Recorded%
Site%

Apache%
Server%

CGI%
Apache%
Server%

CGI%

(b) ReplayShell
Figure 1: Arrows indicate direction of traffic

page load times. Mahimahi is structured as a set of UNIX shells,
each of which we describe below.

2. MAHIMAHI’S SHELLS
RecordShell. RecordShell (Figure 1a) records HTTP data sent dur-
ing actual page loads and stores it on disk for subsequent replay.
RecordShell spawns a man-in-the-middle proxy, equipped with an
HTTP parser, on the host machine to store and forward all HTTP(S)
traffic both to and from an application running within RecordShell.

At the end of a page load, a recorded folder contains a file for
each request-response pair seen during that record session. Record-
Shell is compatible with any unmodified browser because recording
is done transparently without modifying browser settings.

ReplayShell. ReplayShell (Figure 1b) mirrors a website using con-
tent recorded by RecordShell. ReplayShell accurately emulates the
multi-origin nature of websites by spawning an Apache 2.4.6 Web
server for each distinct IP/port pair seen while recording.

To operate transparently, ReplayShell binds its Apache Web
servers to the same IP address and port number as their recorded
counterparts. ReplayShell creates a separate virtual interface for
each distinct server IP. All browser requests are handled by one of
ReplayShell’s servers, each of which can access the entire recorded
content for the site. The Apache configuration redirects incoming
requests to a CGI script which compares each request to the set of
all recorded request-response pairs to locate a matching response.

DelayShell. DelayShell emulates a link with a fixed minimum one-
way delay. All packets to and from an application running inside
DelayShell are stored in a packet queue. A separate queue is main-
tained for packets traversing the link in each direction. Each packet
is released from the queue after the user-specified one-way delay,
enforcing a fixed per-packet delay.

https://github.com/ravinet/sites
http://youtu.be/vytwDKBA-8s
http://mahimahi.mit.edu/


0

0.25

0.5

0.75

1

0 2000 4000 6000 8000

C
um

ul
at

iv
e 

P
ro

po
rt

io
n

Page Load Time (ms)

ReplayShell
DelayShell 0 ms

LinkShell 1000 Mbits/s

Figure 2: DelayShell’s and LinkShell’s low overhead

Machine 1 Machine 2
CNBC 7584±120 ms 7612±111 ms

wikiHow 4804±37 ms 4800±37 ms

Table 1: Mean ± standard deviation for page load times across
machines

LinkShell. LinkShell is used to emulate a link using packet-
delivery traces. It is flexible enough to emulate both time-varying
links such as cellular links and links with a fixed link speed. When
a packet arrives into the link, it is directly placed into either the
uplink or downlink packet queue. LinkShell releases packets from
each queue based on the corresponding packet-delivery trace. Each
line in the trace is a packet-delivery opportunity: the time at which
an MTU-sized packet will be delivered in the emulation.

3. SUITABILITY FOR ACCURATE
MEASUREMENT

Low overhead. Mahimahi imposes low overhead on page load
time measurements. We illustrate this in Figure 2, which shows that
when loading the 500 websites in our corpus, DelayShell with 0 ms
imposes only a 0.15% overhead on median page load time com-
pared to ReplayShell alone, while LinkShell with a 1000 Mbits/s
trace adds 1.5% on top of ReplayShell.
Reproducibility. Table 1 shows a summary of the distribution
of page load times when loading two Web pages, www.cnbc.com
and www.wikihow.com, 100 times each on two separate host ma-
chines. The mean page load times for each site are less than 0.5%
apart across the two machines, suggesting that Mahimahi produces
comparable results on different host machines. Similarly, the stan-
dard deviations are all within 1.6% of their means, suggesting that
Mahimahi produces consistent results on a single host machine.

4. NOVELTY
This section describes several new features in Mahimahi as com-

pared with existing record-and-replay tools such as Google’s web-
page-replay [1].
Multi-origin Web pages. Unlike other tools, ReplayShell pre-
serves the multi-origin nature of websites: websites today com-
monly include content belonging to several distinct origin servers.
As we show below, preserving the multi-origin nature of websites
is critical to the accurate measurement of page load times.

A non-trivial number of websites today are multi-origin. Using
our corpus of recorded sites, we computed the distribution of phys-
ical servers per website in the Alexa U.S. Top 500. The median
number of servers is 20 while the 95th percentile is 51. Only 9
Web pages use a single server.

To evaluate the impact of not capturing the multi-origin nature
of websites, we modify ReplayShell to serve all content from a

30 ms 120 ms 300 ms
1 Mbit/s 1.6%, 27.6% 1.7%, 10.8% 2.1%, 9.7%

14 Mbits/s 19.3%, 127.3% 6.2%, 42.4% 3.3%, 20.3%
25 Mbits/s 21.4%, 111.6% 6.3%, 51.8% 2.6%, 15.0%

Table 2: 50th, 95th percentile page load time difference without
multi-origin preservation

0

0.25

0.5

0.75

1

0 1500 3000 4500 6000 7500

C
um

ul
at

iv
e 

P
ro

po
rt

io
n

Page Load Time (ms)

Actual Web
Replay Single Server

Replay Multi-origin

Figure 3: Multi-origin preservation yields measurements closer to
the Web

single Web server. Table 2 shows the median and 95th percentile
difference in page load time between when multi-origin nature is
and is not preserved, over nine different network configurations.
Although the page load times are comparable over a 1 Mbit/s link,
not capturing the multi-origin nature yields significantly worse per-
formance at higher link speeds.

We further illustrate the importance of multi-origin preservation
by comparing measurements collected using ReplayShell to real
page load times on the Web. Figure 3 shows the distribution of
page load times when loading www.nytimes.com 100 times on the
Web and inside ReplayShell with and without multi-origin preser-
vation. For fair comparison, we record the minimum round trip
time to www.nytimes.com for each page load on the Web and use
DelayShell to emulate this for each page load with ReplayShell.

ReplayShell with multi-origin preservation yields page load
times that more accurately resemble page load times collected on
the Internet. The median page load time is 7.9% larger than the
Internet measurements, which is less than the 29.6% discrepancy
when the multi-origin nature is not preserved.

Isolation. Each namespace created by Mahimahi is separate from
the host machine’s default namespace and every other namespace.
As a result, processes running inside the namespace of a Mahimahi
tool are completely isolated from those running outside. This
means that host machine traffic does not affect the measurements
reported by Mahimahi, and Mahimahi’s network emulation does
not affect traffic outside of Mahimahi’s network namespaces. This
enables many different configurations to be concurrently tested on
the same host machine, and in complete isolation from each other.
In contrast, web-page-replay modifies DNS resolution on the host
machine and affects all traffic from the host machine.

Beyond browsers. Although most existing record-and-replay
frameworks only replay browser page loads, Mahimahi’s design
allows it to replay any application that uses HTTP. For instance, a
mobile device emulator, such as for Android [2], can be used to
analyze and measure mobile application performance.

References
[1] http://code.google.com/p/web-page-replay.
[2] http://developer.android.com/tools/devices/emulator.html.

www.cnbc.com
www.wikihow.com
www.nytimes.com
www.nytimes.com
http://code.google.com/p/web-page-replay
http://developer.android.com/tools/devices/emulator.html

	Introduction
	Mahimahi's shells
	Suitability for AccurateMeasurement
	Novelty

