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Abstract 

 

Radio frequency (RF) sheath rectification is a leading mechanism suspected of causing 

anomalously high erosion of plasma facing materials in RF-heated plasmas on Alcator C-Mod. 

An extensive experimental survey of the plasma potential (P) in RF-heated discharges on C-

Mod reveals that significant P enhancement (>100 V) is found on outboard limiter surfaces, 

both mapped and not mapped to active RF antennas. Surfaces that magnetically map to active RF 

antennas show P enhancement that is, in part, consistent with the recently proposed slow wave 

rectification mechanism. Surfaces that do not map to active RF antennas also experience 

significant P enhancement, which strongly correlates with the local fast wave intensity. In this 

case, fast wave rectification is a leading candidate mechanism responsible for the observed 

enhancement.  
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1. Introduction 

Ion cyclotron resonance frequency (ICRF) heating is a common technique to heat 

tokamak plasmas to fusion-relevant temperatures, 10 keV. Alcator C-Mod, a compact (major 

radius Ro = 0.67 m, minor radius a = 0.22 m), high field (BT = 5.4 T) tokamak with all high-Z 

(molybdenum or Mo) plasma facing components relies exclusively on ICRF power for plasma 

heating [1]. Extensive experimental campaigns on Alcator C-Mod reveal that, depending on the 

operating scenarios, ICRF-heated plasmas can suffer from prohibitively high levels of Mo 

impurities in the plasma core [2-4]. Coating of Alcator C-Mod’s plasma facing materials with a 

thin (~1 m) low-Z (boron) film, through boronization, temporarily reduces core Mo contents [2, 

3, 5]. However, the positive boronization effects wear out after ~20-40 ICRF-heated discharges 

and require a new layer of boron to achieve high performance plasmas [5]. Anomalously high net 

erosion rates of both Mo surfaces [6] and boron coatings [3], coupled with high Mo core 

contents, point at enhancement of sputtering, net erosion, and transport of sputtered plasma 

facing materials ions in ICRF-heated discharges on Alcator C-Mod. 

RF rectification of the plasma sheath is a leading proposed mechanism that is responsible 

for enhanced erosion of plasma facing surfaces on Alcator C-Mod [7]. The mechanism requires 

an oscillating electric field, normal to the sheath surface, and is driven by the large difference in 

the mobility between electrons and ions [8]. The net effect is the appearance of a DC voltage 

across the sheath that repels excess electrons and attracts ions to achieve the ambipolarity 

condition at the material surface [8]. Previous studies on Alcator C-Mod, using emissive probes, 

show that ICRF heating does enhance the plasma potential (P) above 100 V [4, 7] and the 

enhancement varies with ICRF power and magnetic mapping between the probes and the active 

antennas [4, 7]. Deleterious effects of ICRF power on plasma-wall interactions are not unique to 



Alcator C-Mod and are also observed on Tore Supra [9], ASDEX Upgrade [10] and JET [11]. 

However, it remains uncertain what aspects of the ICRF – heating, RF waves, fast ions, etc. – are 

responsible for the observed P enhancement. 

The goal of this study is to perform an extensive experimental survey of P enhancement 

on Alcator C-Mod in the presence of ICRF power, deduce the mechanism(s) responsible for P 

enhancement, and compare the results with proposed theories on RF sheath rectification in 

tokamaks [12, 13]. 

  



2. Experimental Setup 

In order to carry out the proposed survey we installed emissive probes (to measure local 

P), Langmuir probes (to measure local plasma density ne and electron temperature Te), ion 

sensitive probes (to measure P and ne, calibrated against a Langmuir probe), and dB/dt probes 

(to measure local RF fields). These were installed on fixed and scanning probe stations. An 

emissive and two Langmuir probes were installed on the outer midplane A-port Scanning Probe 

(ASP [14]). Emissive, Langmuir, and ion sensitive probes were installed on the scanning Surface 

Science Station below the midplane (S
3
 [15]). An emissive, ion sensitive and field-aligned 3-

directional dB/dt probes were installed on a probe station on a fixed limiter between A and B 

ports (lower edge on the side facing B-port) [4, 7]. The signal from the dB/dt coil the surface 

normal of which is oriented parallel to the background magnetic field is taken as an indication of 

the fast wave intensity. The locations of the probe stations in Alcator C-Mod are shown in Figure 

1. Note from Figure 1 that the S
3
 probes are the only set of probes that directly connect along a 

magnetic flux tube to an ICRF antenna limiter (centered at J-port). The ICRF antennas were 

operated in the dipole phasing (0, ) and the heating scheme was H-minority heating in D
+
 

plasma with H/(H+D) ~5-10%. The operating frequencies were 80.5, 80.0 and 78.0 MHz for the 

D, E and J antennas, respectively. A typical launched parallel index of refraction (n//) was 10. 

  



3. Experimental Results & Discussion 

According to a recently proposed theory, the RF enhancement of P is due to a slow 

wave (parallel electric field component E//  0, // refers to the local magnetic field direction) 

rectification by the plasma sheath [12]. One mechanism capable of generating slow waves is due 

to the misalignment between the active ICRF antenna straps and the magnetic field lines [16]. 

The generated slow waves propagate only in the low ne (1x10
17

 m
-3

 on Alcator C-Mod) region 

of the tokamak plasmas, typically found behind the main protection limiters (R > 0.910 m on 

Alcator C-Mod, all R distances on a flux surface are mapped to the midplane). Due to the strong 

evanescence of the slow wave in the region where ne is above the lower hybrid (LH) resonance 

(ne_LH_res ~1-3x10
17

 m
-3

 on Alcator C-Mod), the propagating slow waves are localized to 

magnetic field lines that intercept the active RF antennas – the slow wave rectification is, 

therefore, a phenomenon localized to surfaces with direct magnetic connection to the antenna. 

Note that the slow wave theory [12] makes an explicit “tenuous plasma" assumption and, hence, 

needs to be modified to be applicable in the high density, evanescent regions of the plasma. 

Figure 2 shows the P values as a function of the local ne obtained with the S
3
 on the field lines 

that map directly to the active RF antenna (J antenna, oriented with vertical straps, operated at 

70.0 MHz for this experiment). The local ne was varied by scanning the core ne, while keeping 

all other plasma parameters constant. The theoretical P estimate is equal to 3*Te + Vsh, where 

Te = 10 eV is assumed and the enhanced sheath voltage Vsh is estimated for Alcator C-Mod 

parameters, in particular using parallel scale a = 0.1 m [12]. P values above 100 V are predicted 

by the model and measured (data averaged in time for a given radius), implying that incident 

deuterium ions have enough energy to sputter Mo surfaces. For comparison, measured P’s in 

Ohmic discharges are 10 V. We observe a threshold behavior of P with the local ne, ne_threshold 



~1x10
16

 m
-3

 and the threshold behavior of P with local ne is expected from the slow wave 

theory [12]. However, the value of the threshold density and the saturation of P (~150-200 V) 

for ne >1x10
16

 m
-3

 appear to be almost independent of the RF power, contrary to the theory. 

Surprisingly, we observe P above 100 V in discharges where the active RF antennas do 

not magnetically map to the probes, see Figure 3. In fact, the behavior of P with local ne in the 

“not mapped” case is opposite to the slow wave picture. The data in Figure 3 suggests that the 

slow wave rectification may not be the only mechanism that enhances P in ICRF-heated 

discharges on Alcator C-Mod. 

It is also possible to induce RF sheath rectification with a fast wave field if the plasma 

facing surface is not perfectly tangential to the background magnetic field: in order to satisfy the 

tangential electric field boundary condition at a conducting surface, (Etangential) = 0, in the most 

general geometry it is necessary to introduce both reflected fast and slow wave fields [13]. 

Unlike the slow wave rectification mechanism, which is local to active RF antennas, the fast 

wave rectification is expected to be a global effect that would depend on the local fast wave field 

intensity. Figure 4 shows P and relative fast wave intensity values obtained with the fixed A-B 

limiter probes in an ICRF-heated discharge. The large changes in the P and fast wave intensity 

values correlate with the saw tooth amplitude. The correlations between P and the fast wave 

intensity for two different antennas are plotted in Figure 5. The D antenna, which is toroidally 

nearest, yet not magnetically mapped, to the A-B limiter probes, induces the largest P and fast 

wave intensity changes, for a given RF power. This result is in agreement with recent studies of 

ICRF wave absorption on Alcator C-Mod [17]: the fast wave distribution for H-minority heating 

with H/(H+D) ~6%, applicable to our studies, is the strongest in the vicinity of the active ICRF 



antenna and rapidly decreases in the toroidal direction away from the antenna. Our 

measurements also suggest that it is not the Te or ne fluctuations during saw tooth events that 

enhance P, as these are similar for the two antennas. We also observe that P changes have a 

threshold-like behavior as a function of the local fast wave intensity: it suggests that it is 

beneficial to utilize ICRF heating in a high single-pass absorption regime to minimize the fast 

wave fields in the scrape-off layer (SOL) and thus this global RF rectification mechanism. The 

asymmetric P response to the change in the ICRF resonance location (see Figure 5 (a)), which 

was varied by changing the toroidal field strength, suggests that the path taken by the fast wave 

between the RF source and the plasma facing surfaces influences the strength of the resulting RF 

enhancement of P. This result again favors a high single-pass absorption regime to minimize 

the fast wave field intensity that reaches plasma facing components. 

If the fast wave rectification determines the global RF enhancement of P, then we 

expect to see an exponentially decaying radial P profile in the shadow of the limiter (R > 0.910 

m): the plasma density is low enough (<1e18 m
-3

) that the fast wave dispersion relation becomes 

vacuum-like and the fast wave field intensity decay length is determined by its perpendicular 

wavenumber (k) [13]. The radial P profiles in ICRF-heated and Ohmic plasmas obtained with 

the ASP probes are shown in Figure 6 (a). We observe that RF-enhanced P does have an 

exponentially decaying radial profile (which peaks near R = 0.910-0.915 m) with the 

characteristic decay length of ~3.5 cm, compared to the inverse of the fast wave perpendicular 

wavenumber (1/|k|) of ~6 cm, as estimated from the cold plasma dispersion relation. Note, that 

there are no field lines that directly connect the ASP probes and the ICRF limiters of the J 

antenna. The corresponding radial electric field profiles, Er = -RP, are shown in Figure 6 (b). 

For comparison, we also show the Er profiles obtained with the gas puff imaging (GPI) 



diagnostic [18]. We see that the RF enhancement of P is confined not just to the shadow of the 

limiter (R > 0.910 m), but affects the entire SOL of Alcator C-Mod. The resulting ErxBTor flows 

are capable of transporting sputtered wall material in the SOL and may be responsible for 

anomalously high erosion of plasma facing materials on Alcator C-Mod. 

  



4. Conclusion 

We carried out an extensive survey of P enhancement in ICRF-heated discharges on 

Alcator C-Mod. Our results show that significant P enhancement (>100 V) is present on 

outboard limiter surfaces. The surfaces that magnetically map to active RF antennas experience 

P enhancement that is in partial agreement with the slow wave rectification theory: P 

enhancement has a density threshold, but does not scale with the RF power as predicted. The 

slow wave rectification is an effect local to the active antennas and can be minimized by 

controlling the ne profile in the SOL. We also observe global P enhancement on surfaces that 

do not map to the active RF antennas. This enhancement correlates with the local fast wave 

intensity and may be driven by the fast wave rectification mechanism. GPI measurements show 

that P enhancement extends radially beyond the limiter structures into the SOL and the 

resulting Er fields generate strong ErxBTor flows.  
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Figure Captions 

Figure 1: View of Alcator C-Mod outer wall. Dashed red arrows show field lines intersected by 

the probe stations. 

Figure 2: Estimate of the local P from theory and the time-averaged P as a function of the 

local ne obtained with S
3
 probes. R refers to the location of S

3
 emissive probe. J antenna is active 

and magnetically maps to S
3
 probe. USN: upper single null plasma configuration. 

Figure 3: Average P as a function of the local ne obtained with S
3
 probes. R refers to the 

location of the S
3
 emissive probe. E antenna is active and not does not magnetically map to S

3
 

probe. 

Figure 4: Example of P and local fast wave intensity data in an ICRF-heated discharge (D 

antenna only) obtained with the fixed A-B limiter probes. The RF power and the core Te are also 

shown. D antenna is not mapped to A-B limiter probes. IWL: inner wall limited plasma 

configuration. 

Figure 5: Correlations between P and fast wave intensity changes in ICRF-heated discharges 

((a) D antenna or (b) E antenna only) for various ICRF resonance positions. res  RICRF resonance – 

Ro. Each data point is time-averaged over 0.02 s. 

Figure 6: (a) Radial profile of P and floating Langmuir probe voltage VF measured with ASP in 

ICRF-heated and Ohmic plasmas. (b) The corresponding Er profiles are also shown. GPI refers to 

the gas puff imaging diagnostic measurements. 
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