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Abstract

The synthesis of 3,3-difluoro-2-oxindoles through a robust and efficient palladium-catalyzed C–H 

difluoroalkylation is described. This process generates a broad range of difluorooxindoles from 

readily prepared starting materials. The use of BrettPhos as the ligand was crucial for high 

efficiency. Preliminary mechanistic studies suggest that oxidative addition is the rate-determining 

step for this process.
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The incorporation of fluorinated functional groups into organic molecules has been widely 

recognized as a general strategy in pharmaceutical research and drug development. 

Fluorinated analogues of pharmaceutically relevant compounds often possess properties 

conducive to drug development, such as improved lipophilicity, metabolic stability, and 

bioavailability relative to their nonfluorinated counterparts.[1] For these reasons, substantial 

effort has been devoted to the development of synthetic methods for the assembly of 

fluorinated small molecules.[2] The fluorination[3] and trifluoromethylation[4] of arenes have 

been the most prominent targets of these efforts, and as a result, increasingly general and 

practical methods are now available for these transformations.[2] In contrast, methods for the 

synthesis of difluoroalkylated arenes remain limited.[5] In particular, the synthesis of 

fluorinated heterocyclic compounds by the difluoroalkylation of arenes is a promising but 

underutilized strategy.

Derivatives of oxindole and isatin appear in a variety of naturally occurring and synthetic 

bioactive compounds (Figure 1).[6] As bioisoteric analogs[7] of both classes of heterocycles, 

compounds containing the 3,3-difluoro-2-oxindole ring system have demonstrated 
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considerable promise as potential medicinal agents.[8] There are, however, only a limited 

number of approaches for their preparation, each of which suffers from serious 

drawbacks.[9] Difluorooxindoles have been prepared by the treatment of isatin derivatives 

with diethylaminosulfur trifluoride (DAST) or by electrophilic fluorination of indoles.[9a–c] 

However, the limited stability of the requisite reagents and modest functional group 

tolerance diminish the utility and practicality of these procedures.[10] Moreover, both 

approaches depend on the availability of the pre-existing bicyclic ring system, whose 

construction may be nontrivial. The de novo synthesis of the difluorooxindole ring system 

under free radical conditions[9d] or in the presence of a stoichiometric amount of copper[9e] 

has also been reported. However, these methods are limited by their scope, synthetic 

efficiency, or the accessibility of the required starting materials. A synthesis of 

difluorooxindoles through a palladium-catalyzed C–H difluoroalkylation process[11] would 

constitute a general and practical alternative to these previously reported methods.

In 2003, we disclosed the palladium-catalyzed synthesis of oxindoles from α-

chloroacetanilides.[12] The application of this method to the kilogram-scale synthesis of two 

drug candidates, a serine palmitoyl transferase inhibitor (3)[13] and a long-term 

oxazolidinone antibacterial (4)[14] illustrate the practicality and atom- and step-economical 

advantages of this C–H functionalization protocol. An analogous process wherein 

chlorodifluoroacetanilides are transformed to difluorooxindoles would similarly enable the 

rapid construction of these compounds from readily available starting materials; 

chlorodifluoroacetanilides can be prepared in one step by acylation of the corresponding 

(hetero)arylamines with inexpensive chlorodifluoroacetic anhydride. Although the oxidative 

addition[15] of Pd(0) to the analogous C–Cl bond of chlorodifluoroacetanilides, as well as 

the subsequent C–C bond forming reductive elimination[4a, 16] are expected to be 

challenging processes, we posited that the use of bulky biarylphosphine ligands would 

facilitate these elementary steps. We disclose herein the successful development of an 

efficient palladium-catalyzed C–H difluoroalkylation reaction for the synthesis of 3,3-

difluoro-2-oxindoles.

We began our investigation of the proposed transformation by exposing 

chlorodifluoroacetanilide 1a to base (K2CO3) and palladium catalysts generated from 

premixing[17] 1 mol % of Pd2dba3 and 4 mol % of a variety of phosphine ligands. The use of 

JohnPhos (L1), the optimal ligand for the previous oxindole synthesis, provided 2a in low 

yield (entry 1). Catalysts derived from CyJohnPhos (L2), RuPhos (L3), XPhos (L4) and 

tBuXPhos (L5) were more effective, but still only provided the desired oxindole in low to 

moderate yields (entries 2–5). However, when BrettPhos (L6) was employed as the ligand, 

difluorinated oxindole 2a was isolated in high yield (78%, entry 6). The use of other 

monophosphine ligands, as well as bidentate phosphine ligands, such as PPh3, PCy3, 

P(tBu)3, dppe, BINAP and Xantphos, resulted in low to no conversion to the desired product 

(entries 7–12). No conversion of the starting material was observed in the absence of either 

phosphine ligand or palladium source (entries 13 and 14). Lastly, exposure of 1a to Friedel–

Crafts cyclization conditions (1.2 equiv AlCl3) led to the decomposition of the starting 

material without formation of the desired product.
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Under optimized conditions (Table 2), we explored the substrate scope of this 

transformation. A series of chlorodifluoroacetanilides with electron-rich, -neutral, and -

deficient substituents on the aryl group were found to undergo the desired transformation to 

afford the corresponding difluorooxindoles in good yield. This process was found to be 

compatible with ketone (2h), ester (2g), amide (2i), acetal (2i), hemiaminal (2b), amino (2d, 

2e), and trifluoromethoxy (2f) functional groups.

Given the prevalence of heterocycles in medicinal chemistry, we also investigated the scope 

of heterocyclic substrates.[18] A broad array of heterocycle substrates featuring monocyclic, 

bicyclic, and tricyclic ring were compatible with the optimized reaction conditions. The 

scope included heterocycles such as pyridine (2k), tetrahydroquinoline (2m, 2o), 1,4-

benzoxazine (2n), dihydrophenanthridine (2q), dihydroquinolinone (2p), 

tetrahydrobenzazepine (2r), dihydrodibenzoazepine (2s), tetrahydrobenzooxazepine (2t), 
tetrahydrobenzothioazepine (2x), and tetrahydrobenzodiazepine (2y) ring systems. 

Unsymmetrical indole and carbazole substrates provided products 2j and 2l as 

chromatographically separable regioisomers with moderate selectivity. Interestingly, the 

cyclization occurred preferentially at the more sterically hindered position of these 

substrates, in contrast to our previous palladium-catalyzed oxindole synthesis.[12] To 

demonstrate the robustness of our conditions, the synthesis of 2t was also conducted on a 5 

mmol scale to afford the desired product in undiminished isolated yield.

To probe the mechanism of this transformation, we synthesized isotopically-labeled 

substrates 1a-d1 and 1a-d5 (Scheme 1) for the determination of the intra- and intermolecular 

kinetic isotope effects, respectively. An inverse kinetic isotope effect was observed when 

1a-d1 was subjected to standard reaction conditions (kH/kD = 0.79, eq 1). On the other hand, 

no kinetic isotope effect was observed upon exposure of a 1:1 mixture of 1a and 1a-d5 to the 

standard reaction conditions (kH/kD = 1.01, eq 2).

Based on these data, a plausible mechanism for this transformation is shown in Scheme 2. 

The initial step of this process is likely oxidative addition of the chlorodifluoro amide to 

Pd(0) to generate a Pd(II) enolate. The absence an intermolecular isotope effect indicates 

that the rate-determining step occurs prior to a C–H bond cleavage or rehybridization event, 

suggesting that oxidative addition is rate-determining.[19] Subsequently, electrophilic 

aromatic substitution of the arene furnishes a six-membered palladacycle, which then 

undergoes reductive elimination to provide the observed product and regenerate the Pd(0) 

species. The inverse kinetic isotope effect observed in the intramolecular experiment is 

likely a secondary isotope effect resulting from the sp2 to sp3 rehybridization of the arene 

carbon to which the proton or deuteron is attached.[20] The observation of an inverse isotope 

effect implies that palladation is slow relative to C–H bond cleavage in the electrophilic 

aromatic substitution process, in contrast to our previously reported palladium-catalyzed 

oxindole synthesis from α-chloroacetanilides.[12] Alternative mechanisms in which 

palladation occurs through concerted metalation-deprotonation or σ-bond metathesis 

pathways are excluded on the basis of the observed inverse intramolecular isotope effect.[21]

In summary, we have developed a practical palladium-catalyzed aromatic C–H 

difluoroalkylation reaction using readily available chlorodifluoroacetanilides. The bulky 
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biarylphosphine ligand, BrettPhos, was found to be the only phosphine ligand capable of 

efficiently providing the desired difluorooxindole product. This method allows for the 

straightforward and efficient preparation of a wide range of substituted 3,3-difluoro-2-

oxindoles. The high level of functional group tolerance and ready availability of starting 

materials should make this protocol broadly useful and attractive in academic and industrial 

settings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

References

1. a) Müller K, Faeh C, Diederich F. Science. 2007; 317:1881–1886. [PubMed: 17901324] b) Hiyama, 
T. Fluorine Compounds: Chemistry and Applications. Springer; Berlin: 2000. c) Yamazaki, T.; 
Taguchi, T.; Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology. Ojima, I., editor. 
Wiley-Blackwell; Chichester: 2009. p. 3-46.d) Purser S, Moore PR, Swallow S, Gouverneur V. 
Chem Soc Rev. 2008; 37:320–330. [PubMed: 18197348] e) Wang J, Sánchez-Roselló M, Aceña JL, 
del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem Rev. 2014; 114:2432–2506. 
[PubMed: 24299176] 

2. For selected reviews, see: Liang T, Neumann CN, Ritter T. Angew Chem Int Ed. 2013; 52:8214–
8264.Tomashenko OA, Grushin VV. Chem Rev. 2011; 111:4475–4521. [PubMed: 21456523] 
Besset T, Schneider C, Cahard D. Angew Chem Int Ed. 2012; 51:5048–5050.Wu XF, Neumann H, 
Beller M. Chem Asian J. 2012; 7:1744–1754. [PubMed: 22715145] Lundgren RJ, Stradiotto M. 
Angew Chem Int Ed. 2010; 49:9322–9324.For selected examples of arene fluorination and 
trifluoromethylation, see: Nagib DA, MacMillan DWC. Nature. 2011; 480:224–228. [PubMed: 
22158245] Ji Y, Brueckl T, Baxter RD, Fujiwara Y, Seiple IB, Su S, Blackmond DG, Baran PS. 
Proc Natl Acad Sci USA. 2011; 108:14411–14415. [PubMed: 21844378] Tang P, Furuya T, Ritter 
T. J Am Chem Soc. 2010; 132:12150–12154. [PubMed: 20695434] Wang X, Truesdale L, Yu JQ. J 
Am Chem Soc. 2010; 132:3648–3649. [PubMed: 20184319] Ball ND, Kampf JW, Sanford MS. J 
Am Chem Soc. 2010; 132:2878–2879. [PubMed: 20155920] Chu L, Qing FL. J Am Chem Soc. 
2012; 134:1298–1304. [PubMed: 22145831] 

3. a) Watson DA, Su M, Teverovskiy G, Zhang Y, García-Fortanet J, Kinzel T, Buchwald SL. Science. 
2009; 325:1661–1664. [PubMed: 19679769] b) Lee HG, Milner PJ, Buchwald SL. Org Lett. 2013; 
15:5602–5605. [PubMed: 24138611] c) Lee HG, Milner PJ, Buchwald SL. J Am Chem Soc. 2014; 
136:3792–3795. [PubMed: 24559304] 

4. a) Cho EJ, Senecal TD, Kinzel T, Zhang Y, Watson DA, Buchwald SL. Science. 2010; 328:1679–
1681. [PubMed: 20576888] b) Senecal TD, Parsons AT, Buchwald SL. J Org Chem. 2011; 
76:1174–1176. [PubMed: 21235259] c) Cho EJ, Buchwald SL. Org Lett. 2011; 13:6552–6555. 
[PubMed: 22111687] c) Chen M, Buchwald SL. Angew Chem Int Ed. 2013; 52:11628–11631.

5. Guo Y, Shreeve JM. Chem Commun. 2007:3583–3585.Fujikawa K, Fujioka Y, Kobayashi A, Amii 
H. Org Lett. 2011; 13:5560–5563. [PubMed: 21955064] Fier PS, Hartwig JF. J Am Chem Soc. 
2012; 134:5524–5527. [PubMed: 22397683] Prakash GKS, Ganesh SK, Jones JP, Kulkarni A, 
Masood K, Swabeck JK, Olah GA. Angew Chem Int Ed. 2012; 51:12090–12094.Araki K, Inoue M. 
Tetrahedron. 2013; 69:3913–3918.Qi Q, Shen Q, Lu L. J Am Chem Soc. 2012; 134:6548–6551. 
[PubMed: 22458339] During the preparation of this manuscript, the following metal-catalyzed 
difluoroalkylation reactions were reported, see: Min QQ, Yin Z, Feng Z, Guo WH, Zhang X. J Am 
Chem Soc. 2014; 136:1230–1233. [PubMed: 24417183] Ge S, Chaładaj W, Hartwig JF. J Am 
Chem Soc. 2014; 136:4149–4152. [PubMed: 24588379] Feng Z, Min QQ, Xiao YL, Zhang B, 
Zhang X. Angew Chem Int Ed. 2014; 53:1669–1673.Xiao YL, Guo WH, He GZ, Pan Q, Zhang X. 
Angew Chem Int Ed. 2014; 53:9909–9913.Yu YB, He GZ, Zhang X. Angew Chem Int Ed. 2014; 
53:10457–10461.Ge S, Arlow SI, Mormino MG, Hartwig JF. J Am Chem Soc. 2014; 13610.1021/
ja508590kMatheis C, Jouvin K, Goossen LJ. Org Lett. 2014:16.10.1021/ol5030037Gu Y, Leng X, 
Shen Q. Nat Commun. 2014; 5:5405.10.1038/ncomms6405. [PubMed: 25377759] 

Shi and Buchwald Page 4

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2015 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6. a) Wu, Y-J. Heterocyclic Scaffolds II:, Topics in Heterocyclic Chemistry. Gribble, GW., editor. Vol. 
26. Springer; Berlin: 2010. p. 1-30.b) Badillo JJ, Hanhan NV, Franz AK. Curr Opin Drug Discovery 
Dev. 2010; 13:758–776.

7. For a discussion on bioisosteres, see: Meanwell NA. J Med Chem. 2011; 54:2529–2591. [PubMed: 
21413808] 

8. For examples of 3,3-difluoro-2-oxindole analogs in biological studies, see: Zhou N, Polozov AM, 
O’Connell M, Burgeson J, Yu P, Zeller W, Zhang J, Onua E, Ramirez J, Palsdottir GA, 
Halldorsdottir GV, Andresson T, Kiselyov AS, Gurney M, Singh J. Bioorg Med Chem Lett. 2010; 
20:2658–2664. [PubMed: 20303752] Zhu GD, Gandhi VB, Gong JC, Luo Y, Liu XS, Shi Y, Guan 
R, Magnone SR, Klinghofer V, Johnson EF, Bouska J, Shoemaker A, Oleksijew A, Jarvis K, Park 
C, De Jong R, Oltersdorf T, Li Q, Rosenberg SH, Giranda VL. Bioorg Med Chem Lett. 2006; 
16:3424–3429. [PubMed: 16644221] Podichetty AK, Faust A, Kopka K, Wagner S, Schober O, 
Schäfers M, Haufe G. Bioorg Med Chem. 2009; 17:2680–2688. [PubMed: 19299147] 

9. a) Middleton WJ, Bingham EM. J Org Chem. 1980; 45:2883–2887.b) Singh RP, Majumder U, 
Shreeve JM. J Org Chem. 2001; 66:6263–6267. [PubMed: 11559172] c) Lim YH, Ong Q, Duong 
HA, Nguyen TM, Johannes CW. Org Lett. 2012; 14:5676–5679. [PubMed: 23101562] d) Ohtsuka 
Y, Yamakawa T. Tetrahedron. 2011; 67:2323–2331.e) Zhu J, Zhang W, Zhang L, Liu J, Zheng J, 
Hu J. J Org Chem. 2010; 75:5505–5512. [PubMed: 20704426] 

10. a) Markovski LN, Pahinnik VE, Kirsanov AV. Synthesis. 1973:787–789.b) Middleton WJ. J Org 
Chem. 1975; 40:574–578.c) Messina PA, Mange KC, Middleton WJ. J Fluorine Chem. 1989; 
42:137–143.

11. Fujiwara Y, Dixon JA, Rodriguez RA, Baxter RD, Dixon DD, Collins MR, Blackmond DG, Baran 
PS. J Am Chem Soc. 2012; 134:1494–1497. [PubMed: 22229949] Zhou Q, Ruffoni A, Gianatassio 
R, Fujiwara Y, Sella E, Shabat D, Baran PS. Angew Chem Int Ed. 2013; 52:3949–3952.Fujiwara 
Y, Dixon JA, O’Hara F, Funder ED, Dixon DD, Rodriguez RA, Baxter RD, Herle B, Sach N, 
Collins MR, Ishihara Y, Baran PS. Nature. 2012; 492:95–99. [PubMed: 23201691] Su YM, Hou 
Y, Yin F, Xu YM, Li Y, Zheng X, Wang XS. Org Lett. 2014; 16:2958–2961. [PubMed: 
24814678] Jung J, Kim E, You Y, Cho EJ. Adv Synth Catal. 2014; 356:2741–2748.Wang L, Wei 
X-J, Jia W-L, Zhong J-J, Zhong L-Z, Wu L-Z, Liu Q. Org Lett. 2014; 1610.1021/ol502676yFor 
recent examples of C–H trifluoroethylation, see: Song W, Lackner S, Ackermann L. Angew Chem 
Int Ed. 2014; 53:2477–2480.Zhang H, Chen P, Liu G. Angew Chem Int Ed. 2014; 53:10174–
10178.

12. Hennessy EJ, Buchwald SL. J Am Chem Soc. 2003; 125:12084–12085. [PubMed: 14518981] 

13. Kiser EJ, Magano J, Shine RJ, Chen MH. Org Process Res Dev. 2012; 16:255–259.

14. Choy A, Colbry N, Huber C, Pamment M, Duine JV. Org Process Res Dev. 2008; 12:884–887.

15. To the best of our knowledge, the oxidative addition of palladium to a C-Cl bond of a difluoroalkyl 
chloride has not been described in the literature. The palladium-catalyzed difluoroalkylation 
reactions using difluoroalkyl bromides have been reported, see: ref [5g, 5i, 5k].

16. a) Grushin VV, Marshall WJ. J Am Chem Soc. 2006; 128:4632–4641. [PubMed: 16594700] b) 
Grushin VV, Marshall WJ. J Am Chem Soc. 2006; 128:12644–12645. [PubMed: 17002347] 

17. The beneficial effects of catalyst premixing have been reported previously, see: Wolfe JP, 
Buchwald SL. J Org Chem. 2000; 65:1144–1157. [PubMed: 10814066] Ueda S, Su M, Buchwald 
SL. Angew Chem Int Ed. 2011; 50:8944–8947.Ueda S, Su M, Buchwald SL. J Am Chem Soc. 
2012; 134:700–706. [PubMed: 22126442] 

18. a) Joule, JA.; Mills, K. Heterocyclic Chemistry. 5. Wiley; Chichester: 2010. b) Leurs R, Bakker 
RA, Timmerman H, de Esch IJP. Nat Rev Drug Discovery. 2005; 4:107–120.

19. For a useful discussion on analyzing KIE, see: Simmons EM, Hartwig JF. Angew Chem Int Ed. 
2012; 51:3066–3072.

20. An inverse secondary intramolecular KIE of similar magnitude has been reported for a 
hydroarylation reaction and was attributed to sp2 to sp3 rehybridization in an arene 
dearomatization step: Tunge JA, Foresee LN. Organometallics. 2005; 24:6440–6444.

21. An alternative mechanism in which C-C bond formation proceeds via carbopalladation of the 
aromatic ring followed by β-H elimination cannot be excluded, see: ref [12].

Shi and Buchwald Page 5

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2015 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Bioactive oxindoles and isatins (top), 3,3-difluoro-2-oxindoles as bioisosteric analogs of 

oxindoles and isatins and their proposed synthesis from chlorodifluoroacetanilides (bottom).
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Scheme 1. 
Observed kinetic isotope effects
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Scheme 2. 
Proposed catalytic cycle (the ligand was omitted for clarity)
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Table 2

Palladium-catalyzed C–H difluoroalkylation of arenes[a].

[a]
Yields of isolated product are an average of two runs on a 1.0 mmol scale.

[b]
Reaction conditions: Pd2dba3 (1 mol%), L6 (4 mol%), 10 h.
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Table 3

Palladium-catalyzed C–H difluoroalkylation of heteroarenes[a].

[a]
Yields of isolated product are an average of two runs in 1.0 mmol scale.

[b]
Reaction was conducted in 5.0 mmol scale.

[c]
r.r.: regioisomeric ratio.
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