
Anatomy of a Message in the Alewife Multiprocessor�

John Kubiatowicz and Anant Agarwal

Laboratory for Computer Science, NE43–633

Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract

Shared-memory provides a uniform and attractive mechanism for
communication. For efficiency, it is often implemented with a
layer of interpretive hardware on top of a message-passing commu-
nications network. This interpretive layer is responsible for data
location, data movement, and cache coherence. It uses patterns
of communication that benefit common programming styles, but
which are only heuristics. This suggests that certain styles of com-
munication may benefit from direct access to the underlying com-
munications substrate. The Alewife machine, a shared-memory
multiprocessor being built at MIT, provides such an interface. The
interface is an integral part of the shared memory implementation
and affords direct, user-level access to the network queues, supports
an efficient DMA mechanism, and includes fast trap handling for
message reception. This paper discusses the design and implemen-
tation of the Alewife message-passing interface and addresses the
issues and advantages of using such an interface to complement
hardware-synthesized shared memory.

1 Introduction

Given current trends in network and systems design, it should come
as no surprise that most distributed shared-memory machines are
built on top of an underlying message-passing substrate [1, 2, 3].
Architects of shared-memory machines often obscure this topology
with a layer of hardware that implements their favorite memory
coherence protocol and that insulates the processor entirely from
the interconnection network. In such machines, communication
between processing elements can occur only through the shared-
memory abstraction. It seems natural, however, to expose the net-
work directly to the processor, as shown in Figure 1, thereby gaining
performance in situations for which the shared-memory paradigm
is either unnecessary or inappropriate.

For example, consider a thread dispatch operation to a remote
node. This operation requires a pointer to the thread’s code and any
arguments to be placed atomically on the task queue of another pro-
cessor. The task queue resides in the portion of distributed memory
associated with the remote processor. To do so via shared-memory,

�Appeared in the 7th ACM International Conference on Supercomputing.
Tokyo, Japan. July 20-22, 1993.

Processor

Network

Shared−Memory Hardware

Figure 1: Alewife’s integrated interface.

P1 P2

Message launch Interrupt

Form thread packet,
enqueue

Handle Interrupt,
create task,
enqueue, schedule,
run thread

Network traversal

Figure 2: A thread dispatch to a remote node.

the invoking processor must first acquire the remote task queue
lock, and then modify and unlock the queue using shared-memory
reads and writes, each of which can require multiple network mes-
sages. As depicted in Figure 2, a message-based implementation
is substantially simpler: all the information necessary to invoke the
thread is marshalled into a single message which is unmarshalled
and queued atomically by the receiving processor. In this manner,
synchronization and data transfer are combined in a single message.

The message-passing implementation yields substantial perfor-
mance gains over a pure shared-memory implementation. We char-
acterize the performance of these two implementation schemes by
measuring two intervals: Tinvoker, the time from when the invoking
processor begins the operation until it is free to proceed with other
work, and Tinvokee, the time from when the invoking processor
begins the operation until the invoked thread begins running. With
our best shared-memory implementation, these times are 10.7 and
24.4 �sec, respectively. With the message-based implementation,
both times are reduced drastically, to 0.5 and 7.4 �sec, respectively.
These numbers were derived from a cycle-by-cycle simulation of
the Alewife machine, assuming a 33 MHz clock.

While supporting an efficient message interface is advanta-
geous, we believe it is important to provide support for the shared-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78064946?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

memory abstraction because of the simplicity it affords those pro-
grams where communication patterns cannot be determined stat-
ically. Furthermore, shared-memory mechanisms are superior to
message-passing mechanisms for operations that require fine-grain
communication and computation.

Accordingly, Alewife provides support for both styles of com-
munication. It implements support for coherent shared memory,
which implies mechanisms for automatic renaming of memory lo-
cations on loads and stores (whether they are local in the cache, in
local memory, or in remote memory), automatic local copying of
data blocks and coherence checks.

Alewife integrates direct network access with the shared-mem-
ory framework. The message-passing mechanisms include direct
processor access via loads and stores to the input and output queues
of the network, a DMA mechanism, and a fast trap mechanism
for message handling. With the integrated interface in Alewife,
a message can be sent with just a few user-level instructions. A
processor receiving such a message will trap and respond either by
rapidly executing a message handler or by queuing the message for
later consideration. Scheduling and queuing decisions are made
entirely in software.

The challenge in implementing such a streamlined interface to
the interconnection network is to achieve a performance that rivals
that of purely message passing machines, while at the same time
coexisting with the shared memory hardware.

The integration of shared memory and message passing in
Alewife is kept simple through a design discipline that provides
a single, uniform interface to the interconnection network. This
means that the shared memory protocol packets and the packets
produced by the message passing facilities use the same format and
the same network queues and hardware.

The message interface itself follows a similar design discipline:
provide a single, uniform communications interface between the
processor and the interconnection network. This uniformity is
achieved by using a single packetformat and by treating all message
packets destined to the processor in a uniform way. Specifically,
all (non-protocol) messages interrupt the processor. The proces-
sor looks at the packet header and initiates an action based on the
header. Possible actions include consuming the data into its regis-
ters directly, or issuing a command to storeback data via DMA.

The major contributions of this work include: (1) the design of
the streamlined and uniform packet interface into the interconnec-
tion network, and (2) the mechanisms used to support its integra-
tion with the shared-memory hardware. The mechanisms required
to integrate the message passing interface with the shared memory
hardware include support for coherence on message data, high-
availability interrupts, and restrictions placed on message handlers.

This paper describes the design and implementation of the
message-passing interface, focusing on the issues related to its in-
tegration with the shared-memory layer. Section 3 provides an
overview of the message interface. Section 4 outlines the mech-
anisms provided and presents the rationale behind our design de-
cisions. Section 5 focuses on the mechanisms needed to support
the integration with shared memory, and Section 6 describes the
opportunities afforded by an integrated interface. Section 7 high-
lights issues encountered during the implementation of the Alewife
machine and discusses the status of this implementation. Section 8

Cache

DataX:

Distributed Shared Memory

FPU

X: C

Distributed Directory

Network
Router DataX:

X:

Alewife node

Alewife machine

SPARCLE

CMMU

Figure 3: An Alewife processing node.

presents empirical evidence of the benefits of implementing an in-
tegrated interface. Section 9 discusses related work and Section 10
presents the status of the design and summarizes the major points
in this paper.

2 The Alewife Machine

Alewife is a large-scale multiprocessor with distributed shared
memory. The machine, organized as shown in Figure 3, uses a
cost-effective mesh network for communication. This type of archi-
tecture scales in terms of hardware cost and allows the exploitation
of locality.

An Alewife node consists of a 33 MHz Sparcle processor, 64K
bytes of direct-mapped cache, 4M bytes of globally-shared main
memory, and a floating-point coprocessor. Both the cache and
floating-point units are SPARC compatible [4]. The nodes com-
municate via messages through a direct network [5] with a mesh
topology using wormhole routing [6]. A single-chip Communica-
tions and Memory Management Unit (CMMU) on each node holds
the cache tags and implements the cache coherence protocol by
synthesizing messages to other nodes. This chip also implements
the message interface.

A unique feature of Alewife is its LimitLESS directory coher-
ence protocol [7]. This scheme implements a full-map directory
protocol [8] by trapping into software for widely shared data items.
As discussed in Section 6.1, the Alewife message interface is nec-
essary for implementing LimitLESS.

2

3 Overview of the Message Interface

Alewife’s communications interface is unique for two reasons: first,
it integrates message passing with a shared-memory interface, and
second, the interface is highly efficient and uses a uniform packet
structure. This section provides an overview of this interface and
discusses the rationale behind the design.

3.1 A Uniform Message Interface

The message-passing interface in the Alewife machine is designed
around four primary observations:

1. Header information for messages is often derived directly
from processor registers at the source and, ideally, deliv-
ered directly to processor registers at the destination. Thus,
efficient messaging facilities should permit direct transfer
of information from registers to the network interface. Di-
rect register-to-register transmission has been suggested by a
number of architects [9, 10, 11, 12].

2. Blocks of data that reside in memory often accompany such
header information. Consequently, efficient messaging facil-
ities should allow direct memory access (DMA) mechanisms
to be invoked inexpensively, possibly on multiple blocks of
data. This is important for a number of reasons, including
rapid task dispatch (where a task-frame or portion of the call-
ing stack may be transmitted along with the continuation) [13]
and distributed block I/O (where both a buffer-header struc-
ture and data may reside in memory).

3. Some modern processors, such as the Alewife’s Sparcle pro-
cessor [14], MOSAIC [15], and the MDP [10], can respond
rapidly to interrupts. In particular, vectored interrupts permit
dispatch directly to appropriate code segments, and reserved
hardware contexts can remove the need for saving and restor-
ing registers in interrupt handlers. This couples with efficient
DMA to provide another advantage: virtual queuing. Here,
a thin layer of interrupt-driven operating system software
can synthesize an arbitrary network queueing structure in
software, although possibly at the cost of extra memory-to-
memory copies.

4. Permitting compilers (or users) to generate network commu-
nications code can have a number of advantages [11, 9, 16],
but requires user-level access to the message interface.

Accordingly, the Alewife machine provides a uniform network
interface with the following features:

� Sending a message is an atomic, user-level, two-phase action:
describe the message, then launch it. The sending processor
describes a message by writing into coprocessor registers
over the cache bus. The resulting descriptor contains either
explicit data from registers, or address-length pairs for DMA-
style transfers. Because multiple address-length pairs can be
specified, the send can gather data from multiple memory
regions.

� Message receipt is signalled with an interrupt to the receiving
processor. Alternatively, the processor can mask interrupts
and poll for messagearrival. On entering a messagereception
handler, the processor examines the packet header and can
take one of several actions depending on the header. Actions
include discarding the message, transferring the message con-
tents into processor registers, or instructing the CMMU to
initiate a storeback of the data into one or more regions of
memory (scatter).

� Mechanisms for atomicity and protection are provided to per-
mit user and operating system functions to use the same net-
work interface.

3.2 Integration of Shared Memory and Message Passing

Integration of message passing with shared memory is challenging
because of their different semantics. The shared-memory interface
(as depicted in Figure 1) accepts read and write requests from the
processor and converts them into messages to other nodes if the
desired data is neither present in the cache nor in the local memory
of the requesting node. The Alewife memory system is sequentially
consistent.

However, allowing the processor direct access to the intercon-
nection network bypasses the shared-memory hardware, and per-
mits the processor to transmit the contents of its registers or regions
of memory to other processors. The direct transmission of memory
data through messages interacts with the implicit transmission of
(potentially the same) data through loads and stores. The interac-
tions must be designed and specified in such a way that compilers
and runtime systems can make use of the two classes of mecha-
nism within the same application, while minimizing implementa-
tion complexity.

The following are the important issues that arise when integrat-
ing shared memory with message passing:

� The interaction between messages using DMA transfer and
cache-coherence. Our solution (as discussed in detail in Sec-
tion 5.3) guarantees local and remote coherence. This means
that data at the source and destination are coherent with re-
spect to local processors. If global coherence is desired,
it can be achieved through a two-phase software process.
Guaranteeing only local and remote coherence significantly
reduces implementation complexity, while still optimizing
for common-case operations.

� The need for high-availability interrupts. Consider a pro-
cessor that has issued multiple shared-memory requests and
is currently blocked waiting for the return of data. If non-
shared-memory messagesprecede the arrival of the requested
data and occupy the head of the message queue, then the pro-
cessor must trap and dispose of these messages before it can
make forward progress.

To address the above issues, Alewife supports high-availabil-
ity interrupts. This support allows the Alewife processor to
service external messages in the middle of a pending load or
store operation.

� Special restrictions on global accesses by message handlers.
As discussed in Section 5.3, global shared-memory accesses

3

Major
Opcode Opcode

Minor Source Dest

8 bits 9 bits 9 bits6 bits

31 26 18 9 0

Figure 4: A uniform packet header format. The major opcode
distinguishes between protocol, system, and user messages.

made by critical message handlers can lead to harmful inter-
actions.

4 Mechanisms

This section describes the architectural mechanisms supported by
Alewife’s communications interface. A detailed programmer’s in-
terface is given in [17]. We first present the basic messaging fa-
cilities, then follow with a discussion of features necessary for
user-level messaging.

4.1 Basic Messaging Facilities

Uniform Packet Header Format As a starting point for the
integration of message-passing and shared memory, the Alewife
machine employs a uniform packet structure for all classes of mes-
sages. All packets in the network must have the single, uniform
header format shown in Figure 4 as their first word. The three
packet classes - coherence-protocolpackets, system-level messages,
and user-level messages – are distinguished by ranges of the ma-
jor opcode, also shown in this figure. The minor opcode contains
unrestricted supplementary information, while the sourceand desti-
nation fields contain, respectively, the node-numbers for the source
and destination processors. Only coherence-protocol packets are
directly interpreted by hardware; such packets provide coherent
shared-memory.

Output Interface Messages in the Alewife machine are sent
through a two phase process: first describe, then launch. A message
is described by writing directly to an array of registers in the CMMU,
called the output descriptor array. Although this array is memory-
mapped, the addresses fit into the offset field of a special store
instruction called stio, as described in Table 11. Consequently,
the compiler can generate instructions which perform direct register-
to-register moves from the processor into this array. These moves
proceed at the speed of the cache bus.

Alewife packet descriptors for register-to-register or memory-
to-memory transfers have the common structure shown in Figure 5
and consist of one or more 64-bit double-words. The descriptor
consists of zero or more pairs of explicit operands, followed by zero
or more address-length pairs. The address-length pairs describe
blocks of data which will be fetched from memory via DMA; thus,
requests for DMA are an inexpensive and integral aspect of packet
description. Packet transmission begins with the operands and
finishes with data from each of the requested blocks. The CMMU
interprets the first operand (or first word in memory if no operands

1Note that this store instruction differs from normal store instructions only in the
value that it produces for the SPARC alternate space indicator (ASI) field [4].

Header
Operand 1

..

.
Operand m-1

Address 0
Length 0
Address 1
Length 1

.

.

.
Address n-1
Length n-1

Figure 5: Packet descriptor format. The Header is Operand 0.

are present) as a packet header. The packet descriptor can be up to
eight (8) double-words long.

Once a packet has been described, it can be launched via an
atomic, single-cycle, launch instruction, called ipilaunch. (IPI
stands for interprocessor-interrupt). As shown in Table 1, the
opcode fields of an ipilaunch specify the number of explicit
operands (in double-words) and the total descriptor length (also
in double-words). Consequently, the format of a packet must be
known at compile-time. The execution of a launch instruction
atomically commits the message to the network. Until the time
of the launch, the description process can be aborted, or aborted
and restarted without leaving partial packets in the network. After
a launch, the descriptor array may be modified without affecting
previous messages2. The ipilaunch and other instructions in
Sparcle provide a tight coupling between the processor and the
network.

Since requested DMA operations occur in parallel with pro-
cessor execution, data blocks which are part of outgoing messages
should not be modified until after the DMA mechanism has fin-
ished with them. Consequently, we provide a second flavor of
launch instruction, ipilaunchi, which requests the generation
of an interrupt as soon as all data has been retrieved from memory
and committed to network queues. This transmission completion
interrupt can be used to free outgoing data blocks or perform other
post-transmission actions.

If the output network is blocked due to congestion, then it is
possible that the CMMU has insufficient resources to launch the
next message. This information is handed to the processor in one of
two ways. First, the space-avail register in the CMMU indicates the
maximum packet descriptor which can be generated at the time it is
read. Second, if the processor attempts to store beyond this point in
the descriptor array, then the offendingstio instruction is blocked
until resources are available3. Since the availability of resources is
verified during the description process, launch instructions always
complete.

Rather than blocking on insufficient descriptor resources, the
software can optionally request that the CMMU generate a space-
request interrupt when a specified number of double-words of de-
scriptor space are available.

2In fact, descriptor contents are not preserved across a launch. See Section 7.
3An stio that is blocked under such circumstances may be faulted duringnetwork

overflow, as described later.

4

Instruction Description
ldio Ra+AddrOffset, Rd Load from CMMU register space.
stio Rs, Ra+AddrOffset Store to CMMU register space.
ipilaunch(i) Numops, Length Launch packet from descriptor. Optionally, generate an interrupt

when finished.
ipicst(i) Skip, Length Discard/storeback input packet. Optionally, generate an interrupt

when finished.

Table 1: Network instructions

Interrupt Event that it signals
Reception Arrival of data. Separate vectors are provided

for user and system packets.
Storeback Latest ipicsti has completed.
Transmission Latest ipilaunchi has completed.
Space Request Requested descriptor space exists.
Network Overflow Network output queue has been clogged for

an extended period.

Table 2: Network Interrupts

Table 2 lists the interrupts associatedwith the message interface.
These interrupts are maskable and may be individually enabled or
disabled. The processor can poll for disabled interrupts by examin-
ing a CMMU status register. Table 3 lists the CMMU registers that
participate in message sending and receiving.

Input Interface Efficient receipt of messages and dispatching to
appropriate handlers is facilitated by an efficient interrupt interface.
Upon reception of the first double-word of a packet, the CMMU
generates one of two reception interrupts, depending upon whether
the message is a user message or a system/coherence message4.
The processor can begin flushing its pipeline and vectoring to the
interrupt handler in parallel with reception of the remainder of the
message. Upon entering the interrupt handler, the processor can
examine the first 8 double-words of the packet through the packet
input window. As with the descriptor array, the packet input win-
dow is memory mapped with short addresses and accessed through
a special load instruction, ldio. Consequently, the compiler can
generate register-to-register moves from the input window to the
processor registers that proceed at the speed of the cache bus. If
the processor attempts to access data that is not yet present, then
the CMMU will block the processor until this data arrives. Por-
tions of the message that are outside the packet input window are
invisible to the processor. If a packet is longer than eight (8) double-
words, then only the first eight double-words appear in the window.
The remainder of the packet is invisible to the processor, possibly
stretching into the network.

Once the processor has examined the head of the packet, it
invokes a single-cycle storeback instruction, called ipicst (for
IPI coherent storeback). As shown in Table 1, this instruction
has two opcode fields, skip and length. The skip field specifies
the number of double-words that are discarded from the head of

4The LimitLESS coherence protocol invokes software in certain “rare” circum-
stances (such as wide spread sharing of read-only data). In these cases, coherence
protocol messages are passed directly to the software.

Register Description
space-avail Output descriptor space available
space-request Output descriptor space requested
desc-length Current descriptor length
storeback-addr Address for next DMA storeback
window-length Number of double-words in input window
net-ovf-cnt Network overflow count in cycles

Table 3: Network registers. Sizes are in double-words.

the packet, while the length field specifies the number of double-
words (following those discarded) that should be stored to memory
via DMA. Either of these fields can contain a reserved “infinity”
value that denotes “until the end of the packet”. When invoking
DMA, the processor must write the starting address for DMA to the
storeback-address register before issuing the storeback instruction.
If the sum of the skip and length fields is shorter than the length of
the packet, then the remainder of the packet will appear at the head
of the packet input window and another reception interrupt will be
generated. Multiple storeback instructions can be issued for a single
input message to scatter its data to memory (the Alewife CMMU
can permit two ipicst instructions to issue without blocking).

A second version of the storeback instruction, called ipicsti
requests a storeback completion interrupt upon completion of the
storeback operation. This signals the completion of input DMA,
and can be used to export blocks of data to higher levels of software.

4.2 User-Level Messaging

There are numerous advantages to exporting a fast message interface
to user code. The Alewife messaging interface has many aspects
that can be directly exploited by the compiler, including direct con-
struction of the descriptor and the format of packets themselves.
This suggests that unique send and receive code might be generated
for each type of communication, much in the flavor of active mes-
sages [11]. Further, when a message can be launched in less than
ten cycles, the time to cross a protection barrier can easily double
or triple the cost of sending that message.

In the Alewife machine, support for user-level messaging in-
cludes atomicity and protection mechanisms, which are described
below:

Atomicity User code executes with interrupts enabled. This is
necessary since interrupts represent time-critical events that may
adversely affect forward-progress or correctness if not handled

5

promptly. Unfortunately, message construction represents a multi-
cycle operation that can yield incorrect results if interrupted at the
wrong time. Thus, some method of achieving atomicity is neces-
sary.

One solution would be to allow the user to enable and disable
interrupts. This is undesirable, however, since user code should
not, in general, be allowed to perform actions that may crash or
compromise the integrity of the machine. Alternately, we could
provide separate output interfaces for the user and supervisor. This
solution is also undesirable: on the one hand, it is overkill, since the
chance that both the user and supervisor will attempt to send mes-
sages simultaneously is very low. On the other hand, the division
between user and supervisor is somewhat arbitrary; we may have
multiple levels of interrupts.

Consequently, the Alewife machine adopts a more general mech-
anism. It is designed with the assumption that collisions are rare,
but that the highest priority interrupt should always have access to
the network. To accomplish this, we start with an atomic message-
send, as described above. Then, since message launching is atomic,
interrupts are free to use the network providing that they restore any
partially-constructed message descriptors before returning. Thus,
the mechanism is the familiar “callee-saves” mechanism applied to
interrupts.

Since the implementation described in Section 7 does not guar-
antee the contents of the descriptor array after launch, one addi-
tional mechanism is provided. This is the desc-length register of
the CMMU. Whenever the output descriptor array is written, desc-
length is set to the maximum of its current value and the array index
that is being written. It is zeroed whenever a packet is launched.
Consequently, this register indicates the number of entries in the
descriptor array that must be preserved. It is non-zero only during
periods in which packets are being described.

Protection Historically, there has been tension between pro-
tection mechanisms and rapid access to hardware facilities. The
Alewife network interface is no different. Protection in the Alewife
machine is not intended to hide information, but rather to protect
the machine from errant user-code. Such protection is as follows:

� The user is not allowed to send system or coherence mes-
sages. To enforce this restriction, we require the user to
construct messages with explicit headers (i.e. one or more
operands). In this fashion, the opcode can be checked at the
time of launch. If a violation occurs, then the ipilaunch
instruction is faulted.

� The user is not allowed to issue storeback instructions if the
message at the head of the queue is a system or coherence
message.

� The user is not allowed to store data into kernel space. This
rule is enforced by checking the storeback address register at
the time that an ipicst is issued.

These protection mechanisms are transparent to both user and op-
erating system under normal circumstances5.

5Along the same lines, message hardwarein a multiuser system could automatically
append the current process identifier (PID) to outgoing packets. At the destination,
either hardwareor interrupt software could then check this PID and deliver messages to
an appropriate user message handler. This is beyond the scope of this paper, however.

5 Interactions Between Shared Memory and Message-

Passing

In this section we present three issues that arise when integrating
message-passingwith cache-coherentshared memory. These issues
are the need for high-availability interrupts, special restrictions on
message handlers, and data coherence for the DMA mechanism.
To some extent, these interactions arise from the fact that the net-
work provides a single logical input and output port to the memory
controller. While networks with multiple channels are possible to
implement, they are invariably more expensive.

5.1 High-Availability Interrupts

The need for high-availability interrupts [18] arises becauseshared-
memory introduces a dependence between instruction execution
and and the interconnection network. “Normal” asynchronous in-
terrupts, which occur only at instruction boundaries, are effectively
disabled when the processor pipeline is frozen for a remote read or
write request. Unfortunately, as shown in Figure 6, the requested
data may never arrive if it is blocked behind other messages. This
figure illustrates a situation in which the processor has issued mul-
tiple shared-memory requests and is currently blocked waiting for
the return of data. Unfortunately, several non-shared-memory mes-
sages have entered the network input queue ahead of the desired
response. Unless the processor traps and disposes of these mes-
sages, it will never receive its desired data. Thus, the successful
completion of a spinning load or store to memory may require fault-
ing the access in progress so that a network interrupt handler can
dispose of the offending messages. The term high-availability in-
terrupt is applied to such externally initiated pipeline interruptions.

High-availability interrupts introduce an associated problem:
when a load or store is interrupted by a high-availability interrupt,
it is possible for its data to arrive and to be invalidated while the
interrupt handler is still executing. The original request must then
be reissued when the interrupt finishes. In unfortunate situations,
systematic thrashing can occur. This is part of a larger issue, namely
the window of vulnerability, discussedin [18]. For a single-threaded
processor, the simplest solution is to defer the invalidation until after
the original load or store commits.

5.2 Restrictions on Message Handlers

A second issue is the interaction between message handlers and
shared memory. When an interrupt handler is called in response to
an incoming message, the interrupt code must be careful to ensure
the following before accessing global-shared memory:

� The network overflow interrupt must be enabled. (The net-
work overflow handling mechanism is discussed in the next
section.)

� The input packet must be completely freed and network in-
terrupts must be reenabled.

� There must be no active low-level hardware locks that will
defer invalidations in the interrupted code.

6

Processor
Waiting for response

to request for data
from shared memory

From Interconnect

Response

Message

Message

Message

Response

To Interconnect

Request

Request

Request

Figure 6: The need for high-availability interrupts.

The first of these conditions arises because all global accesses po-
tentially require use of the network. Consequently, they can be
blocked indefinitely if the network should overflow. The second
arises for the same reason that high-availability interrupts were in-
troduced into the picture: any global data that is accessed may be
stuck behind other messages in the input queue. The last condition
prevents deadlocks in the thrash elimination mechanism. See [18]
for details.

5.3 Local Coherence for DMA

Since Alewife is a cache-coherent, shared-memory multiprocessor,
it is natural to ask which form of data coherenceshould be supported
by the DMA mechanism. Three possibilities present themselves:

1. Non-Coherent DMA: Data is taken directly from memory at
the source and deposited directly to memory at the destina-
tion, regardless of the state of local or remote caches.

2. Locally-Coherent DMA: Data at the source and destination
are coherent with respect to local processors. This means
that source data is retrieved from the cache at the source,
if necessary. It also means that destination memory lines
are invalidated or updated in the cache at the destination, if
necessary.

3. Globally-Coherent DMA: Data at the source and destination
are coherent with respect to all nodes. Source memory lines
that are dirty in the caches of remote nodes are fetched during
transmission. Destination memory lines are invalidated or
updated in caches which have copies, ensuring that all nodes
have a coherent view of incoming data.

For reasons described below, the Alewife machine supports locally-
coherent DMA.

Both locally-coherent DMA and non-coherent DMA have ap-
peared on numerous uniprocessors to date. Local coherence gives
the programmer more flexibility to send and receive data struc-
tures that are in active use, since it removes the need to explicitly
flush data to memory. In addition, it is relatively straightforward

to implement in a system that already supports a cache invalidation
mechanism. Section 7.3 discusses this point. Non-coherent DMA
can give better performance for messages that are not cached (such
as certain types of I/O), since it does not produce cache invalidation
traffic. However, it is less flexible.

Globally-coherent DMA, on the other hand, is an option only
in cache-coherent multiprocessors. Globally-coherent DMA can
assist in the improvement of locality by allowing globally-shared
data items to be easily migrated between phases of a computa-
tion or during garbage-collection. This has a particular appeal for
machines, such as Alewife, that physically distribute their global
address space.

However, while attractive as a “universal mechanism,” globally-
coherent DMA is not a good mechanism to support directly in
hardware. There are a number of reasons for this. First, it provides
far more mechanism than is actually needed in many cases. As
Section 8 demonstrates, message passing is useful as a way of
bypassing the coherence protocol. In fact, many of the applications
of message-passing discussed in [13] do not require a complete
mechanism.

Second, a machine with a single network port cannot fetch dirty
source data while in the middle of transmitting a larger packet since
this requires the sending of messages. Even in a machine with mul-
tiple logical network ports, it is undesirable to retrieve dirty data in
the middle of message transmission because the network resources
associated with the message can be idle for multiple network round-
trip times. Thus, a monolithic DMA mechanism would have to scan
through the packet descriptor twice; once to collect data, and once
to send data. This adds unnecessary complexity.

Third, globally-coherent DMA complicates network overflow
recovery. While hardware can be designed to invalidate or to update
remote caches during data arrival (using both input and output
ports of the network simultaneously), this introduces a dependence
between input and output queues that may prevent the simple “divert
and relaunch” schemedescribed in Section 6.2 for network overflow
recovery: input packets that are in the middle of a globally-coherent
storeback block the input queue when the output queue is clogged.

In the light of these discussions, the Alewife machine supports
a locally-coherent DMA mechanism.

Synthesizing Global Coherence We have argued above against
a monolithic, globally-coherent DMA mechanism. However, glo-
bally-coherent DMA can be accomplished in other ways. The key
is to note that software desiring such semantics can employ a two-
phase “collect” and “send” operation at the source and a “clean”
and “receive” operation at the destination.

Thus, a globally-coherent send can be accomplished by first
scanning through the source data to collect values of outstanding
dirty copies. Then a subsequent DMA send operation only needs
to access local copies. With the send mechanism broken into these
two pieces, we see that the the collection operation can potentially
occur in parallel: by quickly scanning through the data and sending
invalidations to all caches which have dirty copies.

At the destination, the cleaning operation is similar in flavor to
collection. Here the goal of scanning through destination memory
blocks is to invalidate all outstanding copies of memory lines before
using them for DMA storeback. To this end, some method of

7

marking blocks as “busy” until invalidation acknowledgments have
returned is advantageous (and provided by Alewife); then, data can
be stored to memory in parallel with invalidations.

It is an open question whether the collection and cleaning oper-
ations should be assisted by hardware, accomplished by performing
multiple non-binding prefetch operations, or accomplishedby scan-
ning the coherence directories and manually sending invalidations6.
If globally-coherent DMA operations are frequent, then a hardware
assist is probably desirable. At this time, however, the Alewife
machine provides no hardware assistance for these operations.

6 Opportunities From Integration

In this section, we touch on two unique opportunities, over and
above the software advantages mentioned earlier, which arise from
the inclusion of a fast message interface in a shared-memory multi-
processor. These are the LimitLESS cache-coherenceprotocol, and
network overflow recovery.

6.1 The LimitLESS Cache Coherence Mechanism

One opportunity that arises from integrating message-passing and
shared memory, is the ability to extend the hardware cache-coher-
ence protocol in software. Permitting software to send and receive
coherence-protocol packets requires no additional mechanism over
and above the basic messaging facilities of Section 4. In Alewife,
the memory system implements a set of pointers, called directories.
Each directory keeps track of the cached copies of a corresponding
memory line. In our current implementation, the size of the direc-
tory can be varied from zero to five pointers. The novel feature
of the LimitLESS scheme [7] is that when there are more cached
copies than there are pointers, the system traps the processor for
software extension of the directory into main memory7. The pro-
cessor can then implement an algorithm of its choice in software to
handle this situation.

The LimitLESS scheme leaves ample opportunity for designing
custom protocols which are invoked on a per-memory-line basis.
Individual directories can be set to interrupt on all references. Then,
all protocol messages which arrive for these memory-lines are au-
tomatically forwarded to the message input queue for software han-
dling. In fact, our runtime system makes use of several extended
applications of the LimitLESS interface, such as FIFO queue locks,
fetch-and-op style synchronizations, and fast barriers.

6.2 Recovery from Network Overow

Cache-coherenceprotocols introduce a dependencebetween the in-
put and output queues of a memory controller, since they process
read and write requests by returning data. This leads to a possibil-
ity for protocol deadlock, since it introduces a circular dependence
between the network queues of two or more nodes. Architectures
such as DASH [19] have avoided this problem by introducing in-
dependent networks for request and response messages. However,

6An option that is uniquely available with Alewife.
7A trap bit in main memory associated with each block of data indicates whether

accesses of this location must interrupt the processor for software extension.

the existence of separate request and response networks is not suffi-
cient in a general messaging environment since it can only prevent
deadlock for a restricted class of request-response communication.
Since protocol deadlock results from insufficient network queue
space, we can correct this problem in a different fashion by aug-
menting the hardware queues in software, when a potential for
deadlock is detected. We refer to this as network overflow recovery.
Note that this technique does not require multiple logical networks.

The heuristic that we use to detect protocol deadlock is to ini-
tialize a hardware timer with a preset value. Then, whenever the
network output queue is full and blocked, the timer begins counting
down from the preset value, generating a network-overflow trap if it
ever reaches zero. This counteraffords some hysteresis for overflow
detection, since protocol deadlock is a rare event and some queue
blockage is expected.

The network overflow handler places the network in “divert
mode,” diverting all packets from the network input queue to the
IPI input queue. It then uses DMA to store all incoming packets
into a special queue-overflow region of local memory. This process
continues until the network output queue has drained sufficiently
(a controller status bit indicates that the output queue is half full).
As a final phase of recovery, the diverted packets are relaunched
with the IPI output interface. A low interrupt priority is used by the
relaunch code, to permit normal message processing and network
interrupts on relaunched packets.

Consequently, to permit network overflow recovery, we supple-
ment the mechanismsof Section 4 with four additionalmechanisms:

1. A countdown timer which can be used detect that the network
output queue has been clogged for a “long” time.

2. The ability to force all incoming packets to be diverted to the
IPI input queue, rather than being processed by the shared-
memory controller. Note that we have only added the ability
to force this switch. The data path must already be present to
permit both shared memory and message passing to coexist.
See Section 7.

3. A flag which indicates that the hardware output queue is
empty or half full.

4. An internal loopback path from the IPI output mechanism
back to the controller input, which permits packets to be
relaunched to the hardware during recovery without routing
through the network hardware.

Note that the fourth mechanism is not strictly necessary, but de-
sirable since the network is backed up during network overflow
processing. Section 7 shows a diagram of the network queue struc-
ture. A final requirement is more a design philosophy than anything
else:

� All controller state machines must be designed such that
they never attempt to start operations which have insufficient
queue resources to complete. In this context, DMA requests
are broken into a series of short atomic memory operations.

Adherence to this philosophy is simpler than attempting to abort
operations during network overflow.

8

Component Size
Coprocessor Pipeline 1589 gates
Asynchronous Network Input 1126 gates
Asynchronous Network Output 1304 gates
Network Control and Datapath 2632 gates
Network Input Queue (1R/1W) 32�65 bits
Network Output Queue (1R/1W) 32�65 bits
IPI Input Queue (2R/1W) 8�64 bits
IPI Output (descriptor) Queue (2R/1W) 8�64 bits
IPI Output Local Queue (1R/1W) 8�65 bits
IPI Input Invalidation Queue (2 entries) 1610 gates
IPI Output Invalidation Queue (2 entries) 1306 gates
IPI Input Interface 4181 gates
IPI Output Interface 3393 gates

Table 4: Module sizes in gates or bits.

7 Implementation and Status

The Alewife message interface is implemented in two components,
the Sparcle processor [20] and the A-1000 Communications and
Memory Management Unit (CMMU). The Sparcle processor in-
cludes the special ldio and stio instructions for direct access
to the IPI output descriptor queue and the IPI input window. In
addition, a SPARC-like coprocessor interface enables pipelining of
message sends and storeback requests. This processor has been
operational since March 1992.

The A-1000 CMMU attaches to the cache bus of the Sparcle pro-
cessor and integrates both coherent shared-memory and message-
passing. It consumesroughly 80,000 gates and 100K-bits of SRAM
(for cache tags and network queues) in the LEA 300K hybrid gate-
array process from LSI Logic. Most of the logic is implemented
in a high-level synthesis language provided by LSI and optimized
with the Berkeley SIS tool set. By the time of publication, this chip
will have gone to LSI for fabrication.

Table 4 gives a rough breakdown of the sizes of major compo-
nents of the network interface. All data paths are 64 bits. Note
that edge-triggered flip-flops are relatively expensive in this logic,
at nine (9) gates per bit (this includes scan).

The Coprocessor Pipeline supplements the basic Sparcle in-
struction set with a number of instructions, including ipilaunch
and ipicst. The IPI Input Interface and IPI Output Interface in-
clude all the launching,storeback, and DMA logic. The Invalidation
queues permit locally coherent DMA and include the double-queue
structures described below. Together, the logical components of
the IPI interface (invalidation queues and interface logic) consume
roughly 12% of the controller area. What these numbers do not
indicate is the additional logic within the cache and memory con-
trollers to support requests for invalidations and data from the DMA
control mechanisms. The size of this logic is difficult to estimate,
but appears to be a small fraction of the total logic for cache and
memory control.

7.1 Network Queue Structure

Figure 7 shows the network queue structure of the Alewife CMMU.
All datapaths are 64 bits. The IPI output descriptor queue and IPI

N
etw

ork
Input Q

ueue

N
etw

ork
O

utput Q
ueue

IP
I O

utput
Local Q

ueue

IP
I Input

Q
ueue

Loopback
Path

O
utput Q

ueue
C

ache P
rotocol

O
utput Q

ueue
M

em
ory P

rotocol

Memory Controller

Protocol Output

Protocol Output

Cache Controller

Protocol Input

To Cache and Memory

Network

D
escriptor Q

ueue
IP

I O
utput

Memory Controller

Output DMA

Memory Controller

Input DMA

MUX

Processor

MUX

MUX

MUX

Figure 7: Network queue structure for the Alewife CMMU

input queue are visible to the processor and are mapped directly to
the output descriptor array and packet input window of section 4.1.
The remaining queues are internal queues and not visible to the
programmer.

7.2 Programmer Visible Queues

Stio operations to the descriptor array write directly into the
circular output descriptor queue, using a hardware tail pointer as the
base. The atomic action of an ipilaunch instruction moves this
tail pointer and records information about the size and composition
of the descriptor. Consequently, description of subsequent packets
is allowed to begin immediately after an ipilaunch, provided
that data from pending launches is not overwritten. Queue space
becomes available again as descriptors are consumed by the IPI
output mechanism. This implementation, while reasonably simple,
does not preserve the contents of message descriptors after a launch
has occurred.

As shown in Figure 8, messages are committed atomically in
the writeback stage of the ipilaunch instruction. Here, message
throughput is limited by the two-cycle latency of Sparcle stores and
the lack of an instruction cache. More aggressive processor imple-
mentations would not suffer from these limitations. In addition, the
use of DMA on message output adds additional cycles (not shown
here) to the network pipeline.

Ldio operations from the packet input window receive data di-
rectly from the circular IPI input queue, using the current processor
head pointer as a base. The effect of an ipicst instruction is

9

stio Header, N0 I D E M M W
stio Data, N1 I — — D E M M W
ipilaunch 1, 1 I — — — — D E W Q1 Q2

I — — D E W
I D E W

Cache Bus: I I I N0 N0 I N1 N1 I � � �

Figure 8: Pipelining for transmission of a message with a single data word. Sparcle pipeline stages are Instruction fetch, Decode, Execute, Memory, and
Writeback. Network messages are committed in the Writeback stage. Stages Q1 and Q2 are network queuing cycles. The message data begins to appear in
the network after stage Q2.

to move this head pointer and to initiate DMA actions on the data
which has been passed. A separate queue (not shown) holds issued
ipicst instructions until they can be processed.

7.3 Local Coherence

As mentioned in the discussion on DMA coherence (Section 5.3),
supporting locally-coherent DMA is straightforward in a machine
with an invalidation-style cache-coherence protocol. In the CMMU,
we coordinated the invalidation processes by using double-headed
invalidation queues. The DMA controllers generate addresses and
place requests on these queues as fast as possible (moving the tail of
the queue). As soon as requests are written, the cache controller sees
them, causes appropriate invalidations, and moves its head pointer.
The memory has a second head pointer which lags behind the head
pointer of the cache controller. Whenever the two pointers differ,
the memory machine knows that it can satisfy the DMA request at
its head, since the corresponding invalidation has already occurred.
When the memory machine moves its head pointer beyond an entry,
that entry is freed. Each of the invalidation queues have two,double-
cache-line entries.

Care must be taken with the input interface so that the processor
cannot re-request a memory-line after it has been invalidated but
before the data has been written to memory. This situation can
arise from the pipelining of DMA requests and would represent
a violation of local coherence. The difference in area between
the input and output invalidation queues (see Table 4) results from
address-matching circuitry that serves as an interlock to prevent this
“local coherence hole”.

7.4 Network Overow

The memory protocol output queue and the cache protocol output
queue handle protocol traffic from the memory and cache, respec-
tively. While such queues are important for performance reasons,
they are also important for a more subtle reason: they simplify the
checking of network resources. To allow network overflow recov-
ery, controller state machines must check that all operations have
sufficient resources to complete before they are initiated (Section
6.2). These two queues simplify this task, since resource checking
can be done locally, without arbitrating for the output queue.

Note also that the style of network overflow recovery described
in this paper requires the input and output DMA controllers to be
independentof each other. This independenceis necessarysince we
relaunch packets from memory (output DMA) which may require
storeback operations during processing (input DMA).

8 Results

This section summarizes results comparing the performance of the
shared-memory and integrated implementations of several library
routines and applications;for a detailed discussion of our experience
with this integrated interface see [13]. The results are obtained on
a detailed, cycle-by-cycle machine simulator, using Alewife’s run-
time system based on lazy task creation [21] for load-balancing and
dynamic partitioning of programs. Our results include a compar-
ison of the performance of purely shared memory and integrated
versions of several application kernels.

The applications include a thread scheduler with a synthetic
fine-grain tree-structured application, barrier synchronization us-
ing combining trees, remote thread invocation, bulk data transfer,
and Successive Over-Relaxation (SOR). Each application is imple-
mented both using pure shared memory and using a hybrid system.
The thread scheduler uses message sends when searching for work,
migrating and invoking remote tasks, and performing certain types
of synchronization. The applications run on 64 processors.

The hybrid version yielded substantial improvements over the
shared-memory version for the thread scheduler. For very small
grain sizes, the run time is almost twice as fast under the hybrid
implementation. The barrier synchronization with message passing
takes only 20 �sec, while the best shared memory version runs in
50 �sec. Comparable software implementations (e.g. Intel DELTA
and iPSC/860, Kendall Square KSR1) take well over 400 �sec
[2]. These numbers can also be compared with hardware-supported
synchronization mechanisms, such as on the CM5, that take only 2
or 3 �sec but that require separate, log-structured (and potentially
less-scalable) synchronization networks.

As described in Section 1, a remote thread invocationusing mes-
sages reduces the invoker’s overhead over a purely shared-memory
implementation by a factor of 20 and that of the invokee by a factor
of three. Memory-to-memory copy of data for 256-byte blocks is
faster than shared-memory copy without prefetching by 2.4, and
faster than shared-memory copy with prefetching by 1.5.

These results should not suggest that shared memory is unnec-
essary or expensive. For programs that have unpredictable, highly
data-dependent access patterns, message passing implementations
resort to implementing much of the shared-memory interpretive
layer in software (for data location and data movement), with a
corresponding loss in performance. In other cases, such as SOR, a
simple block-partitioned Jacobi SOR solver, we observe little dif-
ference between well coded shared-memory and message-passing
implementations.

10

9 Related Work

The CM5 provides a message passing interface and uses SPARCs
as its processing nodes. The message interface is implemented us-
ing register reads and writes into the network interface (NI) chip.
Because the reads and writes are implemented over the main mem-
ory bus, they are slower than network register reads and writes
in Alewife, which are implemented over the processor cache bus.
The CM5 interface does not provide support for DMA or shared
memory and requires the processor to be involved in emptying out
the message queue. The processor in the CM5 can be notified on
message arrival either through an interrupt or by polling [22].

Our interface is different from that provided by the message
passing J-machine [10] in that our processor is always interrupted
on the arrival of a message, allowing the processor to examine the
packet header, and to decide how to deal with the message. Mes-
sages in the J-machine are queued and handled in sequence. (The
J-machine, however, allows a higher priority message to interrupt
the processor.) The J-machine does not provide DMA transfer of
data. Finally, message sends in Alewife are atomic in that correct
execution is supported even if the processor is interrupted while
writing into the network queue.

Somewhat in the flavor of the Alewife machine, the J-machine
generates a send fault when the network output queue overflows. In
addition, a queue overflow fault is generated when the input queue
overflows. These faults can be used to trigger network overflow
recovery similar to that of Section 6.2. Additionally, the J-machine
network includes a second level of network priority which can be
used to shuffle excess data to other nodes, should local memory for
supplementary queue space be unavailable. Unfortunately, the J-
machine mechanisms are extremely pessimistic, trapping as soon as
local queue space is exhausted. In contrast, Alewife’s network over-
flow mechanism provides hysteresis to ignore temporary network
blockages. Further, the lack of message atomicity in the J-machine
complicates the functionality of network overflow handlers.

Support for multiple models of computation has been identi-
fied as a promising direction for future research. For example, the
iWarp [9] integrates systolic and message passing styles of commu-
nications. Their interface supports DMA-style communication for
long packets typical in message passing systems, while at the same
time supporting systolic processor-to-processor communication. In
the latter style, a processor could be producing data and streaming
it to another, while the receiving processor could be consuming the
data using an interface that maps the network queue into a processor
register.

To our knowledge, there are no existing machines that support
both a shared-address space and a general fine-grain messaging in-
terface in hardware. In some cases where we argue messages are
better that shared-memory, such as the barrier in Section 8, a simi-
lar effect could be achieved by using shared-memory with a weaker
consistency model. For example, the Dash multiprocessor [3, 23]
has a mechanism to deposit a value from one processor’s cache di-
rectly into the cache of another processor, avoiding cache coherence
overhead. This mechanism might actually be faster than using a
message because no interrupt occurs, but a message is much more
general.

Some shared-memory machines have implemented message-
like primitives in hardware. For example, Beck, Kasten, and

Thakkar [24] describe the implementation of SLIC—a system link
and interrupt controller chip—for use with the Sequent Balance
system. Each SLIC chip is coupled with a processing node and
communicates with the other SLIC chips on a special SLIC bus that
is separate from the memory system bus. The SLIC chips help dis-
tribute signals such as interrupts and synchronization information
to all processors in the system. Although similar in flavor to this
kind of interface, the Alewife messaging interface is built to allow
direct access to the same scalable interconnection network used by
the shared-memory operations.

Another example of a shared-memory machine that also sup-
ports a message-like primitive is the BBN Butterfly. This machine
provides both hardware support for block transfers and the ability
to send remote “interrupt requests.” Nodes in the Butterfly are able
to initiate DMA operations for blocks of data which reside in re-
mote nodes. In an implementation of distributed shared memory
on this machine, Cox and Fowler [25] conclude that an effective
block transfer mechanism was critical to performance. They argue
that a mechanism that allows more concurrency between process-
ing and block transfer would make a bigger impact. It turns out
that Alewife’s messages are implemented in a way that allows such
concurrency when transferring large blocks of data. Furthermore,
the Butterfly’s block transfer mechanism is not suited for more gen-
eral uses of fine-grain messaging because there is no support in the
processor for fast message handling.

10 Conclusion

This paper discussed the design of a streamlined message interface
that is integrated within a shared-memory substrate. The integration
of message passing with shared memory introduces many interest-
ing issues including the need for high-availability interrupts, the
need for special restrictions on message handlers, and data coher-
ence requirements for the DMA mechanism. An interface that ad-
dresses these needs has been implemented in the Alewife machine’s
CMMU.

The integration of message passing mechanisms with shared
memory affords higher applications performance than either a pure
message passing interface or a shared memory interface. In addi-
tion, it provides unique opportunities, over and above the software
advantagesof multimodel support, including the LimitLESS cache-
coherence protocol and network overflow recovery.

11 Acknowledgments

Many thanks to David Chaiken for the cycle-by-cycle Alewife sim-
ulator and LimitLESS protocol design. Discussions with David
Kranz and Beng-Hong Lim provided invaluable feedback on the
convenience of some of the more subtle aspects of the network
interface and user-level messaging. Further thanks to Beng-Hong
Lim, Kirk Johnson, and David Kranz for the applications results and
runtime systems work. Finally, many thanks to those involved with
testing the A-1000 CMMU, in particular Ken Mackenzie, John
Piscitello, David Kranz, Arthur Altman, Beng-Hong Lim, David
Chaiken, Jonathan Babb, and Donald Yeung. Many people read
earlier drafts of this paper; their feedback and criticism was much
appreciated.

11

The research reported in this paper is funded by NSF grant
MIP-9012773 and DARPA contract # N00014-87-K-0825.

References

[1] Anant Agarwal, David Chaiken, Godfrey D’Souza, Kirk Johnson,
David Kranz, John Kubiatowicz, Kiyoshi Kurihara, Beng-Hong Lim,
Gino Maa, Dan Nussbaum, Mike Parkin, and Donald Yeung. The
MIT Alewife Machine: A Large-Scale Distributed-Memory Multi-
processor. In Proceedings of Workshop on Scalable Shared Memory
Multiprocessors. Kluwer Academic Publishers, 1991. An extended
version of this paper has been submitted for publication, and appears
as MIT/LCS Memo TM-454, 1991.

[2] Thomas H. Dunigan. Kendall Square Multiprocessor: Early Expe-
riences and Performance. Technical Report ORNL/TM-12065, Oak
Ridge National Laboratory, March 1992.

[3] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hen-
nessy, M. Horowitz, and M. Lam. The Stanford Dash Multiprocessor.
IEEE Computer, 25(3):63–79, March 1992.

[4] SPARC Architecture Manual, 1988. SUN Microsystems, Mountain
View, California.

[5] Charles L. Seitz. Concurrent VLSI Architectures. IEEE Transactions
on Computers, C-33(12):1247–1265, December 1984.

[6] William J. Dally. A VLSI Architecture for Concurrent Data Structures.
Kluwer Academic Publishers, 1987.

[7] David Chaiken, John Kubiatowicz, and Anant Agarwal. LimitLESS
Directories: A Scalable Cache Coherence Scheme. In Fourth Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS IV), pages 224–234. ACM,
April 1991.

[8] Anant Agarwal, Richard Simoni, John Hennessy, and Mark Horowitz.
An Evaluation of Directory Schemes for Cache Coherence. In Pro-
ceedings of the 15th International Symposium on Computer Architec-
ture, New York, June 1988. IEEE.

[9] Shekhar Borkar et al. iWarp: An Integrated Solution to High-Speed
Parallel Computing. In Proceedings of Supercomputing ’88,November
1988.

[10] William J. Dally et al. The J-Machine: A Fine-Grain Concurrent
Computer. In Proceedingsof the IFIP (InternationalFederationfor In-
formation Processing), 11th World Congress, pages 1147–1153, New
York, 1989. Elsevier Science Publishing.

[11] Thorsten von Eicken, David Culler, Seth Goldstein, and Klaus
Schauser. Active messages: A mechanism for integrated communica-
tion and computation. In 19th International Symposium on Computer
Architecture, May 1992.

[12] Dana S. Henry and Christopher F. Joerg. A Tightly-Coupled Processor-
Network Interface. In Fifth Internataional Architectural Support
for Programming Languages and Operating Systems (ASPLOS V),
Boston, October 1992. ACM.

[13] David Kranz, Kirk Johnson, Anant Agarwal, John Kubiatowicz, and
Beng-Hong Lim. Integrating Message-Passing and Shared-Memory;
Early Experience. In To appear in Proceedings of Practice and Prin-
ciples of Parallel Programming (PPoPP) 1993, New York, NY, May
1993. ACM. Also as MIT/LCS TM-478, January 1993.

[14] MIT-SPARCLE Specification Version 1.1 (Preliminary). LSI Logic
Corporation, Milpitas, CA 95035, 1990. Addendum to the 64811
specification.

[15] C.L. Seitz, N.J. Boden, J. Seizovic, and W.K. Su. The Design of the
Caltech Mosaic C Multicomputer. In Research on Integrated Systems
Symposium Proceedings, pages 1–22, Cambridge, MA, 1993. MIT
Press.

[16] Mark D. Hill, James R. Larus, Steven K. Reinhardt, and David A.
Wood. Cooperative Shared Memory: Software and Hardware for
Scalable Multiprocessors. In Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS V), Boston, October 1992. ACM.

[17] John Kubiatowicz. User’s Manual for the A-1000 Communications
and Memory ManagementUnit. ALEWIFE Memo No. 19, Laboratory
for Computer Science, Massachusetts Institute of Technology,January
1991.

[18] John Kubiatowicz, David Chaiken, and Anant Agarwal. Closing the
Window of Vulnerability in Multiphase Memory Transactions. In
Fifth International Conference on Architectural Support for Program-
ming Languagesand Operating Systems (ASPLOS V), pages 274–284,
Boston, October 1992. ACM.

[19] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy.
The Directory-Based Cache Coherence Protocol for the DASH Mul-
tiprocessor. In Proceedings 17th Annual International Symposium on
Computer Architecture, pages 148–159, New York, June 1990.

[20] Anant Agarwal, John Kubiatowicz, David Kranz, Beng-Hong Lim,
Donald Yeung, Godfrey D’Souza, and Mike Parkin. Sparcle: An
Evolutionary Processor Design for Multiprocessors. To appear in
IEEE Micro, June 1993.

[21] E. Mohr, D. Kranz, and R. Halstead. Lazy Task Creation: A Technique
for Increasing the Granularity of Parallel Programs. IEEE Transactions
on Parallel and Distributed Systems, 2(3):264–280, July 1991.

[22] The Connection Machine System: Programming the NI. Thinking
Machines Corporation, March 1992. Version 7.1.

[23] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and
J. Hennessy. Memory Consistency and Event Ordering in Scalable
Shared-Memory Multiprocessors. In Proceedings 17th Annual Inter-
national Symposium on Computer Architecture, New York, June 1990.
IEEE.

[24] Bob Beck, Bob Kasten, and Shreekant Thakkar. VLSI Assist for
a Multiprocessor. In Proceedings Second International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS II), Washington, DC, October 1987. IEEE.

[25] A. Cox and R. Fowler. The Implementation of a Coherent Memory
Abstraction on a NUMA Multiprocessor: Experiences with PLAT-
INUM. In Proceedings of the 12th ACM Symposium on Operating
Systems Principles, pages 32–44, December 1989. Also as a Univ.
Rochester TR-263, May 1989.

12

