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Abstract. Validation of precipitation estimates from various

products is a challenging problem, since the true precipita-

tion is unknown. However, with the increased availability

of precipitation estimates from a wide range of instruments

(satellite, ground-based radar, and gauge), it is now possible

to apply the triple collocation (TC) technique to characterize

the uncertainties in each of the products. Classical TC takes

advantage of three collocated data products of the same vari-

able and estimates the mean squared error of each, without

requiring knowledge of the truth. In this study, triplets among

NEXRAD-IV, TRMM 3B42RT, GPCP 1DD, and GPI prod-

ucts are used to quantify the associated spatial error charac-

teristics across a central part of the continental US. Data are

aggregated to biweekly accumulations from January 2002

through April 2014 across a 2◦× 2◦ spatial grid. This is the

first study of its kind to explore precipitation estimation er-

rors using TC across the US. A multiplicative (logarithmic)

error model is incorporated in the original TC formulation to

relate the precipitation estimates to the unknown truth. For

precipitation application, this is more realistic than the addi-

tive error model used in the original TC derivations, which

is generally appropriate for existing applications such as in

the case of wind vector components and soil moisture com-

parisons. This study provides error estimates of the precip-

itation products that can be incorporated into hydrological

and meteorological models, especially those used in data as-

similation. Physical interpretations of the error fields (related

to topography, climate, etc.) are explored. The methodology

presented in this study could be used to quantify the uncer-

tainties associated with precipitation estimates from each of

the constellations of GPM satellites. Such quantification is

prerequisite to optimally merging these estimates.

1 Introduction

Precipitation is one of the main drivers of the water cycle;

therefore, accurate precipitation estimates are necessary for

studying land–atmosphere interactions as well as linkages

between the water, energy, and carbon cycles. Surface pre-

cipitation is also a principal driver of hydrologic models with

a wide range of applications. A wide suite of instruments

(in situ and remote sensing) monitor precipitation incident

at the Earth’s surface. Specifically, there has been a great ef-

fort during the last 2 decades to use microwave radar and

radiometer instruments on board low-earth-orbit satellites to

accurately estimate precipitation over large areas. These es-

timates, when combined with infrared-based cloud-top tem-

perature observations from geostationary satellites, provide

high spatial and temporal resolution precipitation estimates

that are appropriate for hydrological and climatological stud-

ies.

However, precipitation estimation is inevitably subject to

error. The errors are caused by different factors depending on

the measurement instrument. For gauge measurements, the

sparse distribution of gauges, environmental conditions such

as wind and evaporation, and topography contribute to the er-

rors. For ground-based radars, beam blockages in mountain-

ous regions, the empirical backscatter–rain rate relationship

(and the simplifications embedded in their functional form),

and clutter are among the sources of error. Lastly, for satellite

retrievals (both radiometer and radar), assumptions about the

surface emissivity, neglecting evaporation below clouds, and

empirical relationships are the driving factors of error.
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The new Global Precipitation Measurement (GPM) mis-

sion aims to integrate precipitation estimates from a constel-

lation of satellites to provide high spatial and temporal res-

olution estimates of precipitation over the Earth (Hou et al.,

2013). However, successful data integration requires that the

errors in each estimate are known. Since the truth is not

known, only indirect methods are generally developed to es-

timate errors.

Several studies investigate and model the uncertainties in

remotely-sensed precipitation estimates; however, they all

depend on assuming the ground-based (gauge and/or radar)

observations or models representing the zero-error precip-

itation (Krajewski et al. (2000); McCollum et al. (2002);

Ebert et al. (2007); Su et al. (2008); Sapiano and Arkin

(2009); Tian et al. (2009); Vila et al. (2009); Anagnostou

et al. (2010); Stampoulis and Anagnostou (2012); Habib

et al. (2012); Kirstetter et al. (2012, 2013); Chen et al. (2013);

Alemohammad et al. (2014); Maggioni et al. (2014); Seyyedi

(2014); Tang et al. (2014); Salio et al. (2015); Prat and Nel-

son (2015); Alemohammad et al. (2015); Gebregiorgis and

Hossain (2015); among others).

Triple collocation (TC) provides a platform for quantify-

ing the root mean square error (RMSE) in three or more prod-

ucts that estimate the same geophysical variable. Developed

by Stoffelen (1998), TC takes advantage of at least three spa-

tially and temporally collocated measurements of the vari-

able of interest to solve a system of equations and estimate

the error variance of each of the measurements. To make this

system of equations determined, some assumptions are built

into the technique including zero-error cross covariance be-

tween different products and zero covariance between errors

and truth.

While TC has been used extensively to estimate errors in

soil moisture products (Miralles et al., 2010; Dorigo et al.,

2010; Parinussa et al., 2011; Anderson et al., 2012; Draper

et al., 2013), it has also been successfully applied to other

geophysical variables such as ocean wind speed and wave

height (Stoffelen, 1998; Janssen et al., 2007; Portabella and

Stoffelen, 2009), leaf area index (LAI) (Fang et al., 2012),

fraction of absorbed photosynthetically active radiation (FA-

PAR) (D’Odorico et al., 2014), sea-ice thickness (Scott et al.,

2014), atmospheric columnar integrated water vapor (Cimini

et al., 2012; Thao et al., 2014), sea surface salinity (Ratheesh

et al., 2013), and land water storage (van Dijk et al., 2014).

Roebeling et al. (2012) apply the TC technique to precipi-

tation products for the first time and estimate errors for three

precipitation products across Europe. The results show that

a gridded gauge product and satellite retrievals (microwave)

have TC errors less than 1.0 mm day−1 while the European

weather radar estimates have errors up to 18 mm day−1 in

some mountainous regions.

New variants of TC are introduced with wider applica-

tions in recent years. McColl et al. (2014) introduce the ex-

tended TC (ETC) that can be used to easily estimate the cor-

relation coefficient between each of the triplets and the un-

known truth as well as their RMSEs. ETC is mathematically

equivalent to the original TC; however, the ease of calculat-

ing the correlation coefficients in ETC provides a different

perspective on the performance of each product.

Su et al. (2014) introduce an implementation of instrument

variables to reduce the minimum number of products neces-

sary for TC analysis to two. In this framework, the lagged

version of one of the two products is used as the third prod-

uct to conduct the TC analysis (lagged-TC). If the lagged

product is sampled at time intervals shorter than the tempo-

ral correlation length of the variable of interest, this approach

can provide RMSE estimates of two collocated products.

In this study, we estimate the spatial RMSE between

triplets of precipitation products across a central part of the

US. Unlike Roebeling et al. (2012), we introduce a new loga-

rithmic (multiplicative) error model that is more realistic for

precipitation estimates. Moreover, the ETC approach is used

in this study to estimate the correlation coefficients for each

of the products.

Yilmaz and Crow (2014) present an extensive evaluation

of the TC assumptions when applied to soil moisture prod-

ucts. We take a similar approach here, and use rain gauge data

to validate the error estimates from TC analysis in a subset of

pixels of the study domain. These pixels (located in the state

of Oklahoma) have a dense network of rain gauges with a

high quality data processing system that enables us to do this

evaluation. The results of this evaluation provide a better un-

derstanding of the errors in precipitation products estimated

by TC.

This paper is organized as following: Sect. 2 introduces

the multiplicative TC analysis. Section 3 reviews the prod-

ucts used in this study. Section 4 presents the results of TC

error estimates. Section 5 evaluates the assumptions of TC

analysis using gauge data and Sect. 6 discusses the results

and conclusions.

2 Triple collocation formulation

In this section, we review the TC formulation and intro-

duce the multiplicative error model. In the multiplicative er-

ror model for precipitation, the true precipitation is related to

the estimation as

Ri = aiT
βi eεi , (1)

in which Ri is the precipitation intensity estimate from prod-

uct i, T is the true precipitation intensity, ai is the multiplica-

tive error, βi is the deformation error, and εi is the residual

(random) error. The multiplicative error model is used in sev-

eral studies to investigate the errors associated with precipita-

tion estimates (Hossain and Anagnostou, 2006; Ciach et al.,

2007; Villarini et al., 2009; Tian et al., 2013). It is generally

concluded that the multiplicative model is more appropriate

for quantifying errors in precipitation estimates. Moreover,

Tian et al. (2013) present a comparison between the linear
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and multiplicative error models applied to daily precipita-

tion estimates across the US. They show that the multiplica-

tive model has a better prediction skill and it is applicable to

the variable and wide range of daily precipitation values. We

also evaluated the joint probability density functions (PDF)

of pairs of products to check their spread across different val-

ues of precipitation. Results show that PDFs generated from

the multiplicative model have better spread compared to the

additive model. Therefore, we concluded that for biweekly

data it is better to assume the multiplicative model.

In this study, we use the multiplicative model to relate the

precipitation estimates to the true value; however, without

having the truth or making any assumptions about the distri-

bution of the error, we estimate the RMSE of each estimate.

Taking the logarithm of Eq. (1) results in

ln(Ri)= αi +βi ln(T)+ εi, (2)

in which αi = ln(ai) is the offset. Defining ri = ln(Ri) and

t= ln(T), the equation is simplified to

ri = αi +βit+ εi . (3)

This linear equation makes it possible to apply TC to the pre-

cipitation data, assuming a multiplicative error model. There-

fore, log-transformation of the precipitation estimates from

all the products is performed in this study and then TC is ap-

plied. Assuming there are three collocated estimates of pre-

cipitation with zero mean residual errors (E(εi)= 0) that are

uncorrelated with each other (Cov(εi , εj )= 0) and with the

true precipitation (Cov(εi , t)= 0), the RMSE of each prod-

uct can be estimated using the following sets of equations

(McColl et al., 2014):

σ 2
r1
= C11−

C12C13

C23

(4)

σ 2
r2
= C22−

C12C23

C13

(5)

σ 2
r3
= C33−

C13C23

C12

, (6)

where Cij is the (i, j )th element of the sample covariance

matrix between the transformed triplets, and σri is the RMSE

of the ri product. Equations (4)–(6) estimate the mean square

error of each product in logarithmic scale. In Sect. 4, the re-

sults of these estimates along with RMSE estimates of Ri
products are presented.

Based on the ETC introduced by McColl et al. (2014),

the correlation coefficient between the truth and each of the

triplets is

ρ2
t,1 =

C12C13

C11C23

(7)

ρ2
t,2 =

C12C23

C22C13

(8)

Figure 1. Study domain. The six numbered pixels are used in Sect. 5

for evaluation of TC assumptions in estimating RMSE.

ρ2
t,3 =

C13C23

C33C12

, (9)

where ρ2
t,i is the correlation coefficient between the truth and

product i in the logarithmic scale (i.e., between t and ri). In

defining the sign of the ρt,i , it is assumed that the measure-

ments are positively correlated with the truth to overcome

sign ambiguity.

3 Study domain and data pre-processing

Figure 1 shows the analysis domain and the spatial grid used

in this study. The study domain ranges from 30 to 40◦ N lat-

itude and 110 to 80◦W longitude. This region is selected to

maximize the overlapping spatial coverage between the data

sets that are used here. Major waterbodies (Great Lakes and

the Gulf of Mexico) and strong terrain (i.e., Rocky Moun-

tains) are excluded.

Precipitation estimates from five products NEXRAD-IV,

TRMM 3B42RT, TRMM 3B42, GPI, and GPCP 1DD are

evaluated. NEXRAD-IV is the national mosaicked precipi-

tation estimates from the National Weather Service ground-

based WSR-88D radar network (National Center for En-

vironmental Prediction, 2005; Fulton et al., 1998). This

product is based on merged gauge and radar estimates

from 12 river forecast centers across the Continental United

States (CONUS) that are mosaicked to a 4km grid over

CONUS. The product is available through the National Cen-

ter for Atmospheric Research (NCAR) Earth Observing

Laboratory (EOL; Lin and Mitchell, 2005). Using nearest

neighbor sampling, we map this product to a 0.05◦× 0.05◦

latitude–longitude grid. The original NEXRAD-IV (here-

after called NEXRAD) product is hourly accumulation in

mm and is available from January 2002 to present.

TRMM 3B42RT is a multi-satellite precipitation estimate

from the Tropical Rainfall Measuring Mission (TRMM)

together with other low-earth-orbit microwave instruments

(TRMM, 2015; Huffman et al., 2007). The precipitation es-

timates from several microwave instruments are calibrated
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against the merged radar and radiometer precipitation prod-

ucts from TRMM, and then merged to produce a near-global

3 h precipitation product. The pixels with no microwave in-

strument observations are filled with measurements from IR

instruments on board geostationary satellites that are cali-

brated using Passive Microwave (PMW) measurements. The

TRMM 3B42RT is the real-time version of the product that

does not have a gauge correction; however, the TRMM 3B42

is a gauge-corrected product, meaning that the monthly ac-

cumulation of estimates in each pixel are calibrated against

GPCC gauge products to have similar monthly magnitudes.

These two products are available on a 0.25◦× 0.25◦ latitude–

longitude grid from January 1998 to present. We use the cur-

rent V7 of them.

The GOES Precipitation Index (GPI) is a rainfall retrieval

algorithm that only uses cloud-top temperatures from IR-

based observations of geostationary satellites to estimate rain

rate (Arkin and Meisner, 1987; Arkin and Janowiak, 2015).

The main advantage of this product is that it only uses obser-

vations from geostationary satellites that are frequently avail-

able across the globe. However, the physics of the precipi-

tation process is not considered in this retrieval algorithm.

Therefore, the estimates are only useful in the tropics and

warm-season extra-tropics in which most of the precipitation

originates from deep convective cloud systems. This prod-

uct contains daily precipitation rates on a 1◦× 1◦ spatial grid

from October 1996 to present.

The Global Precipitation Climatology Project (GPCP) is

a globally merged daily precipitation rate at 1◦× 1◦ spatial

resolution from October 1996 to the present (Huffman et al.,

2001, 2013). This is a merged estimate of precipitation from

low-earth-orbit PMW instruments, the GOES IR-based ob-

servations, and surface rain gauge measurements. The merg-

ing approach utilizes the higher accuracy of the PMW obser-

vations to calibrate the more frequent GOES observations. In

this study, V1.2 of the One-Degree Daily (1DD) product of

GPCP is used.

The NEXRAD, TRMM 3B42, and TRMM 3B42RT data

are upscaled to a 1◦× 1◦ spatial grid to be consistent with the

spatial resolution of the GPI and GPCP 1DD data.

The time domain for this error estimation study is from

January 2002 until April 2014. All the data products have

a complete record within this time window which is more

than 1 decade. Moreover, to generate temporally uncorre-

lated samples that do not have zero precipitation, the data

from each product are temporally aggregated to biweekly

values. Precipitation is a bounded variable and can only take

values greater and equal to zero. If the precipitation estimate

at a specific time and space is equal to zero; then, the error

in that estimate can be from a limited set of numbers (ba-

sically any number greater than zero). Therefore, the error

is dependent on the measurement (or equivalently the truth).

As a result, if we have zero value in the precipitation mea-

surement for all the triplets, the error of each of them is de-

pendent on the measurement; and therefore, on each other.

This dependence would violate the assumption that all errors

are independent and identically distributed. The error depen-

dence decreases as the measurement value moves away from

zero. Among the aggregated data, there are a few percentage

of samples that have zero biweekly precipitation accumula-

tion which are removed from the analysis. The percentage of

samples with zero value is less than 2% in most of the region

other than eight pixels in the southwest of the region (the dri-

est part of the domain) that have up to 8 % of the samples

equal to zero. In the accumulation algorithm, any biweekly

data with missing hourly or daily measurements are treated

as missing values.

This data aggregation reduces the number of samples

across the temporal domain of this study. TC analysis needs

enough samples to be able to provide an accurate estimation

of the error. Therefore, we combine the estimates from four

neighboring 1◦× 1◦ pixels to form data points for the 2◦× 2◦

grids shown in Fig. 1. This means measurements taken over

each of the four 1◦× 1◦ pixels inside the 2◦× 2◦ pixel are

each treated to be measurements over the 2◦× 2◦ pixel, in-

creasing the total number of samples for each 2◦× 2◦ pixel.

Under the assumption that the estimated rainfall is statisti-

cally homogeneous over each 2◦× 2◦ pixel, we can trade off

space and time in this way to increase the number of samples.

In the main analyses of the paper, the four products

NEXRAD, TRMM 3B42RT, GPI, and GPCP 1DD are used.

The TRMM 3B42 is used in Sect. 5 to show the impact of

gauge correction on the estimated error characteristics. Fig-

ure 2 shows the climatology of precipitation derived from

each of the four products. There is a good agreement be-

tween NEXRAD, TRMM 3B42RT, and GPCP 1DD esti-

mates; however, GPI has a different climatological pattern

across the domain. This difference is not unexpected. GPI’s

retrieval algorithm is very simple and only considers the

cloud-top temperature; therefore, it is less accurate compared

to the other three products that are either based on ground-

based radar or have microwave estimates of precipitation

combined with IR-based observations.

4 Results of TC analysis

In this section, we apply the multiplicative TC technique to

the precipitation products introduced in Sect. 3 and present

the estimated RMSE and correlation coefficients for each of

the products. The four products are grouped to two triplets;

Group 1 includes NEXRAD, TRMM 3B42RT, and GPI prod-

ucts, and Group 2 includes NEXRAD, TRMM 3B42RT, and

GPCP 1DD. Similar results were obtained from other triplet

combinations (these are not shown here).

Figures 3 and 4 show the RMSE of each ri product

in groups 1 and 2, respectively. These figures also show

the number of data points (biweekly precipitation measure-

ments) that are used in each pixel to do the TC estimate. Gen-

erally there are more than 1000 data points in each pixel. The
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Figure 2. Climatology of precipitation across the study domain from each of the products.

Figure 3. RMSE of the precipitation rate in logarithmic scale estimated from TC using triplets in group 1; (a) NEXRAD, (b) TRMM 3B42RT,

(c) GPI. (d) shows the number of data points (biweekly measurements) in each pixel that are used for error estimation in TC analysis.

sharp decline in the number of data points in the pixels in the

southwest of the study domain is due to the NEXRAD prod-

uct, of which one of its radar systems was repeatedly inactive

during 2002 and 2003.

The RMSE reported in these figures is based on bootstrap

analysis. We run 1000 bootstrap simulations (i.e., sampling

with replacement from the original data time series) and es-

timate the RMSE using Eqs. (4)–(6). The mean of these

1000 RMSE estimates is reported in Figs. 3 and 4. Addi-

tionally, the standard deviation of these bootstrap estimates

is reported in Fig. S1 in the Supplement. The standard de-

viations of RMSE from the bootstrap simulations are 1 or-

der of magnitude smaller than the RMSE estimate itself and

the results are consistent between the two groups. GPI has a

more uniform pattern for standard deviation of RMSE com-

pared to NEXRAD, TRMM 3B42RT, and GPCP 1DD that

have the east–west pattern. The standard deviation plots pro-

vide a range of confidence on the RMSE estimates from TC

www.hydrol-earth-syst-sci.net/19/3489/2015/ Hydrol. Earth Syst. Sci., 19, 3489–3503, 2015
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Figure 4. RMSE of the precipitation rate in logarithmic scale estimated from TC using triplets in group 2; (a) NEXRAD, (b) TRMM 3B42RT,

(c) GPCP 1DD. (d) shows the number of data points (biweekly measurements) in each pixel that are used for error estimation in TC analysis.

analysis. Since the standard deviations are an order of magni-

tude smaller than the RMSE itself, the mean RMSE from the

bootstrap simulations is a reasonable estimate of the RMSE.

The first observation and control check from Figs. 3 and 4

is that the RMSE estimates of precipitation from NEXRAD

and TRMM 3B42RT in both of the groups are very similar.

This shows that the TC analysis is robust and the results are

not, in general, dependent on the choice of triplets. Moreover,

the TRMM 3B42RT product has a lower RMSE in most of

the region.

The RMSE estimates, shown in Figs. 3 and 4, are in log-

arithmic scale which is informative and useful if someone

is assimilating the products in the logarithmic scale (equiva-

lently using the ri products). However, the RMSE estimates

of Ri products in units of precipitation intensity (mm day−1

in this case) provide another perspective and might be sim-

pler to interpret. Denoting µRi as the mean of Ri , expansion

of Eq. (2) using Taylor series results in

ln(Ri)≈ ln
(
µRi

)
+

(
Ri −µRi

) 1

µRi
. (10)

Therefore,

Var[ri]=

(
1

µRi

)2

Var
[(

Ri −µRi
)]

(11)

σ 2
ri
=

(
1

µRi

)2

σ 2
Ri

(12)

σRi = µRiσri . (13)

Equation (13) is used to report the RMSE of each of the

precipitation product errors after carrying out the TC anal-

ysis on the log-transformed products. Figures 5 and 6 show

the RMSE of precipitation products in each group in units of

mm day.−1 The standard deviations of these RMSE estimates

are also presented in Fig. S2.

There is, again, consistency between the results of

NEXRAD and TRMM 3B42RT in both groups. The RMSE

of the TRMM 3B42RT product in both of the triplets and

in majority of the pixels is small compared to the other two

products, and it is also relatively small compared to the mean

precipitation from climatology maps in Fig. 2. NEXRAD has

relatively higher RMSE compared to TRMM 3B42RT, but is

considerably smaller than GPCP 1DD or GPI.

Comparing the pattern of RMSE in NEXRAD,

TRMM 3B42RT, and GPCP 1DD with the climatology

maps (Fig. 2), it is clear that the RMSE in each product

increases east to west, similar to the climatology. This means

that in regions with higher mean precipitation rate, the

RMSE is higher. This is consistent with other studies that

have found that the mean error of precipitation estimates is

proportional to the mean precipitation (Tian et al. (2013);

Gebregiorgis and Hossain (2014); Tang et al. (2014);

Alemohammad et al. (2014), among others).

A recent study by Prat and Nelson (2015) investigates the

error of several precipitation products (ground-based radar

and microwave instruments) over CONUS by assuming the

gauge data as truth. They mainly characterize the bias in

precipitation estimates and evaluate detection of precipita-

tion events at different intensity thresholds and timescales.

However, their results show a similar pattern in the error es-

timates; higher estimation errors for higher mean precipita-

tion.

Figure 7 shows the estimated correlation coefficients be-

tween the underlying truth and each precipitation product in

Hydrol. Earth Syst. Sci., 19, 3489–3503, 2015 www.hydrol-earth-syst-sci.net/19/3489/2015/
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Figure 5. RMSE of the precipitation rate estimated from TC using triplets in group 1; (a) NEXRAD, (b) TRMM 3B42RT, (c) GPI. (d) shows

the number of data points (biweekly measurements) in each pixel that are used for error estimation in TC analysis.

Figure 6. RMSE of the precipitation rate estimated from TC using triplets in group 2; (a) NEXRAD, (b) TRMM 3B42RT, (c) GPCP 1DD.

(d) shows the number of data points (biweekly measurements) in each pixel that are used for error estimation in TC analysis.

the logarithmic scale. Similar to Figs. S1 and S2, each col-

umn shows the results of one of the triplet groups. Estimates

of ρ2 for TRMM 3B42RT and NEXRAD products from the

two groups are very similar and this again shows the robust-

ness of results from the TC technique. Among the products

analyzed here, the TRMM 3B42RT product has the highest

correlation coefficient with the truth in majority of the pixels,

and NEXRAD is ranked second after TRMM 3B42RT. There

is also a pattern that pixels toward the east of the region have

higher correlation coefficients compared to the west of the

region. GPCP 1DD has less correlation with the truth, and it

has a similar east–west pattern. GPI exhibits very low corre-

lation coefficients (∼ 0.1) toward the west of the region.

The combined and quantitative analyses of the RMSE

estimate and the correlation coefficients show that the

TRMM 3B42RT product has the best performance among

the four products considered here. The RMSE for

TRMM 3B42RT has relatively less variation across the do-

www.hydrol-earth-syst-sci.net/19/3489/2015/ Hydrol. Earth Syst. Sci., 19, 3489–3503, 2015
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Figure 7. Correlation coefficient between the truth and each precipitation product. The left column shows the results for triplets in group 1,

and the right column shows the results for triplets in group 2.

main. This means that the TRMM 3B42RT product has better

performance in diverse climatic and geographical conditions.

However, the correlation coefficients in TRMM 3B42RT de-

crease in the west side of the domain. This region is the cold-

est and snowiest part of the domain and it is covered with

snow during the winter. The accuracy of microwave-based

precipitation retrievals, which are the input measurements

to the TRMM 3B42RT product, is affected by the snow

on the ground. Some of the retrieval algorithms for these

instruments cannot appropriately distinguish the snow on

the ground from the falling precipitation. This phenomenon

can contribute to the low correlation coefficient between the

TRMM 3B42RT and the truth in the west part of the domain.

The NEXRAD product has a distinct error pattern. Both

the RMSE and correlation coefficient of the NEXRAD es-

timates are small toward the west of the domain. However,

comparing the error estimates from NEXRAD with the cli-

matology values reveals that the errors are sometimes on the

same order as the climatology toward the west of the domain.

This is also revealed by the correlation coefficient values,

which have a smaller value in the west side of the domain

for NEXRAD. This pattern is consistent with the NEXRAD

coverage maps provided by Maddox et al. (2002) that show

the effect of terrain on radar beam blockage in mountain-

ous regions of CONUS. Beam blockage is one of the sources

of error in ground-based radar estimates of precipitation in

mountainous regions.

The GPI and GPCP 1DD products are, in general, lower

quality than TRMM 3B42RT and NEXRAD. They have

higher RMSE and lower correlation coefficients with the

truth. They both show the east–west pattern in the correlation

coefficient; however, the GPI product has a sharper gradient

and is poorly correlated with the truth toward the west of the

study domain. Precipitation events in this region are mostly

driven by frontal systems that generate clouds not necessar-

ily well-correlated to precipitation; therefore, the GPI es-

timates that are solely based on cloud-top temperature are

not well correlated with the truth. GPCP 1DD also uses IR-

based observations of the clouds, but those are merged with

microwave observations from low-earth-orbit satellites that

are more accurate. Therefore, the resulting correlation coef-

ficients are generally higher, especially in the west side of the

study domain. If the analysis was limited to the RMSE esti-

mates, GPI might be considered to be performing uniformly

well across the entire domain. But with the correlation co-

efficients, we can clearly see the change in quality of GPI

estimates across the domain.
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5 Gauge analysis

In this section, we will review the assumptions that are em-

bedded in TC estimates of RMSE and evaluate them using

in situ gauge data. Gauge data are used a proxy for truth. As

mentioned in Sect. 2, TC assumes zero correlation between

errors of the triplets (the zero-error cross-covariance assump-

tion) and between the errors and the truth (error orthogonal-

ity assumption). However, this assumption can be violated

in many applications if the retrieval algorithms have similar

error structures. Yilmaz and Crow (2014) investigated the as-

sumptions of TC and introduced a decomposition of RMSE,

derived from TC as following:

σ 2
TC1
= σ 2

TRE1
+ σ 2

LS1
+ σ 2

OE1
+ σ 2

XCE1
. (14)

In this equation, σ 2
TC1

is the error variance of product 1 that

is estimated by TC, and σ 2
TRE1

is the true error variance of

product 1 that TC is aiming to estimate. σ 2
LS1

is the leaked

portion of σ 2
T (the variance of the true data), σ 2

OE1
represents

the bias term due to the violation of error orthogonality as-

sumption, and σ 2
XCE1

is the bias term due to the violation of

the zero-error cross-covariance assumption between differ-

ent products. Note, σ 2
XCE1

is affected by the non-zero-error

cross covariance between any pair of the products, and it is

not only between product 1 and the gauge. Using similar no-

tations as in Sect. 2, these four elements are defined as

σ 2
TRE1
= ε1ε1 (15)

σ 2
LS1
=

(
β1− c3|1β3

)(
β1− c2|1β2

)
σ 2
t (16)

σ 2
OE1
=

(
β1− c3|1β3

)(
tε1− c2|1tε2

)
+

(
β1− c2|1β2

)(
tε1− c3|1tε3

)
(17)

σ 2
XCE1
=−c2|1ε1ε2− c3|1ε1ε3+ c3|1c2|1ε2ε3, (18)

in which ci|j is the scaling factor of product i assuming prod-

uct j as the reference, and the overbar refers to temporal aver-

aging. Equations (15)–(18) indicate the error decomposition

for product 1 in the triplet. Similar equations can be derived

for other products. Derivations of equations for these decom-

position terms using the multiplicative error model are pre-

sented in Appendix A. For a detailed explanation on how to

estimate different variables in these equations, the reader is

referred to Sect. 2.c of Yilmaz and Crow (2014).

For this evaluation analysis, we need accurate ground-

based observations in order to avoid errors due to differences

in the spatial coverage between the gauges and the other

products. The six pixels shown in Fig. 1 are selected for this

evaluation since they have a dense network of rain gauges.

These pixels are located in the state of Oklahoma and the

Figure 8. Decomposition of TC-based estimates of RMSE in the

NEXRAD product across the six pixels shown in Fig. 1. Error bars

show 1 standard deviation of the estimates from a bootstrap run with

100 samples.

gauge data are retrieved from the Oklahoma Mesonet net-

work. This network provides quality-controlled daily precip-

itation estimates across the state of Oklahoma from an auto-

matic and spatially dense set of rain gauges. We have located

the gauges in each of the pixels; each pixel at every time

contains at least 12 gauges and some of the pixels have up

to 39 monitoring gauges. The daily data from the gauges in

each pixel are averaged to estimate the true rain of the pixel

and are then accumulated to biweekly values.

It is understood that gauge data also have errors including

representativeness error (they are point measurements unlike

the other products that provide an average value over each

pixel); however, as it is shown in Yilmaz and Crow (2014)

(Appendix A) the representativeness error in the gauge mea-

surements causes a positive bias in the TC-based RMSE esti-

mates, while the cross-correlation between the errors of dif-

ferent products in each triplet causes a negative bias. There-

fore, it is reasonable to assume gauge data to be an unbiased

estimate of truth. Moreover, in this study the average of esti-

mates from several gauges is used as the unbiased estimate of

the truth. The representativeness error of the gauge estimates

is basically interpreted as part of the total error variance in

the gauge product. However, since the gauge estimates are

unbiased estimates of the truth, it can be used a proxy to de-

compose the error variance estimates from the TC technique.

Figure 8 shows the results of error decomposition for

the RMSE of the NEXRAD product. These estimates are

based on another bootstrap simulation with 1000 samples,

with corresponding 1 standard deviation confidence inter-

vals. This figure shows that the bias caused by the leaked

signal and error orthogonality assumption is almost zero in

all of the cases. However, the zero-error cross-covariance as-

sumption is causing significant underestimation in the RMSE

estimated by TC. Therefore, the NEXRAD RMSE estimate

from TC is a lower bound for the error. Figures S3–S5 show

similar decomposition of the RMSE in TRMM 3B42RT,
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GPCP 1DD, and GPI products across these pixels. These

figures also confirm that the violation of the zero cross-

covariance error leads to underestimation of the true RMSE

by TC analysis. The noticeable difference between Figs. 8,

S3, S4, and S5 is that in Fig. S5, which shows the error de-

composition of GPI products, the contribution of error cross

covariance to the total TC estimate is small, and in four of

the pixels, it is almost zero. This is consistent with the fact

that GPI has a completely different retrieval algorithm and is

only based on cloud-top temperature measurements. There-

fore, it has less correlation with other products. These results

are consistent with the findings in Yilmaz and Crow (2014).

Moreover, this analysis shows that similar to the soil mois-

ture data, it is appropriate to assume that the errors of precip-

itation products are not correlated with the truth.

Here, we compare the ranking of the products based on

the TC-derived errors and the ones based on the gauge anal-

ysis (σTRE). The goal of this comparison is to show how

much the violation of the zero-error cross covariance impacts

the RMSE estimates. In all of the six pixels that we con-

ducted the gauge-based analysis, the TRMM 3B42RT and

NEXRAD products are ranked first and second for the low-

est error, based on the RMSE from TC, respectively. More-

over, based on the rankings in the gauge-based TC analysis

(σTRE in Figs. 8, S3, S4, and S5) in five out of the six pix-

els, TRMM 3B42RT has the lowest error, and in four out of

the six, NEXRAD has the best error after TRMM 3B42RT.

However, GPCP 1DD and GPI rankings are only preserved

on three out of the six pixels. Therefore, in general, we can

make the conclusion that the relative rankings for the prod-

ucts with the lowest error remain almost the same, but it is

hard to make any conclusion about the ranking of the other

products. Nevertheless, this is based on only six pixels out

of the 75 pixels across the whole domain. Therefore, it is not

possible to extend this conclusion to the whole study. We can

conclude from this comparison that the cross-correlation er-

ror can impact the performance ranking of the precipitation

products, but the relative impact needs further analysis.

To further evaluate the impact of error cross co-

variance, we replace the TRMM 3B42RT product with

the TRMM 3B42 product, and estimate the RMSEs in

each triplet again. As it was mentioned in Sect. 3, the

TRMM 3B42 product has a monthly gauge correction in

its estimation algorithm. Our hypothesis is that this gauge

dependence increases the error cross covariance between

different products and will lead to lower RMSE estimates

in NEXRAD, TRMM 3B42, and GPCP 1DD (these three

have gauge correction in their algorithms) compared to

the initial estimate using TRMM 3B42RT. We conducted

this analysis and the resulting RMSE estimates from two

triplets (NEXRAD, TRMM 3B42, GPI) and (NEXRAD,

TRMM 3B42, GPCP 1DD) are presented in Figs. S6 and S7.

Comparing Figs. 5 and 6 with Figs. S6 and S7, it is ev-

ident that the TC-derived error estimates of NEXRAD,

TRMM 3B42, and GPCP 1DD are smaller when using the

non real-time version of the TRMM 3B42 product. This fur-

ther confirms that violation of the zero-error cross covariance

causes a negative bias in the TC-based RMSE estimates.

6 Conclusions

This study presents, for the first time, error estimates of four

precipitation products across a central part of the continen-

tal US using triple collocation (TC). A multiplicative error

model is introduced to TC analysis that is a more realistic

error model for precipitation. Furthermore, an extended ver-

sion of TC is used with which not only the standard deviation

of random errors in each product, but the correlation coef-

ficient of each product with respect to an underlying truth

are estimated. The results show that the TRMM 3B42RT

product performs relatively better than the other three prod-

ucts. TRMM 3B42RT has the lowest RMSE across the do-

main, and the highest correlation coefficient with the un-

derlying truth. Meanwhile, NEXRAD performs relatively

poorly in the west side of the study domain that is proba-

bly caused by the terrain beam blockage. The performance

of the GPCP 1DD and GPI products was lower than that of

TRMM 3B42RT and NEXRAD. GPI has significantly lower

performance in the west side of the study domain, that is

likely caused by the simple retrieval algorithm used in this

product. Meanwhile, GPI has a reasonably good correlation

with the underlying truth in the east side of the domain.

In the second part of the paper, an evaluation of the as-

sumptions built into TC is carried out using surface gauge

data as a proxy for the truth across selective pixels. These

pixels have a dense coverage of in situ gauges. The results of

this evaluation reveal that the TC error estimates underesti-

mate the true error in different products due to a violation of

the assumption of the zero-error cross covariance. Moreover,

replacing the TRMM 3B42RT with TRMM 3B42 revealed

that the gauge correction in the TRMM 3B42 violates the

zero- error cross-covariance assumption and leads to smaller

RMSE estimates. However, the results of RMSE estimates

from TC have a lot of potential to be incorporated into data

assimilation and data-merging algorithms.

Triple collocation analysis has a lot of potential to be ap-

plied to various precipitation products at a wide range of spa-

tial and temporal resolutions. This will provide a better un-

derstanding of the true error patterns in different products.

Error quantification of precipitation products is a necessity

if one aims to merge precipitation estimates from several in-

struments/models. However, care should be taken in choos-

ing triplets that have zero- or small-error cross covariance.

Otherwise, the error variances will be underestimated.

The multiplicative error model used in this study is shown

to be an appropriate choice relative to the additive model.

However, it would be beneficial to investigate more complex

models that can take into account any higher order depen-

dence of the estimate of the truth. A modification to this

Hydrol. Earth Syst. Sci., 19, 3489–3503, 2015 www.hydrol-earth-syst-sci.net/19/3489/2015/



S. H. Alemohammad et al.: Characterizing precipitation product errors using MTC 3499

study would be to include a gauge-only precipitation prod-

uct. This would reduce the error cross covariance between

the products, since the gauge measurement system is differ-

ent from the remote-sensing instruments. Although gauge es-

timates have representativeness error, this error will be part

of the total error in the gauge product resulting in higher

RMSE values of gauge product. Furthermore, conducting TC

analysis on precipitation data with different temporal reso-

lution will provide valuable insight on the performance of

different products at different temporal scales. However, this

should be carried out with care, as precipitation errors at

certain temporal resolutions are highly correlated and are

not appropriate for TC analysis. The code for implementing

multiplicative triple collocation in MATLAB is available at

https://github.com/HamedAlemo.

www.hydrol-earth-syst-sci.net/19/3489/2015/ Hydrol. Earth Syst. Sci., 19, 3489–3503, 2015

https://github.com/HamedAlemo


3500 S. H. Alemohammad et al.: Characterizing precipitation product errors using MTC

Appendix A: Error decomposition

In this section, we derive Eqs. (15)–18 starting with the mul-

tiplicative error model in logarithmic scale:

ri = αi +βit+ εi . (A1)

Without loss of generality, we assume ri and t be the anoma-

lies from a climatological mean; then, the model is simplified

to

ri = βit+ εi . (A2)

Choosing product r1 as the reference, the scaling factors are

defined as

c2|1 =
r1r3

r2r3

(A3)

c3|1 =
r1r2

r3r2

. (A4)

Therefore, the rescaled data sets are defined as: r∗2= c2|1 r2

and r∗3= c3|1 r3. Then, TC-based error variance of product 1

is defined as

σ 2
TC1
=

(
r1− r∗3

)(
r1− r∗2

)
. (A5)

Inserting r∗2 , r∗3 and Eq. (A2) into Eq. (A5):

σ 2
TC1
=[(

β1− c3|1β3

)
t+

(
ε1− c3|1ε3

)][(
β1− c2|1β2

)
t+

(
ε1− c2|1ε2

)]
(A6)

σ 2
TC1
=

(
β1− c3|1β3

)(
β1− c2|1β2

)
σ 2
t

+
(
β1− c3|1β3

)(
tε1− c2|1tε2

)
+

(
β1− c2|1β2

)(
tε1− c3|1tε3

)
+

(
ε1ε1− c2|1ε1ε2− c3|1ε1ε3+ c3|1c2|1ε2ε3

)
. (A7)

Rewriting Eq. (A7) as

σ 2
TC1
= σ 2

TRE1
+ σ 2

LS1
+ σ 2

OE1
+ σ 2

XCE1
, (A8)

where:

σ 2
TRE1
= ε1ε1 (A9)

σ 2
LS1
=

(
β1− c3|1β3

)(
β1− c2|1β2

)
σ 2
t (A10)

σ 2
OE1
=

(
β1− c3|1β3

)(
tε1− c2|1tε2

)
+

(
β1− c2|1β2

)(
tε1− c3|1tε3

)
(A11)

σ 2
XCE1
=−c2|1ε1ε2− c3|1ε1ε3+ c3|1c2|1ε2ε3. (A12)

Equations (A9)–(A12) are the same as Eqs. (15)–(18) that

are used to decompose the RMSE estimates of TC analysis.
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The Supplement related to this article is available online

at doi:10.5194/hess-19-3489-2015-supplement.
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