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ABSTRACT: Enantioselective synthesis of β-chiral
amines has been achieved via copper-catalyzed hydro-
amination of 1,1-disubstituted alkenes with hydroxylamine
esters in the presence of a hydrosilane. This mild process
affords a range of structurally diverse β-chiral amines,
including β-deuterated amines, in excellent yields with high
enantioselectivities. Furthermore, catalyst loading as low as
0.4 mol% could be employed to deliver product in
undiminished yield and selectivity, demonstrating the
practicality of this method for large-scale synthesis.

As a privileged structural subclass, β-chiral amines are found
in a broad range of bioactive molecules, including a number

of widely employed medicinal agents (Figure 1A).1 Although
several strategies have been devised to access β-chiral amines in
an enantioselective manner,2 catalytic hydroamination con-
stitutes a potentially powerful yet unexplored direct approach for
their construction.3 In particular, we recognized that if
asymmetric anti-Markovnikov hydroamination could be
achieved, enantioenriched β-chiral amines would be directly
accessible from readily available 1,1-disubstituted alkenes (Figure
1B).
The ability to access β-chiral amines through catalytic

hydroamination would offer increased flexibility and generality
compared to existing approaches for their preparation. To date,
there are only a handful of reports describing the enantioselective

hydroamination of unactivated olefins,4 and although several
transition-metal-mediated5 and metal-free6 approaches have
recently been reported for anti-Markovnikov hydroamination,
an enantioselective process remains elusive.
Recently, we reported a catalytic protocol for the hydro-

amination of styrene derivatives and monosubstituted alkenes
initiated by the hydrocupration of olefin double bonds.7

Interception of the thus-generated alkylcopper species by a
hydroxylamine ester furnished the formal hydroamination
product.8 The copper hydride species was regenerated in situ
by a stoichiometric amount of a hydrosilane to achieve a net
catalytic hydroamination reaction. We wondered whether this
process could be extended to 1,1-disubstituted alkene substrates
to produce β-chiral amines in an enantioselective manner (Figure
2). We anticipated that hydroamination of 1,1-disubstituted

olefins would proceed with exclusive anti-Markovnikov regio-
selectivity, in analogy to the regioselectivity previously observed
for monosubstituted olefins.7a However, successful implementa-
tion of this strategy would require a catalyst capable of efficient
hydrocupration of these unactivated and sterically encumbered
substrates, as well as the effective discrimination of olefin
substituents well-removed from the Cu center and its chiral
ligand. Indeed, the enantioselective functionalization of 1,1-
disubstituted olefins has been cited as a major challenge for
asymmetric synthesis,9 and only a few highly enantioselective
catalytic transformations of these substrates have been
reported.10 Herein we report the regio- and enantioselective
hydroamination of 1,1-disubstituted olefins as a practical and
general method for the synthesis of β-chiral amines.
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Figure 1. (A) Representative β-chiral amines. (B) Hydroamination
strategy for their preparation.

Figure 2. Proposed mechanism of CuH-catalyzed anti-Markovnikov
hydroamination.
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We began our investigation by examining the enantioselective
hydroamination of 2,3-dimethyl-1-butene (1a), a 1,1-disubsti-
tuted alkene substrate with moderately differentiated substitu-
ents (Table 1). An evaluation of ligands revealed (R)-DTBM-

SEGPHOS to be superior to all others tested (entry 1 vs entries
2−6). The use of (R)-DTBM-MeO-BIPHEP as ligand afforded
product with good enantioselectivity but in moderate yield
(entry 2). Cu catalysts based on other ligands, including (R,R)-
Ph-BPE, (R)-(S)-Josiphos, (S)-BINAP, and Xantphos, exhibited
little or no activity (entries 3−6). Although varying the solvent
hadminimal impact on enantioselectivity, THFwas found to give
the highest reactivity (entry 1 vs entries 7, 8). The enantiomeric
excess was essentially unchanged when the reaction was
conducted at room temperature instead of 40 °C. However,
the reaction did not proceed to full conversion after 36 h (entry
9). Likewise, reduction of catalyst loading to 0.4 mol% led to
incomplete conversion (entry 10). Hence the reaction
conditions shown in entry 1 were chosen for subsequent
examination of the substrate scope of this transformation.11a

Under these optimized conditions, we first examined the steric
effect of substituents on the alkene on enantioselectivity. As
illustrated in Table 2a, we found that hydroamination generally
proceeded with levels of enantioselectivity that correlated with
the steric difference between the 1,1-substituents. High levels of
enantioselectivity were observed when one of the alkene
substituents was α-branched (3a,d−f). Nevertheless, moderately
enantioselective hydroamination could still be achieved for more

challenging substrates bearing methyl and primary alkyl
substituents (3b,c).
Hydroamination of 1,1-disubstituted alkenes demonstrated

broad functional group compatibility (Table 2b). Under these
base-free and exceptionally mild reaction conditions, a variety of
functional groups were readily accommodated, including an
acetal (3j), a ketal (3k), a nitrile (3n), an ester (3o), ethers (3g−
i), and silanes (3l−n).12 In particular, vinylsilanes underwent
hydroamination to afford highly enantioenriched amines
containing stereogenic silicon substituents (3l−n). Moreover,
silyl-protected allylic alcohols proved to be excellent substrates
for this transformation, furnishing protected 1,3-amino alcohols
in excellent yields and enantioselectivities (3g−i). Surprisingly,
subjecting α-methylstyrene to hydroamination conditions
provided a 7:1 mixture of anti-Markovnikov and Markovnikov
products, though enantioselectivity was onlymoderate (3p). The
observed regioselectivity for this substrate is presumably due to
preferential formation of the less crowded alkylcopper species

Table 1. Variation of Reaction Parameters

entry T (°C) solvent L yield (%)a ee (%)b

1 40 THF L1 91 83
2 40 THF L2 67 82
3c 40 THF L3 7 −12
4c 40 THF L4 0
5c 40 THF L5 0
6c 40 THF L6 0
7 40 toluene L1 60 82
8 40 cyclohexane L1 74 82
9 rt THF L1 64 84
10d 40 THF L1 35 81

aYields were determined by GC using dodecane as the internal
standard. bEnantioselectivities were determined by chiral HPLC
analysis. c10 mol% Cu(OAc)2 and 11 mol% L used. d0.4 mol%
Cu(OAc)2 and 0.44 mol% (R)-DTBM-SEGPHOS used.

Table 2. Substrate Scope of 1,1-Disubstituted Alkenesa,b,c

aIsolated yields on 1 mmol scale (average of two runs). bAbsolute
configuration was assigned by chemical correlation or analogy.
cEnantioselectivities were determined by chiral HPLC or chiral SFC
analysis. dCu(OAc)2 (5 mol%) and (R)-DTBM-SEGPHOS (5.5 mol
%) used. eIsolated as a 7:1 mixture of anti-Markovnikov and
Markovnikov regioisomers, respectively. Enantioselectivity refers to
that of the anti-Markovnikov regioisomer. fCu(OAc)2 (4 mol%) and
(R)-DTBM-SEGPHOS (4.4 mol%) used.
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during the hydrocupration step, which overcomes the preference
for benzylic cupration that we previously observed for α-
unsubstituted styrenes.7

In some cases, a judicious choice of protecting group allowed
good enantioselectivity to be achieved in substrates with remote
or otherwise ineffective steric differentiation (Table 2c). For β-
methallyl alcohol, we found that installation of a trityl protecting
group allowed good enantioselectivity to be achieved (3q), while
the use of bulky silyl protecting groups was ineffective (3r,s).
This strategy could be extended to the corresponding amine to
generate the diamine product in comparable enantioselectivity
(3t). The presence of an unprotected N−H group in this case did
not adversely affect reactivity or selectivity of the hydro-
amination. The catalyst system was also able to effectively
differentiate between two remote alcohol protecting groups
installed onto 2-methylene-1,3-propanediol: hydroamination
proceeded with high efficiency and good enantioselectivity to
afford the orthogonally protected aminodiol products (3u,v).
Finally, an additional benefit of employing the trityl protecting
group in some cases is the high crystallinity of the resulting
hydroamination products. Thus, the enantiopurity of both 3q
and 3t could be upgraded to >90% ee upon a single
recrystallization (see the Supporting Information).
We next explored the ability of the catalyst to control

diastereoselectivity in reactions of enantiopure chiral olefins. As
shown in Table 3, the hydroamination of (R)-limonene

proceeded with excellent catalyst control (3w,w′). However, in
the case of conformationally rigid estrone-derived substrate 1x, a
substrate−catalyst matching and mismatching effect was
observed. In the matched case, the substrate was transformed
to the product with high efficiency and outstanding diastereo-
selectivity (>50:1 dr, 3x). In contrast, the mismatched case
furnished product with poor conversion and low diastereo-
selectivity (3x′).
A survey of hydroxylamine esters revealed that a range of

amino groups could be installed under these hydroamination
conditions (Table 4). The use of dimethyl O-benzoylhydroxyl-
amine was successful (4b),11b allowing for the enantioselective
synthesis of dimethylamine derivatives, which are prevalent in

pharmaceutical agents. Furthermore, 4-(pyrimidin-2-yl)-
piperazin-1-yl benzoate (4c) and the sterically hindered reagent
derived from tetramethylpiperidine (4d) were well tolerated by
our system. Finally, a stereocenter adjacent to the nitrogen atom
of the electrophilic aminating reagent could be accommodated,
with the hydroamination reaction proceeding in a completely
catalyst-controlled manner (4e,e′).
The anti-Markovnikov hydroamination could be extended to

the synthesis of amines with stereogenic deuterium substituents,
which may find utility in chemical or biological labeling studies.13

An enantioenriched deuterated alkene with an adjacent stereo-
center was prepared to permit determination of stereoselectivity
by NMR spectroscopy. Deuterated alkene 5was readily prepared
by deuteroalumination of the corresponding enantioenriched
alkyne. Subjecting 5 to hydroamination conditions selectively
afforded either diastereomer of the expected β-deuterated amine
product, depending on the antipode of ligand employed
(Scheme 1). The observation of catalyst-controlled selectivity

in this example suggests that the catalyst can achieve effective
facial discrimination for monosubstituted aliphatic alkenes as
well as for 1,1-disubstituted alkenes and styrenes.
Finally, as previously observed by Lipshutz and coworkers in

related CuH-based systems,14 it was found that the addition of
triphenylphosphine as a secondary ligand improved catalyst

Table 3. Hydroamination of Chiral 1,1-Disubstituted
Alkenesa

aIsolated yields on 1 mmol scale (average of two runs). Absolute
configuration assigned by chemical correlation or analogy. Diastereo-
selectivities determined by 1H NMR analysis of the crude reaction
mixture.

Table 4. Scope of Hydroxylamine Electrophilesa

aIsolated yields on 1 mmol scale (average of two runs). Enantio-
selectivities determined by chiral HPLC analysis. Absolute config-
uration assigned by chemical correlation or analogy.

Scheme 1. Practical Synthesis of β-Chiral Deuterated Aminesa

aIsolated yields on 1 mmol scale (average of two runs). Absolute
configuration assigned by chemical correlation or analogy. Diastereo-
selectivities determined by 1H NMR analysis.

Scheme 2. Large-Scale Hydroamination with Lower Catalyst
Loading
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turnover numbers without significantly impacting the reaction
rate or enantioselectivity of hydroamination, thereby allowing a
reduced loading of Cu precatalyst and chiral ligand to be used.
Thus, we developed a slightly modified protocol for practical
hydroamination reactions conducted on large scale. A catalyst
loading of 0.4 mol% proved sufficient for reactions performed on
10 mmol scale using commercially available (R)-limonene as the
substrate (Scheme 2).
In conclusion, we have described a mild catalytic process for

the synthesis of β-chiral amines by asymmetric anti-Markovnikov
hydroamination of 1,1-disubstituted alkenes. This versatile
method tolerated a wide range of functional groups on the
alkene component and was compatible with heterocycle-
containing and sterically hindered aminating reagents. This
approach was further applied to the stereoselective synthesis of β-
deuterated amines. The amount of catalyst required could be
reduced by the addition of triphenylphosphine as an inexpensive
secondary ligand, further enhancing the practicality of this
system for large-scale synthesis. The application of this protocol
toward the synthesis of pharmaceutical agents and natural
products is currently underway and will be reported in due
course.
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Beller, M. Chem.Eur. J. 2004, 10, 746. (b) Horrillo-Martínez, P.;
Hultzsch, K. C.; Gil, A.; Branchadell, V. Eur. J. Org. Chem. 2007, 331.
(c) Zhang, X.; Emge, T. J.; Hultzsch, K. C. Angew. Chem., Int. Ed. 2012,
51, 394. For intermolecular anti-Markovnikov hydroamination
reactions based on radical processes, see: (d) Guin, J.; Mück-
Lichtenfeld, C.; Grimme, S.; Studer, A. J. Am. Chem. Soc. 2007, 129,
4498. (e) Nguyen, T. M.; Manohar, N.; Nicewicz, D. A. Angew. Chem.,
Int. Ed. 2014, 53, 6198.
(7) (a) Zhu, S.; Niljianskul, N.; Buchwald, S. L. J. Am. Chem. Soc. 2013,
135, 15746. For a related system for the asymmetric hydroamination of
styrene derivatives, see: (b) Miki, Y.; Hirano, K.; Satoh, T.; Miura, M.
Angew. Chem., Int. Ed. 2013, 52, 10830. See also: (c) Hesp, K. D. Angew.
Chem., Int. Ed. 2014, 53, 2034.
(8) For leading references on various electrophilic amine sources and
their applications, see: (a) Berman, A.M.; Johnson, J. S. J. Am. Chem. Soc.
2004, 126, 5680. (b) Erdik, E.; Ay, M. Chem. Rev. 1989, 89, 1947.
(c) Barker, T. J.; Jarvo, E. R. Synthesis 2011, 3958.
(9) Thomas, S. P.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2009, 48,
1896.
(10) For asymmetric hydrogenation, see: (a) McIntyre, S.; Hörmann,
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