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Abstract—The electron-hole (EH) Bilayer Tunneling Field-

Effect Transistor promises to eliminate heavy-doping band-tails 
enabling a smaller subthreshold swing voltage. Nevertheless, the 
electrostatics of a thin structure must be optimized for gate 
efficiency. We analyze the tradeoff between gate efficiency versus 
on-state conductance to find the optimal device design. Once the 
EH Bilayer is optimized for a given on-state conductance, Si, Ge, 
and InAs all have similar gate efficiency, around 40-50%. Unlike 
Si & Ge, only the InAs case allows a manageable work function 
difference for EH Bilayer Transistor operation. 

Index Terms—Electron hole Bilayer, quantization, 
semiconductor device modeling, tunneling, tunneling field effect 
transistor (TFET) 

I. INTRODUCTION 
N order to reduce the power consumption of modern 
electronics, the operating voltage needs to be significantly 

reduced. The electron-hole Bilayer Tunneling Field-Effect 
Transistor (EH Bilayer TFET) is a new device concept that 
has the potential for reduced voltage operation [1-4]. In 
general, TFETs may achieve a low operating voltage by 
overcoming the thermally limited subthreshold swing voltage 
of 60mV/decade, but results to date have been unsatisfying 
[5, 6]. The best subthreshold swings have been measured at a 
current density of around 1nA/µm, and performance degrades 
significantly at larger currents. 

TFETs promise a small subthreshold swing voltage by 
abruptly turning on when the conduction band on the n-side 
aligns with the valence band on the p-side of a tunneling 
junction[7]. In actuality, the band edges are not perfectly sharp 
and there are states that extend into the band gap[8]. This is 
seen in the Urbach tail of optical absorption 
measurements [9, 10]. Below the band-edge energy, the 
absorption coefficient falls off exponentially due to a residual 
band-tail density of states. The same band-tail density of states 
will unfortunately smear the abrupt response and increase the 
subthreshold swing voltage of TFETs. In intrinsic GaAs the 
optical absorption falls off at a semilog slope of 
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Fig. 1: (a) The electron-hole Bilayer TFET structure with the current path 
(red) and inversion layers (blue). 

 
SUrbach≡17meV/decade due to phonons [10]. If the GaAs is 
heavily doped to 1020/cm3, an impurity band forms and the 
absorption falls off more gradually, ~58meV/decade [11]. By 
eliminating doping in the tunneling junction, the EH Bilayer 
TFET avoids problems associated with these doping band-
tails. 

A EH Bilayer TFET consists of a p+ source, an n+ drain, and 
an undoped channel bound by offset top and bottom gates as 
shown in Fig. 1. The gates are oppositely biased to create an 
electron (hole) gas along the top (bottom) gate extending to 
the n+ drain (p+ source). The device turns on when sufficient 
potential is applied between the gates to align the energy 
levels, enabling vertical band-to-band tunneling (BTBT) 
across the channel. The band diagram along the tunneling path 
is shown in Fig. 2(a). The voltage difference between the gates 
can be accommodated by the work-function difference 
between the n and p-type gates. In addition to eliminating 
doping, the EH Bilayer TFET also has a higher on-state 
conductance as it provides a large overlap area to compensate 
for limited tunneling transmission. The double quantum 
confinement also assists the on-state conductance [12-14]. 

In this paper we focus on minimizing the subthreshold 
swing voltage, while maintaining a high on-state 
conductance1. We do this by optimizing the dc gate biases, the 
body thickness and the channel material. (Si, Ge, InAs and an 
InAs/AlGaSb heterostructure were considered). First we 
analyze the different factors that influence the subthreshold 
swing in Section II. We find that maximizing the gate 
efficiency (the ability of the gate to change the energy levels) 
has the largest impact on minimizing the subthreshold swing. 
Consequently, we analyze the tradeoff between gate efficiency 
versus on-state conductance, to find the optimal device design.  

1 We consider conductance rather than current, as the speed of a low 
voltage device is limited by its RC time and not by its current density. 
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Fig. 2: (a) Band diagram with quantum well ground states shown. 
(b) Capacitive voltage divider model of the EH Bilayer device. 

 
In Section III, we describe an analytical model for the EH 
Bilayer TFET. Finally, we discuss the results of the 
optimization in Section IV and compare the analytic model to 
a numerical simulation in nextnano++.  

II. EH BILAYER SUBTHRESHOLD SWING VOLTAGE 
An ideal TFET would rely upon a sharp band edge and would 
switch abruptly from zero-conductance to the desired on-
conductance when the electron and hole eigenstate energies 
overlap. Unfortunately the band-edges are not perfectly sharp 
and thus there is a finite density of states (DOS) extending into 
the band gap, smearing out the desired abrupt response. 
Conventional TFET modeling does not account for the 
smeared band edge DOS. Consequently, we want to find the 
subthreshold swing voltage (SS) while accounting for the band 
edges. The subthreshold swing voltage is defined by: 

( ) 1/)log( −≡ GdVIdSS  (1) 
In order to evaluate SS, we need to include the band tails in 

the current model[15] 2: 

∫ ∂××××−∝ EEDEDffI VCVC )()()( T  (2) 

The difference in the Fermi occupation probabilities between 
the conduction and valence bands is (fC-fV) and the 
transmission probability of a tunneling electron is T. DC(E) 
and DV(E) are the conduction and valence band DOS. The 
product DC(E)× DV(E) is effectively a joint density of states. 

2  The band tail states will not have a well-defined E-k relationship and are 
likely to be localized. Consequently, conservation of transverse momentum 
will not hold when tunneling to band tail states. In this case, the current will 
be proportional to both the initial and final density of states. When the bands 
are overlapping conservation of momentum should be accounted for, resulting 
in a single density of states as is done in [12-13] 
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Fig. 3: The conduction and valence band density of states, DC(E) and DV(E), 
are shown. Below the band edges the density of states falls off exponentially. 
The product, DC(E)×DV(E) is also shown. 
 
This model is valid when tunneling to band tail states where 
the electron and hole eigenstates, E’C and E’V respectively, are 
not aligned as shown in Fig. 2(a). DC(E) is given by: 
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Above the band edge the DOS is given the by ideal DOS, D’C, 
and is a constant with respect to energy in 2d. Below the band 
edge, we assume that the DOS falls off exponentially with a 
semilog slope of V0 and constant pre-factor DC0. An 
exponential falloff is typical of band edges as seen in the 
optical absorption edge [11]. Similarly, the valence band DOS 
will be given by: 
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Here D’V is the ideal 2d hole DOS and DV0 is a constant 
pre-factor for the band tail DOS. For simplicity, we take the 
exponential slope, V0, to be the same for conduction and 
valence band edges. 

 The combined DOS is given by DC(E)× DV(E). Ideally, 
no current would flow, but due to the band tails, an 
overlapping density of states exists as shown in Fig. 3. This 
gives: 
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This is for the case where E'C> E'V. EOL is the overlap energy 
between the electron and hole eigenstates shown in Fig. 2(a) 
such that: EOL = (E'V - E'C) < 0. Since the combined DOS has a 
maximum plateau in the bandgap region between E'C and E'V, 
we can approximate the current integral as: 

0/)( qVEE
E VC OLC

V
eEffI ×





 ∂××−∝ ∫

′
′

T  (6a) 

0/
0

qVEOLeII ×∝  (6b) 
where the tunneling pre-factor is:  

∫
′
′

∂××−≡ C

V

E
E VC EffI T)(0  (7) 

Thus we have arrived at a simplified model for the tunneling 
current when band tails are present. Now we can compute the 
subthreshold swing voltage by plugging (6) into (1): 
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In the first term we took the derivative with respect to the 
voltage across the semiconductor bilayer, VBody, since 
tunneling transmission probability, T, depends sensitively on  
VBody. In the second term we took the derivative with respect 
to EOL as the band edge density of states depends on the band 
alignment. Finally, the subthreshold swing voltage in (8) can 
be expressed in the following form by replacing each term 
with the appropriate symbol to highlight the four contributing 
factors: 
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SDOS is the semilog slope of the joint band edge density of 
states in mV/decade:  
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Stunnel is the semilog slope measuring how steeply the 
tunneling conductance pre-factor changes with respect to the 
voltage across the body, VBody: 

)log( 0IddVS Bodytunnel =  (11) 

It is given in mV/decade and I0 is given by Eq. (6). Stunnel is the 
steepness that results from changing the thickness of the 
tunneling barrier with a changing bias as it is typically 
dominated by the voltage dependence of T. 
ηquant is the change in the band edge quantum level 

alignment with respect to the body voltage, VBody due to level 
shifting. It is given by )( BodyOL qVddE . It can be significantly 

less than 1 because the shape of the triangular tunneling 
barrier is changing as VBody changes, which causes the 
confinement energy to change [2].  

The pre-factor efficiency, ηel is the electrostatic efficiency 
and can be found from the circuit model in Fig. 2(b). It is 
given by GBody dVdV . 

A small subthreshold swing voltage can be achieved by 
having either a small Stunnel or a small SDOS. Nonetheless, as 
discussed in [7], a small subthreshold swing voltage, cannot be 
achieved at high current densities by barrier thickness 
modulation, Stunnel. High current densities require a high 
electric field, and any additional voltage will only result in a 
small change in the electric field and thus produce only a 
small change in the tunneling current. We verify this by 
computing Stunnel in Section IV. Accordingly, at high current 
density, we find that Stunnel is unfortunately >60mV/decade. 
Consequently, we must rely upon a sharp band edge density of 
states, SDOS, to achieve a small subthreshold swing voltage. 

By design, the EH Bilayer structure eliminates doping to 
improve the electronic SDOS. To further improve the 
subthreshold swing, we focus on improving the gate 
efficiency. The overall gate efficiency, ηgate, is the change in 
the band alignment, EOL, with respect to the gate bias, VG and 
is: 

elquant
G

Body

Body
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OL
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qdV
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q
ηηη ×=×=≡

11  (12) 

We need to optimize the gate efficiency that is reduced due to 
both electrostatics, ηel, and to quantum level shifts, ηquant. 

III. EH BILAYER MODELING 
To model the EH Bilayer TFET we consider the situation 
where the bias on the n-gate (VG1) is changed while the bias on 
the p-gate (VG2) is held constant. We calculate the carrier 
density by assuming a single Fermi level, EF, as shown in 
Fig. 2(a). This is valid when there is a small source drain bias, 
corresponding to low voltage operation. 

To be competitive with current CMOS transistors we 
assume an effective gate oxide thickness (EOT) of 0.8nm, and 
we consider a gate overlap region, LC, shown in Fig. 1, of 
10nm. For a given body thickness, channel material and Fermi 
level position, we first find the gate efficiency: 
ηgate≡∆EOL/(q∆VG1). Consequently, we need EOL and VG1 in the 
on and off states. The device will turn on once the bands 
overlap and EOL=0. In section III.A we find the gate biases, 
VG1 and VG2 required to achieve EOL=0 and a given Fermi 
level position. In section III.B we determine EOL and VG1 in 
the off state to find ηgate. After finding the gate efficiency, we 
find the tunneling conductance and the channel conductance in 
Section III.C and III.D respectively. In Section III.E we 
consider how the analysis would change for a heterojunction. 

A. On-State Circuit Analysis 
The first step of the analysis is to find the electron and hole 

quantum confinement energies, E1e and E1h, and the voltage 
across the body, VBody, in the on-state. The overlap energy, 
EOL, is given by [2]: 

)( 11 heGBodyOL EEEqVE ++−=  (13) 

This can be seen from Fig. 2(a). At zero overlap the voltage 
across the body is equal to the band gap, EG, plus the 
confinement energies. The confinement energies are: 
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where α represents either electrons (e) or holes (h) and tBody is 
the thickness of the bilayer semiconductor body. The effective 
masses are tabulated in Table 1. We assumed an infinite 
triangular well model for the confinement energies. 

In the on-state, the eigenstates are aligned such that EOL=0 
and so we can solve (13) for VBody and then find E1e and E1h. 

For a given Fermi level position, we can find the n-channel 
and p-channel potential, V1 and V2 as shown in Fig. 2. The 
potential is measured from the center of the band gap. From 
Fig. 2, we find: 
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TABLE I 
MATERIAL PROPERTIES USED 

 Si Ge InAs GaSb AlSb 
Eg 1.12 0.66 0.354 - - 

Eg.eff - - - 0.15[23] 0.26[23] 
εS 11.7 16.2 15.15 15.7 12 
γ1 4.27[24] 13.4[25] 20.0[26] 13.4[26] 5.18[26] 
γ2 0.32[24] 4.25[25] 8.5[26] 4.7[26] 1.19[26] 
γ3 1.46[24] 5.69[25] 9.2[26] 6.0[26] 1.97[26] 
*
,tem  0.38[27] 0.48[27] .023[27] - - 

*
, zem  0.92[27] 0.12[27] .023[27] - - 

*
tunnelm

 

0.46[5] 0.058[5] 0.043 - - 
Eg,eff is the effective heterojunction band gap across the tunnel interface. The 
effective masses are calculated assuming a [100] wafer orientation. The 
transverse masses are density of states masses while the z direction mass is for 
confinement energy. The hole masses are computed from 

)/(1 21
*

, γγ −=zhm  and )/(1 21
*

, γγ +=zhm . For Si, lze mm =*
,  

and tte mm 2*
, = . For Ge )2/(3*

, lttlze mmmmm +=  and *
,

*
, 4 zete mm = . The 

tunneling mass is given by   (26)&(27). All values for AlXGa1-XSb are linearly 
interpolated. 

 
 Fneg EEEqV ∆−+= 11 2/    (15) 

and 
Fphg EEEqV ∆−−−= 12 2/   (16) 

At eigenstate alignment (the on-state of the device), the energy 
difference between the electron eigenstate and the Fermi level, 
∆EFn, is equal to the energy difference between the hole 
eigenstate and the Fermi level, ∆EFp: FFpFn EEE ∆≡∆=∆ . 

Given a Fermi level position, ∆EF, we can find the electron 
charge, Qn, and hole charge, Qp, in the channel: 

( ))exp(1lnC,2D TkENqQ BFnn ∆−+××=   (17) 

( ))exp(1lnV,2D TkENqQ BFpp ∆+××=   (18) 

where 

Tk
m

N B
te

DC 2

*
,

2,
π

=   and  Tk
m

N B
th

DV 2

*
,

2,
π

=   (19) 

 The effective masses are given in Table 1. Next we can use 
the capacitive voltage-divider model in Fig. 2(b) to solve for 
the corresponding gate voltages: 

( ) 111 GSBodynG CCVQVV ++=   (20) 

( ) 222 GSBodypG CCVQVV +−=   (21) 

where CS is the EH Bilayer body capacitance. CG1 and CG2 are 
the n-gate and p-gate oxide capacitances. We use the surface 
accumulation charge to capture the effect of the quantum 
capacitance. We also assumed that all the accumulation charge 
is located at the oxide interface. VG1 and VG2 provide the dc 
bias, or work function difference, needed to align the 
eigenstates and achieve a desired Fermi level position. 

B. Off-State Circuit Analysis 
In order to find the gate efficiency, we start with the 

off-state and then compute ηgate≡∆EOL/(q∆VG1). We define the 
gate efficiency this way because the quantum capacitance is 

non-linear and this definition contains the average gate 
efficiency. First we need to determine how much the overlap 
energy, ∆EOL, needs to change in order to turn the tunneling 
off. A rough estimate is sufficient, since varying ∆EOL from 
50 to 200 meV only changes ηgate by a few percent. 
Consequently, we take ∆EOL= -100 meV. If the band edge 
density of states SDOS is 20 mV/decade (corresponding to the 
optically measured steepness), ∆EOL= -100 meV will give 5 
decades of on/off ratio. 

To find VG1 in the off state, VG1,OFF, we need to start at the 
opposite gate VG2 and work our way backwards through the 
capacitive voltage-divider model in Fig. 2(b). Since we are 
keeping the back-gate voltage, VG2, fixed, we use the same 
value of VG2 that was found in the on-state from the capacitive 
voltage-divider model (21). Next, we need to find the body 
voltage (VBody) across the semiconductor and the confinement 
energies (E1e and E1h) in the off state. We do this by solving 
the overlap energy definition (13) for EOL=-100 meV. Now we 
can find V2 by solving the capacitive voltage divider 
model (21) self-consistently for V2. In (21), the charge 
density, pQ , is a function of V2 through ∆EFp from  (16). 

Once we have V2, we know V1=V2+VBody. Then we can solve 
the capacitive voltage-divider model (20) for VG1 using (15) to 
define ∆EFn for the charge density. This gives us VG1 in the 
off-state, VG1,OFF. As we already found VG1 in the on-state, 
VG1,ON, at end of Section III.A, we can finally compute the gate 
efficiency as ∆EOL/q(VG1,ON-VG1,OFF). 

C. Tunneling Conductance 
 As we are tunneling between two quantum wells we need 

to use the 2d-2d tunneling current formula [12, 13]: 

( ) ( )

2'

1132

)2cosh(
1)(

4

435.0435.0

TkE
F

Tk
q

EE
π

WLqmG

BFb

he
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tunnel

∆
×××

××=

T
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Where the tunnel transmission probability is: 










 −
=

qF
EmF Gtunnel

22
)(exp)(

2/32/1*πT   (23) 

and the electric field across the semiconductor layer is: 
BodyBody TVF /=   (24) 

The length of the overlap region is LC and the width is W as 
illustrated in Fig 1. The confinement energies, E1e and E1h, are 
given by (14). The Fermi level position  relative to the closest 
eigenstate is given by ∆E’F. If EF is below E’C and E’V then 
∆E’F=∆EFp, given by (15). If EF is above E’C and E’V then 
∆E’F=∆EFn, given by (16). If EF is in between E’C and E’V 
then ∆E’F should be set to zero. 
 The tunneling probability is based on a two band WKB 
tunneling model and is given in [16]. Some care is needed in 
choosing the appropriate masses. The joint density of states 
mass is given by: 

( ) 1*
,

*
,

* /1/12
−

+= thteJDOS mmm   (25) 
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Fig. 4: Band diagram incorporating a heterojunction in the EH Bilayer. 

 
The tunneling mass can be computed from [16]: 

( ) 1*
,

*
,

* /1/12
−

+= zhzetunnel mmm   (26) 
The transverse masses, m*

e,t, and m*
h,t, as well as the masses in 

the tunneling direction, m*
e,z, and m*

h,z, are given in Table I. 
The WKB model and reduced mass work well in InAs 

where the carriers in a single conduction band, tunnel to a 
single valence band [17]. However, in silicon and germanium 
the band gap is indirect and there are many interacting bands 
and so the WKB model breaks down [17]. Consequently, we 
use an experimentally fitted tunneling effective mass derived 
in [5]. While [5] used a single band tunneling model, we used 
a two band tunneling model and need to adjust the mass: 

( ) *
1Band

2*
2Band )3/24()/22( mm ×= π   (27) 

This comes from comparing the tunneling equation in [5] 
with  (23). A summary of all the material parameters used is 
given in Table 1. 
 We use the tunneling formula in (22) because it more 
accurately captures the benefits of quantum confinement in 
increasing the current, as discussed in the appendix. For 
simplicity, we assume that tunneling only occurs in the 
vertical direction, perpendicular to the gates, and neglect the 
two dimensional electrostatics and any lateral tunneling. 

D. Channel Conductance 
The last step is to calculate the channel conductance. The 

channel needs to have a minimum charge available to carry 
the current that has tunneled, or else the on-state conductance 
will be limited by the channel resistance instead of tunneling 
resistance. The device conductance will be given by the lower 
of the channel or tunneling conductance. At a high 
conductance near 1 mS/um, the channel conductance becomes 
the limiting conductance. Consequently, a smaller ∆EF is 
required to increase the number of electrons.   

The channel conductance is given by a ballistic model [18]: 
( )qTkWqnG BTs /2ν=   (28) 

where 

qQnmTk nsteBT / and /2 *
, == πν   (29) 

E. Heterojunction Analysis 
Using a heterojunction as shown in Fig. 4 can reduce the  

∆Ef =18 
meV

E1e= 330 
meV

tn=14 
nm

E1h=230 
meV

tp=2.6 
nm

InAs Al0.6Ga0.4Sb

Eg,eff=100 
meV

VG1 =
0.48 V

VG2 =
-0.47 V

 
Fig. 5: The band diagram for the optimal heterojunction structure with an on 
state conductance of 1 mS/μm and maximum bias or Work Function 
difference<1eV is shown. The narrow p-well eigenstate energy changes little 
as the bias changes, helping the gate efficiency. 

 
required dc bias or work function difference to achieve the 
desired band alignment. A heterojunction will also slightly 
improve the gate efficiency. We consider an InAs/AlGaSb 
heterojunction since the band alignment at the 
hetero-interface, or effective band gap, Eg,eff, can be widely 
tuned by changing the Al content.  

In order to account for the heterojunction, a few changes 
must be made. First we need to change the body capacitance: 

( ) 1
,,

−+= pspnsnS ttC εε   (30) 

Here we have used n and p subscripts to refer to the device 
properties on the n and p sides, respectively. The electric field 
in each material is also different: 

( )pspnsnBodyn ttVF ,, εε ×+=   (31) 

( )nsnpspBodyp ttVF ,, εε ×+=   (32) 

Next, we need to update the tunneling probability to 
account for the fact that we are tunneling through two 
triangular barriers. The triangular barrier heights on the 
n and p sides (EB,n and EB,p) are given by: 

ennnB EtqFE 1, −×=   (33) 

hpppB EtqFE 1, −×=   (34) 

The tunneling barriers are shaded in gray in Fig. 4. Looking at 
the p-side, the tunneling begins when the hole eigenstate 
energy enters the forbidden region. The height of the 
triangular tunneling barrier is given by (34). If a confinement 
energy, E1e or E1h, is large, the barrier height would be 
negative and so the tunneling begins in the other material. This 
situation can be seen for the hole energy in Fig. 5. Now we 
can model the tunneling probability with two single band 
tunneling approximations such that T=Tn×Tp and: 

( ) ( ){ }nnBzen qFEm 3)2(4exp 2/3
,

2/1*
,×−=T   (35) 

( ) ( ){ }ppBzhp qFEm 2/3
,

2/1*
, )2(4exp ×−=T   (36) 

Since there is an abrupt transition from the tunneling energy 
being close to the valence band, and then close to the 
conduction band, at the heterojunction, the tunneling process  
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Fig. 6: The analytically computed gate efficiency for all three optimized 
homojunctions is similar. Using the heterojunction only slightly improves the 
gate efficiency. The device properties that give the optimal gate efficiency are 
summarized in Table II. A gate oxide thickness of 0.8 nm and a 10 nm 
channel length overlap, LC, was assumed. The gate efficiency was averaged 
over a band misalignment of ∆EOL = 100 meV. Numerically computing the 
gate efficiency in nextnano++ gives similar results and is plotted using the 
following markers: Si – diamonds, Ge – circles, InAs – squares, 
InAs/Al0.6Ga0.4Sb – crosses. 
 
is divided into two discrete steps. As the tunneling primarily 
occurs within a single band on each side of the junction, a 
single band model is used. 

The last change is that carriers are in trapezoidal quantum 
wells instead of triangular quantum wells. While this should 
be solved numerically and the finite barrier heights should be 
accounted for, we can get a qualitative understanding of what 
happens using the following approximation [19]3: 

22
1 squaretri EEE +≈   (37) 

Etri is the energy in a triangular well given by (14). Esquare is 
the standard quantum confinement energy in a square potential 
well given by ( )2*22 2 netmπ  or ( )2*22 2 phtmπ . The trapezoidal 

quantum well shape improves the quantum confinement 
efficiency, ηquant, over a triangular well by reducing the change 
in the energy level, E1, when the bias changes.  

IV. RESULTS AND DISCUSSION 
In order to maximize the performance of the EH Bilayer 
TFET, the subthreshold swing voltage must be minimized 
while maintaining a high on-state conductance. Minimizing 
the subthreshold swing requires us to maximize the gate 
efficiency [ηgate ≡ dEOL/d(qVG1)]. The easiest way to maximize 
the gate efficiency is to vary the body thickness, Fermi level 
position and channel material and determine the combination 
that gives the highest gate efficiency for a given on-state 
conductance. Consequently, we do this for an on-state 
conductance in the range from 10 μS/μm to 1 mS/µm. This 

3 Ref  [19] also modifies the effective masses to get a better fit for the 
energy. We capture the 1st order effect of the trapezoidal well by using the 
original masses.  The error introduced by this and the other approximations is 
quantified in the numerical NextNano simulations. 

 

TABLE II 
OPTIMIZED DEVICE PROPERTIES 

 GON=10μS/μm GON=1mS/μm 
 Si Ge InAs Si Ge InAs 

ηgate 0.48 0.52 0.54 0.39 0.40 0.41 
ηquant 0.68 0.69 0.64 0.63 0.62 0.55 

tbody (nm) 5.9 14.9 24.2 4.3 9.7 14.6 
∆EF (meV) 81 84 30 61 63 17 

Vg1 (V) 1.78 0.82 0.51 2.48 1.25 0.84 
Vg2 (V) -2.41 -1.01 -0.42 -3.07 -1.43 -0.61 

Vbody (V) 2.15 1.21 0.73 2.52 1.50 1.00 
Stunnel 

(mV/decade) 
225 161 141 246 173 227 

The analytic gate efficiency for Si, Ge and InAs Bilayer TFETS at an on-state 
conductance of 1mS/μm and 10μS/μm is summarized. The different material 
parameters and biases at the on-state required to achieve the optimal gate 
efficiency are also summarized. Stunnel is the semilog slope measuring how 
steeply the tunneling conductance changes due to a changing barrier thickness 
with respect to the band overlap energy, EOL. 
 
optimization results in a low electron density and a high hole 
density. As seen from the capacitive voltage divider in 
Fig. 2(b), this corresponds to minimizing the electron quantum 
capacitance, CQ,n and maximizing the hole quantum 
capacitance CQ,p. 

 In Fig. 6 we show the highest gate efficiency for a given 
conductance after the device thickness and dc biases are 
optimized relative to on-state conductance. We see that the 
gate efficiency is quite similar for all three homojunction 
channel materials, Si, Ge, InAs, at the optimal body thickness, 
and is around 40% for an on-state conductance of 1mS/μm.  

In Table II, we summarize the efficiencies, optimal 
thickness, Fermi level position, and gate biases for the Si, Ge, 
and InAs devices.  

Interestingly, it should be possible to achieve an on-state 
conductance of 1 mS/µm in Si if the body is sufficiently thin. 
Unfortunately, that requires an unrealistically high electric 
field around 5.8 MV/cm, a tunneling barrier thickness of 
1.9 nm and a tunneling probability of 3.9×10-3. 

 Although all three materials have similar on-state 
conductance and optimized gate efficiency, the dc bias 
required is drastically different between the materials. Table II 
shows the dc bias or Work Function difference on each gate 
required to align the energy eigenstates. At 1 mS/μm, the 
voltage across the two gates will be 5.6 V, 2.6 V and 1.45 V 
for Si, Ge and InAs respectively. It may be possible to achieve 
the dc bias required for InAs by different gate work functions, 
but it will be very difficult to achieve the 2 volts or more, that 
are required for Si and Ge. Furthermore, the unrealistically 
high electric field required in silicon would cause the gate 
dielectric to break down [2]. Thus InAs is the best candidate. 

Next, we calculate Stunnel the semilog slope of tunnel 
probability versus body voltage using its definition (11): 

)log( 0IddVS Bodytunnel = . This will determine if changing 

the barrier width has a significant impact on the subthreshold 
swing voltage. As we are taking dlog(I0), any quantity 
proportional to I0 can also be used as the argument of the log. 
In particular, Gtunnel, defined by (22), is proportional to I0. I0 is 
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composed of two key terms, (f1-f2) and T. Gtunnel contains T 
and accounts for (f1-f2) through the cosh(∆EFp/2kBT) term as 
discussed in the appendix. Thus we have: 

)log( tunnelBodytunnel GVS ∆∆= . We can evaluate this by 

computing Gtunnel (22), and VBody (13), for EOL=0 and EOL=100 
mV. At 1 mS/μm, Stunnel for Si, Ge and InAs are 
disappointingly 246, 173 and 227 mV/decade, respectively. 
Since Stunnel is worse than 60 mV/decade, a steep swing cannot 
be achieved by electrostatically modulating the tunneling 
barrier width alone. The EH Bilayer TFET requires a steep 
band edge density of states, SDOS, for a steep subthreshold 
swing!  

To arrive at a reasonable work function difference, we can 
employ a heterojunction in the EH Bilayer. Optimizing for 
only gate efficiency results in a very narrow quantum well and 
unreasonably large confinement energies and gate biases. 
Consequently, we limit the bias difference to 1 volt to limit the 
work function difference needed. This doesn't significantly 
hurt gate efficiency (<1%). We chose an aluminum 
concentration of 60% in the AlGaSb in order to give an 
effective band gap, Eg,eff, of 100 meV. Using pure GaSb or 
pure AlSb changes the optimized gate efficiency 
insignificantly (<1%). The optimized InAs/Al0.6Ga0.4Sb 
structure for 1 mS/μm is shown in Fig. 5. We find that a 
14 nm thick InAs layer and a 2.6 nm thick Al0.6Ga0.4Sb layer 
gives the best gate efficiency. Overall, we can see that 
including the heterostructure only slightly increases the gate 
efficiency as shown in Fig 6.  

To verify the accuracy of the analytic calculations we 
performed quantum simulations in nextnano++ with a six 
band k⋅p model for the valence band and a single band model 
for the conduction band. We found the simulated gate 
efficiency for the body thickness and Fermi level positions 
given in Table II (the gate biases are adjusted to obtain the 
same Fermi level position). The simulated gate efficiency, 
ηgate, at a conductance of 1mS/μm for Si, Ge and InAs was 
44%, 43% and 51% respectively. The confinement efficiency, 
ηquant=dEOL/d(qVBody), is 79%, 70%, and 66%, for Si, Ge and 
InAs respectively. The primary difference between the 
analytical results versus computer simulations is that the 
simulation does not assume an infinite triangular well as 
in (14). When simulating the heterojunction, we needed to 
reduce the thickness of the Al0.6Ga0.4Sb layer to capture the 
benefit of the trapezoidal quantum well while maintaining the 
same tunneling barrier height and overall thickness. For a 
14.6nm InAs thickness and a 2.0nm Al0.6Ga0.4Sb thickness we 
simulated a gate efficiency, ηgate, of 52% and a confinement 
efficiency, ηquant, of 65%. The numerically computed gate 
efficiencies are also plotted in Fig. 6 

V. CONCLUSION 
 We found that a 14.6nm thick InAs EH Bilayer 

represents the best tradeoff between gate efficiency (51%) and 
on-state conductance (1mS/μm), demanding a bias or gate 
work function difference of 1.45V for a homojunction EH 
Bilayer. We also found that a 9.7nm thick germanium EH 

Bilayer could achieve a gate efficiency of 43%, if a 2.6V gate 
work function difference could be engineered. Using an 
InAs/AlGaSb heterojunction in the EH Bilayer structure 
reduces the required work function difference to less than a 
volt, but does not significantly increase in the gate efficiency. 
Consequently, InAs seems to be the optimal channel material. 

APPENDIX 
The tunneling current can be modeled using the transfer 

Hamiltonian method as developed by Bardeen and 
Harrison [20, 21]. When applied to a bulk semiconductor, it 
yields the typical semi-classical WKB tunneling current. By 
starting with the transfer Hamiltonian formalism, the current 
can be extended to reduced dimensionalities such as tunneling 
between two quantum wells [12, 13]. For any arbitrary 
structure the tunneling current is given by [12, 21]:  

∑ −−=
fi k,k

21VC
2

iftunnel ))(Eδ(EMq4 J ffπ


 (A.1) 

The matrix element is given by [12]:  

∫ ⋅




 ∇−∇

−
= Sd*ψψψ*ψi

2
M fiif

2

if


m
 (A.2) 

where S is the tunneling interface area. In a square well the 
matrix element is given by [12]: 

T××= 1h1e2
2

if EE
π
1M . (A.3) 

E1e and E1h are the confinement energies and T is the 
tunneling probability. In a triangular well, the normalized 
exponential tail of the wavefunction is given by [22]: 






−××=







−××≈

∫
Z kdZ

kL

Z
Z

0
0

2/3
4/1

exp1
2

1426.1

3
2exp1

2
1426.1

π

π
ψ

 (A.4) 

where 

( )( ) 3/12
00 2 and / mqFLLZZ ==  (A.5) 

Plugging (A.4) into (A.2) gives 
 wellsquare welltriangular 435.0M M×=  (A.6) 

As the current is proportional to the square of the matrix 
element, the 2d-2d tunneling current in a triangular well is 
(0.435)2 times lower than in a square well. 

Furthermore, since the current is flowing over a small 
energy range near the threshold, the Fermi function difference 
f1-f2 can be Taylor expanded to give: 

221
)2cosh(

1
4 TkETk
qV

ff
BFb

SD

∆
×≈−  (A.7) 
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