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Abstract

While Polycomb group protein Bmi1 is important for stem cell maintenance, its role in lineage 

commitment is largely unknown. We have identified Bmi1 as a novel regulator of erythroid 

development. Bmi1 is highly expressed in mouse erythroid progenitor cells and its deficiency 

impairs erythroid differentiation. BMI1 is also important for human erythroid development. 

Furthermore, we discovered that loss of Bmi1 in erythroid progenitor cells results in down-

regulation of transcription of multiple ribosomal protein genes and impaired ribosome biogenesis. 

Bmi1 deficiency stabilizes p53 protein, leading to upregulation of p21 expression and subsequent 

G0/G1 cell cycle arrest. Genetic inhibition of p53 activity rescues the erythroid defects seen in the 

Bmi1 null mice, demonstrating that a p53-dependent mechanism underlies the pathophysiology of 

the anemia. Mechanistically, Bmi1 is associated with multiple ribosomal protein genes and may 
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positively regulate their expression in erythroid progenitor cells. Thus, Bmi1 promotes erythroid 

development, at least in part through regulating ribosome biogenesis. Ribosomopathies are human 

disorders of ribosome dysfunction, including diamond blackfan anemia (DBA) and 5q- syndrome, 

in which genetic abnormalities cause impaired ribosome biogenesis, resulting in specific clinical 

phenotypes. We observed that BMI1 expression in human hematopoietic stem and progenitor cells 

(HSPCs) from patients with DBA is correlated with the expression of some ribosomal protein 

genes, suggesting that BMI1 deficiency may play a pathological role in DBA and other 

ribosomopathies.
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Introduction

Polycomb group proteins (PcGs) are epigenetic chromatin modifiers involved in stem cell 

maintenance and cancer development [1-3]. Biological and genetic studies indicate that PcG 

proteins exist in at least two separate protein complexes, Polycomb repressive complex 2 

(PRC2) and Polycomb repressive complex 1 (PRC1), that act in concert to promote and 

maintain gene repression [2]. EZH2, the catalytically active component of PRC2, di- and 

trimethylates Lys27 of histone H3, a histone mark recognized by the PRC1 complex through 

the chromodomain of Polycomb that triggers ubiquitination of histone H2A at Lys119 by the 

E3 ubiquitin ligase Ring1B in PRC1 [4-6]. Polycomb group proteins (PcGs) regulate lineage 

choices during development and differentiation through binding and repressing the 

promoters of hundreds of genes encoding proteins with roles in cell fate determination [1-3]. 

However, it is unclear how PcG proteins are displaced and recruited to different subsets of 

target genes during lineage commitment [3].

PcG proteins are key regulators of both hematopoietic stem cell maintenance and terminal 

differentiation [7-9]. The PRC2 complex regulates normal hematopoietic stem cell function 

in a developmental-stage-specific manner [10]. While Ezh2 is important for fetal 

hematopoiesis [11], Ezh1 maintains the adult hematopoietic stem cell pool [12]. Polycomb 

group protein Bmi1 plays important roles in regulating hematopoietic stem cell self-renewal 

[13-14] and we showed that Bmi1 is a critical down-stream target of Akt signaling and Akt-

mediated phosphorylation of Bmi1 inhibits HSC self-renewal [15]. Bmi1 is also important 

for lymphoid development [16]. Epigenetic changes have been implicated in regulating the 

induction of erythroid-specific genes during terminal erythropoiesis [17]. Ezh2-deficient 

embryos died of anemia because of insufficient expansion of hematopoietic stem and 

progenitor cells (HSPCs) and defective erythropoiesis in fetal liver [11]. However, the role 

of Bmi1 in mammalian erythroid development is largely unknown.

Ribosome biogenesis is important for erythroid development and impaired ribosomal 

function has been implicated in ribosomopathies [18], including Diamond-Blackfan anemia 

(DBA), a congenital bone marrow failure syndrome [19], and the 5q- syndrome, a subtype 

of myelodysplastic syndrome (MDS) [20]. In these disorders, genetic lesions in ribosomal 
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protein genes impair ribosome biogenesis, resulting in activation of the p53 tumor 

suppressor pathway, cell cycle arrest and defective erythropoiesis [19, 21]. While the 

developing erythrocytes are highly sensitive to suboptimal levels of ribosomal proteins [19], 

how ribosome biogenesis is regulated in erythroid precursors remains elusive. In this study, 

we have identified a critical role of Bmi1 in regulating erythropoiesis and ribosome 

biogenesis. Bmi1 deficiency down regulates multiple ribosomal protein genes, activates the 

p53 pathway and blocks erythroid differentiation. In addition, we demonstrated that Bmi1 

associates with the promoter of some ribosomal protein genes and enhances their expression 

in erythroid precursors. Furthermore, we observed that BMI1 expression in human CD34+ 

cells from patients with DBA correlate with the expression of some ribosomal protein genes, 

suggesting that Bmi1 deficiency may play a pathological role in DBA and other 

ribosomopathies.

Materials and methods

Mice

Bmi1-deficient mice were provided by Martin van Lohuizen (The Netherlands Cancer 

Institute, the Netherlands). The generation of p53R248W mice has been described previously 

[22]. Wild type C57BL/6 (CD45.2) mice were purchased from the Jackson Laboratories. All 

mice were maintained in the Indiana University Animal Facility according to IACUC-

approved protocols, and kept in Thorensten units with filtered germ-free air.

Human DBA patient samples

Bone marrow (BM) samples were collected after informed consent from healthy donors and 

patients with DBA using a protocol approved by the Institute of Hematology & Hospital of 

Blood Diseases Ethics Committee at the Chinese Academy of Medical Sciences & Peking 

Union Medical College.

Colony-forming unit (CFU) assays

Mononuclear cells obtained from mouse bone marrow were used for CFU-E and BFU-E 

assays. MethoCult 3234 (StemCell Technologies) containing 3U/mL rhEPO or containing 

3U/mL rhEPO, 20 ng/mL rmIL-3, and 50 ng/mL rmSCF, (PeproTech) were used for CFU-E 

and BFU-E assays respectively. CFU-E colonies were scored on day 3 and BFU-E colonies 

were scored on day 8-10. For BFU-E assay of human CD34+ cells, infected cells were plated 

in MethoCult H4435 medium (StemCell Technologies) and colonies were scored after 2 

weeks.

Overexpression assays

Retroviral vectors were produced by transfection of Phoenix E cells with the MIGR1 control 

or MIGR1 full-length Bmi1 c-DNA plasmids, according to standard protocols. Mouse 

hematopoietic progenitor cells were infected with high-titer retroviral suspensions in the 

presence of 8 μg/mL polybrene (Sigma-Aldrich). Twenty-four hours after infection, the 

GFP-positive cells were sorted by FACS.
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Generation of lentiviruses and infection of primary hematopoietic CD34+ cells

Normal human CB samples were collected with institutional approval. Lentiviral vectors 

expressing short hairpins against human BMI1 (CS-H1-shRNA-EF-1α-EGFP) and luciferase 

gene as a control were provided by Dr. Iwama at the Chiba University. Lentiviral particles 

were produced by transfection of 293T cells, according to standard protocols. After 24 hours 

of growth, CD34+ cells were transduced on retronectin (Takara)-coated non-tissue culture 

plates with high-titer lentiviral concentrated suspensions in the presence of 8 μg/mL 

polybrene (Sigma-Aldrich). To induce erythroid differentiation, infected CD34+ cells were 

maintained at 2 × 105/mL in StemSpan SFEM containing EPO (6 IU/mL) and SCF (100 

ng/mL) for 7 days. Then cells were harvested for flow cytometry and qPCR analysis.

Gene expression and Pathways Analyses

Transcript profiling of Pro-E cells and MEPs from WT and Bmi1-/- mice were analyzed by 

Agilent Whole Mouse Genome Oligo Microarrays. Raw data will be available for download 

from Gene Expression Omnibus (http://ncbi.nlm.nih.gov/geo/, accession number x). Genes 

whose expressions are increased or decreased more than 2-fold in Bmi1-/- cells compared to 

wild-type cells are shown. The Microarray data were analyzed using the Ingenuity Pathways 

Analysis program (Ingenuity Systems, www.ingenuity.com); to identify the pathways that 

met the < or > 2-fold change cutoff and were associated with a canonical pathway in the 

Ingenuity Pathways Knowledge base were considered for the analysis [23]. The significance 

of the association between the data set and the identified canonical pathway was measured 

in 2 ways: (1) A ratio of the number of genes from the data set that map to the pathway 

divided by the total number of genes from the data set that map to the canonical pathway 

and (2) Fischer’s exact test, to calculate a p value determining the probability that the 

association between the genes in the data set and the canonical pathway is explained by 

chance alone.

ChIP assays

For ChIP assays, K562 cells were fixed with 1% (vol/vol) formaldehyde for 10 min at room 

temperature. ChIP assays were performed using the EZ-Magna ChIP A/G Kit (Millipore). 

Anti-Bmi1 antibody (Active Motif, AF27), Anti-Ring1b antibody (MBL International, 

D139-3), Anti-H3K9Ac antibody (Millipore, 07-942), Anti-H3K4me3 antibody (Millipore, 

07-473), anti-H3K27me3 antibody (Millipore, 07-449), Anti-H2AK119ub1 antibody (Cell 

Signaling, D27C4) and normal mouse IgG were used for immunoprecipitation. ChIP DNA 

was then subjected to real-time PCR analysis using primers targeting different region of 

ribosomal protein gene promoters [23-24].

Polysome Analysis

Polysome analysis was performed as previous described [25-26]. Equal numbers of control 

shRNA or BMI1 shRNA virus-infected K562 cells were used.
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Statistical analyses

Results from multiple experiments are expressed as the mean ± standard deviation (SD). 

Statistical significance (*P < 0.05, **P < 0.01, ***P < 0.001; NS, not significant) was 

determined by Student’s t test, one-way ANOVA or two-way ANOVA.

Results

Bmi1 regulates mouse erythroid differentiation

We first assessed mouse Bmi1 gene expression in purified hematopoietic stem and 

progenitor cells (LSKs), common myeloid progenitors (CMPs), granulocyte-macrophage 

progenitors (GMPs), Megakaryocyte-erythrocyte progenitors (MEPs), proerythroblasts (Pro-

E), basophilic erythroblasts (Baso-E), and chromatophilic erythroblasts (Chro-E) by 

quantitative real-time PCR. The LSKs, CMPs and MEPs, as well as proerythroblasts (Pro-

E), had high Bmi1 expression. In contrast, GMPs and basophilic erythroblasts (Baso-E) had 

low Bmi1 expression, whereas Bmi1 transcripts were undetectable in the chromatophilic 

erythroblasts (Chro-E) committed to the erythroid lineage (Figure 1A), indicating that Bmi1 

may play a pivotal role in erythropoiesis. We next examined the peripheral blood of 10 to 12 

weeks old Bmi1 null mice and observed significantly decreased circulating red blood cell 

(RBC) in Bmi1 null mice as compared to wild type (WT) control. In addition, hemoglobin 

(Hb) concentrations were significantly decreased in Bmi1 null mice. Peripheral blood RBCs 

in Bmi1 null mice were larger than that in the WT mice, as assessed by mean corpuscular 

volume (MCV) [Figure 1B].

Erythroid differentiation normally progresses from CD71highTer119low proerythroblasts 

(Pro-Es) via CD71highTer119high basophilic erythroblasts (Baso-Es), CD71+Ter119high 

chromatophilic erythroblasts (Chro-Es) and CD71-Ter119high orthochromatophilic 

erythroblasts (Ortho-Es) [27]. Analysis of erythroid development revealed ineffective 

erythropoiesis in the bone marrow of Bmi1-/- mice characterized by a higher number of 

proerythroblast (Pro-E) and lower number of basophilic erythroblast (Baso-E), 

chromatophilic erythroblast (Chro-E) and orthochromatophilic erythroblast (Ortho-E) as 

compared to that of the wild type mice (Figure 1C), indicating that loss of Bmi1 impairs 

erythroid differentiation. We also found that Bmi1 null bone marrow cells form strikingly 

less BFU-E and CFU-E colonies (Figure 1D). To demonstrate that this effect is directly 

linked to the absence of Bmi1, we introduced Bmi1 into Bmi1 null bone marrow cells using 

retroviruses that express Bmi1-IRES-GFP (MIGR1-Bmi1) or the empty IRES-GFP vector 

(MIGR1) and plated GFP-positive cells in methylcellulose medium. Introduction of Bmi1 

increased both BFU-E and CFU-E colony formation of Bmi1 null cells compared with 

vector transduced cells (Figure 1E).

It has been shown that Bmi1 null mice show defective HSC self-renewal and lymphoid 

differentiation [13]. To evaluate the effect of Bmi1 loss on erythromyeloid differentiation, 

we performed CFU assays and observed that loss of Bmi1 decreased the colony formation of 

both GEMM and BFU-E (Figure S1A), suggesting that more immature progenitors 

committed to the erythroid lineage may be affected. While the frequency of HSCs was 

dramatically decreased in Bmi1 null mice, the frequency of MPPs in the Bmi1-/- bone 
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marrow was similar to that of WT mice [13]. We found that Bmi1 deficiency did not alter 

the frequency of CMP, GMP and MEP (Figure S1B). To determine the effect of Bmi1 

deficiency on MEP function, we purified MEPs from wild type and Bmi1 null bone marrow 

cells and performed CFU assays. We found that loss of Bmi1 in MEPs decreased BFU-E 

colony formation (Figure S1C), indicating MEPs are affected by Bmi1 deficiency. 

Collectively our data demonstrate that Bmi1 is essential for mouse erythropoiesis.

BMI1 regulates human erythropoiesis

Despite the known role of human BMI1 protein in regulating human hematopoietic stem cell 

self-renewal [28-29], the function of BMI1 in human erythropoiesis is largely unknown. To 

define the role of BMI1 in normal human erythropoiesis, we used RNA interference to 

reduce human BMI1 gene expression in human cord blood (CB) CD34+ hematopoietic stem/

progenitor cells (HSPCs) [Figures 2A and S2] and then placed transduced cells in EPO (6 

IU/mL)-driven liquid culture [30]. We monitored the generation of mature erythroid 

precursor cells (CD71/GlyA double positive cells) by flow cytometry and found that the 

generation of CD71/GlyA double positive cells was less efficient for the BMI1-knockdown 

(BMI-KD) cells, compared with the control shRNA-infected cells (Figure 2B). To evaluate 

the sensitivity of BMI1-KD cells to EPO, we measured GlyA and CD71 expression by 

FACS analysis in the BMI1-KD HSPCs after plating these cells in culture with SCF (100 

ng/mL) and different doses of EPO (0.5 and 6 U/mL). At all tested concentrations of EPO, 

the BMI1-KD cells showed delayed erythroid maturation compared with control cells 

(Figures 2C and S3). We also found that knockdown of BMI1 expression reduced the 

proliferation of CD34+ cells in EPO-driven liquid culture (Figure 2D) and decreased the 

formation of BFU-E colonies (Figure 2E). Thus, BMI1 is important for the differentiation of 

human hematopoietic stem and progenitor cells.

Bmi1 deficiency results in decreased expression of some ribosomal protein genes in 
erythroid progenitor cells

To investigate how Bmi1 regulates erythropoiesis, we performed transcript profiling assays 

to compare gene expression in MEPs isolated from wild type and Bmi1 null mice and 

observed that some genes important for erythropoiesis, including Bcl11a, Hoxa10 and 

Stat5a, are dysregulated in Bmi1 null MEPs (Figure S4A). We also performed transcript 

profiling assays to compare gene expression in proerythroblast cells (CD71highTer119low 

cells) isolated from wild type and Bmi1 null mice and utilized Ingenuity Pathways Analysis 

software to group potential Bmi1 target genes into specific pathways that maybe important 

for erythropoiesis. We identified several pathways that appear to be altered in the absence of 

Bmi1, including ribosome biogenesis, DNA damage repair, mitochondria function, 

apoptosis and hemoglobin biogenesis (Figure 3A). Ingenuity pathway analysis indicated that 

ribosome biogenesis is the most altered pathway in Bmi1 null pro-E cells, manifested by 

down-regulation of transcription of multiple ribosomal protein genes (Figure 3A). We also 

observed alterations in cell cycle related genes, including Rb, Cdk12 and Cdkn2a (data not 

shown). To verify the microarray data, we performed quantitative RT-PCR assays using 

both wild type and Bmi1 null proerythroblasts. As expected, we observed decreased 

expression of multiple ribosomal protein genes encoding both the small and large subunits 

of ribosome, including Rps14, Rps19, Rpl11, and Rpl35 (Figure 3B). Surprisingly, we did 
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not observed decreased ribosomal protein gene expression in HSCs (data not shown) and 

immature erythroid progenitor cells (CD71lowTer119low) derived from Bmi1 null mice 

compared with wild type cells (Figure S4B), indicating that Bmi1 specifically regulates 

ribosomal protein gene expression at the proerythroblast stage. Given that BMI1 plays an 

important role in human erythropoiesis, we predicted that BMI1 regulates ribosomal protein 

gene expression in human erythroid precursors. This was indeed the case. We found that 

BMI1 deficiency results in reduced expression of multiple ribosomal protein genes in human 

CD34+ cells (Figure 3C). Thus, BMI1 may regulate ribosomal protein gene expression in 

both mouse and human erythroid progenitor cells.

Haploinsufficiency of RPS14 and RPS19 has been shown to disrupt pre-rRNA processing 

[20, 31]. To determine the effect of BMI1 deficiency on pre-rRNA processing, we 

performed northern blot analysis of rRNA transcripts and found that knockdown of BMI1 in 

the human erythroleukemia cell line K562 had no effect on pre-rRNA processing (Figure 

3D; Figures S5A and S5B) [32]. Reduced ribosomal protein gene expression has also been 

shown to affect the maturation of ribosome subunit and global translation efficiency [31, 

33-34]. To determine whether BMI1 regulates the maturation of ribosome subunits in 

erythroid progenitor cells, we performed polysome analysis using sucrose gradient 

centrifugation [25-26] and observed that knockdown of BMI1 in K562 cells significantly 

reduced polysome levels (Figure 3E). Interestingly, the polysome/monosome ratios for the 

control shRNA and the BMI1 shRNA were roughly the same even though the polysome 

peaks differed drastically on the polysome profile. This indicates that there is an overall 

decrease in ribosomes and global translational efficiency, demonstrating that BMI1 plays a 

critical role in ribosome biogenesis.

Bmi1 associates with the promoter of ribosomal protein genes and regulates their 
expression

There are approximately 80 ribosomal proteins in humans [18, 35]. To access the association 

of Bmi1 with ribosomal protein genes at the genomic level, chromatin immunoprecipitation 

(ChIP) followed by massive massively parallel sequencing (ChIP-seq) was performed in 

murine L8057 megakaryoblastic cells [36]. Both Bmi1 and Ring 1b are key components of 

the PRC1 complex [3]. As high-quality Bmi1 antibodies are not available for ChIP-seq, we 

utilized anti-Ring1b antibody in the study. Two biological repeats were performed for each, 

and data were compared to control IgG [36]. We observed that Ring1b associated with the 

promoter of multiple ribosomal protein genes, including Rpl7, Rpl10, Rpl22, Rpl29, Rps5, 

Rps12, Rps14 and Rps29 (Figure 4A). It appears that Ring1b associated with the 

transcription start site (TSS) of multiple ribosomal protein genes. To investigate whether 

BMI1 associates with ribosomal protein genes in human erythroid progenitor cells, we 

performed chromatin immunoprecipitation (ChIP) experiments by using both BMI1 and 

RING1b antibodies. We observed that both BMI1 and RING1b binded to the promoter 

region of multiple ribosomal protein genes, including RPL5, RPL11, RPL23, RPS14 and 

RPS19, in K562 cells (Figures 4B and S6). Moreover, we observed both BMI1 and RING1b 

binding sites on ribosomal protein gene promoters were enriched with active histone marks, 

including H3K4me3 and H3K9ac, but not the repressive H3k27me3 mark (Figures 4C and 

S7), indicating that BMI1 may activate ribosomal protein gene expression in human 
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erythroid cells. The core enzymatic activity of PRC1 is an E3 ubiquitin ligase activity 

contributed by Ring1b (and enhanced by Bmi1) which ubiquitinates histone H2A at lysine 

119 [3]. We found that H2AK119ub1 mark was enriched at the promoter region of RPS19 

and knockdown of BMI1 decreased the level of H2AK119ub1 (Figure S8). Furthermore, we 

found that knockdown of BMI1 expression decreased RPL11 promoter activation in K562 

cells (Figure 4D). These data demonstrate that BMI1 associates with the promoter of 

ribosomal protein genes and positively regulate their transcription in erythroid cells.

Bmi1 deficiency activates the p53 pathway in erythroid progenitor cells

As ribosomal dysfunction has been shown to activate the p53 pathway [37-40], we 

examined whether reduced dosage of ribosomal protein genes in Bmi1 null erythroid 

progenitor cells activates p53. While we observed no change in p53 mRNA levels, p53 

target gene p21 was upregulated in Bmi1 null Pro-E cells compared with wild type cells 

(Figure 5A). We also observed that knockdown of BMI1 in human CD34+ cells increased 

p21 expression without altering p53 mRNA levels as shown in Figure 5B, indicating that 

p53 protein may accumulate in the absence of Bmi1. As expected, we observed that both 

p53 and p21 proteins are accumulated in Bmi1 null bone marrow cells compared with wild 

type cells (Figure 5C), demonstrating loss of Bmi1 stabilizes p53 protein. We also found 

that Bmi1 target gene p19Arf expression is upregulated in both Bmi1 null pro-E cells and 

BMI1 KD CD34+ cells (Figures S9A and S9B).

Elevated p53 protein levels could induce apoptosis and/or cell cycle arrest. To assess the 

effect of Bmi1 deficiency on the survival of erythroid cells, we assayed for apoptosis of 

erythroid progenitor cells by Annexin-V staining. While immature erythroid progenitor cells 

(CD71-Ter119- cells) from the Bmi1 null mice exhibited normal apoptosis, there was a 

modest increase of apoptotic pro-E cells, though not statistically significant (Figure 5D). 

Next, we examined the cell cycle status of CD71-Ter119- and Pro-E cells by PI staining. 

Loss of Bmi1 did not affect cell cycle status of CD71-Ter119- cells (Figure S10); however, 

we observed that Bmi1 null pro-E cells are arrested at the G0/G1 phase of the cell cycle 

(Figure 5E). Consistent with data shown in Figure 5E, knockdown of BMI1 significantly 

increased the proportion of CD34+ cells in the G0/G1 phase of the cell cycle, compared to 

that of the control shRNA infected cells (Figure 5F). Thus, Bmi1 deficiency activates the 

p53 pathway, resulting in cell cycle arrest.

Genetic inhibition of p53 activity rescues the erythroid defects seen in the Bmi1 null mice

Deletion of p53 can rescue the erythroid defects in animal models of DBA and 5q-

syndrome, suggesting a p53-dependent mechanism underlies the pathophysiology of DBA 

and 5q-syndrome [38-40]. To examine whether inhibiting p53 function rescues the erythroid 

defects seen in Bmi1 null mice, we used a dominant negative mutant form of p53, p53R248W, 

which has been shown to inhibit wild type p53 functions [41]. The p53R248W mice express 

human p53 mutant protein from the endogenous murine Trp53 promoter [22]. We generated 

Bmi1-/- p53R248W double mutant mice and analyzed the hematopoietic phenotype in a cohort 

of 4 genotypes (Bmi1+/+ p53+/+; Bmi1+/+ p53R248W; Bmi1-/- p53+/+ and Bmi1-/- p53R248W). 

We observed that the RBC, Hb and HCT levels were rescued in Bmi1-/- p53R248W mice 

(Figure 6A). To examine whether dominant-negative p53 can also rescue defective 
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erythropoiesis in Bmi1 null mice, we examined the frequency of erythroid progenitor cells in 

these mice. While loss of Bmi1 increased the frequency of Pro-E cells, inhibiting p53 

activity with mutant p53 returned the number of these cells in the bone marrow to normal 

(Figure 6B). We also performed CFC assays and found that inhibiting p53 activity in Bmi1 

null bone marrow cells increases their ability to form both BFU-E and CFU-E colonies 

(Figure 6C). We also found that inhibiting p53 activity enhanced myeloid differentiation of 

Bmi1 null cells (Figure S11). In addition, we found that inhibiting p53 activity returns p21 

expression to normal (Figure S12A). While expression of dominant-negative p53 rescued 

the cell cycle arrest of Bmi1 null cells (Figure S12B), inhibiting p53 activity had no effect 

on ribosomal protein gene expression in these cells (Figure S13). These data demonstrate 

that Bmi1 regulates ribosomal protein gene expression in a cell cycle status independent 

manner.

Bmi1 null mice develop hypocellular bone marrow and show decreased bone marrow 

cellularity over time [13]. We found that the decreased bone marrow cellularity seen in the 

Bmi1 null mice was partially rescued in Bmi1-/-p53R248W mice (Figure 6D). Although the 

Bmi1 null mice have reduced body size [13], inhibiting p53 does not increase the body 

weight of Bmi1 null mice (Figure S14). In summary, we show that genetic inhibition of p53 

activity rescues the erythroid defects seen in Bmi1 null mice, indicating that activation of the 

p53 pathway impairs erythropoiesis in Bmi1 null mice.

BMI1 is differentially expressed in CD34+ cells isolated from patients with DBA

We demonstrated that Bmi1 null mice recapitulate several critical features of human DBA, 

including impaired ribosome biogenesis, activation of the p53 pathway, cell cycle arrest and 

defective erythropoiesis, indicating that BMI1 deficiency may contribute to the pathogenesis 

of DBA. Therefore, we examined human BMI1 gene expression in CD34+ cells isolated 

from DBA patients by using quantitative RT-PCR assays. While 7 out of 13 DBA samples 

had high BMI1 expression compared with normal human cord blood CD34+ cells (Figure 

7A), 5 out of 13 DBA samples had low BMI1 expression (Figure 7B). Moreover, we 

observed that high BMI1 expression correlates with increased expression of some ribosomal 

protein genes, including RPL5, RPL11, RPL35A, RPS19 and RPS26 (Figure 7C), whereas 

low BMI1 expression correlates with decreased expression of some ribosomal protein genes 

(Figure 7D). These data suggest that BMI1 may play a pathological role in DBA.

DISCUSSION

We found that Bmi1 is highly expressed in erythroid progenitor cells, where it functions as 

an enhancer of erythroid differentiation. In these cells, Bmi1 associates with some ribosomal 

protein genes and enhances their expression. As erythroid progenitor cells undergo 

differentiation, Bmi1 expression decreases, thereby decreasing the transcription of ribosomal 

protein genes and cell proliferation [Figure 7E, left panel]. The Bmi1 gene expression 

pattern we identified is consistent with Bmi1 expression pattern shown in the ErythronDB 

[42]. Loss of Bmi1 results in downregulation of transcription of multiple ribosomal protein 

genes, decreased protein synthesis, activation of the p53 pathway, cell cycle arrest and 

defective erythroid differentiation (Figure 7E, right panel).
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To understand how Bmi1 regulates erythropoiesis, we performed gene expression profiling 

assays to identify genes and pathways regulated by Bmi1. Several pathways appear to be 

altered in the absence of Bmi1, including ribosome biogenesis, mitochondria function, DNA 

damage repair, apoptosis and hemoglobin biogenesis. Based on Ingenuity Pathway analysis, 

the ribosome biogenesis pathway was the most altered pathway in Bmi1 null pro-E cells. 

Given that impaired ribosome biogenesis underlies the pathogenesis of DBA and 5q-

syndrome [18-21], we decided to focus our studies on the ribosome biogenesis pathway. 

There are approximately 80 ribosomal proteins in mammalian cells [18, 35]. While the 

expression of approximately 20 ribosomal protein genes were significantly downregulated in 

Bmi1 null proerythroblasts, the expression of the majority of ribosomal protein genes were 

unchanged (data not shown), suggesting that there is an imbalanced synthesis of ribosomal 

proteins in the absence of Bmi1 [18-19; 43]. Germline mutations in RPS19 and other genes 

encoding ribosomal proteins cause DBA [18-19]. The 5q- syndrome is caused by a 

somatically acquired deletion of chromosome 5q, which leads to haploinsufficiency of the 

ribosomal protein RPS14 and an erythroid phenotype highly similar to DBA [18-20]. Global 

gene expression analysis of DBA patients has shown that RPS19 mutations lead to 

downregulation of transcription of multiple ribosomal protein genes [44]. Further studies of 

highly purified HSCs from healthy patients and those with MDS links reduced expression of 

several ribosomal protein genes to decreased RBC maturation [40]. Thus, it is likely that 

downregulation of multiple ribosomal protein genes in Bmi1 null erythroid precursors 

impairs ribosome biogenesis.

To investigate whether Bmi1 regulates ribosome biogenesis, we performed genome wide 

association studies and ChIP experiments. We demonstrated that Bmi1 associates with 

several ribosomal protein genes and positively regulates their expression in erythroid 

progenitor cells. In ChIP experiments, BMI1 appears to bind to the promoter region of some 

ribosomal protein genes with enriched active histone marks, including H3K4me3 and 

H3K9Ac, but not the repressive H3K27me3 mark. We found that H2AK119ub1 mark was 

enriched at the promoter region of RPS19 and knockdown of BMI1 decreased the level of 

H2AK119ub1, indicating that the PRC1 complex may regulate ribosomal protein gene 

expression in erythroid progenitor cells. BMI1 is a known epigenetic repressor in 

hematopoietic stem and progenitor cells [3, 13]; however, our data indicate that it may 

function as an activator of ribosomal protein gene expression in erythroid progenitor cells. 

Polycomb proteins are found in most cells, but they must be targeted to specific genes in 

specific cell types to regulate pluripotency and differentiation [1-3]. MYC is a direct 

regulator of ribosome biogenesis in multiple cell types [45]. Given that BMI1 cooperates 

with MYC to promote the generation of B- and T-cell lymphomas [46-47], we hypothesize 

that MYC recruits BMI1 onto the promoter of ribosomal protein genes and assembles an 

activating complex, enhancing ribosomal protein gene transcription. It is also possible that 

BMI1 inhibits a negative regulator of ribosome biogenesis and indirectly regulates this 

process.

Given that ribosomal dysfunction can activate the p53 pathway [39-40], we reasoned that 

reduced ribosomal protein gene expression in Bmi1 null erythroid progenitor cells may 

activate the p53 pathway. This was indeed the case. While p53 mRNA levels were 
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comparable, p53 proteins were elevated in Bmi1 null bone marrow cells, indicating that 

Bmi1 deficiency stabilizes p53 protein. In addition, we observed that p53 target gene p21 is 

upregulated in Bmi1 null erythroid progenitor cells, demonstrating that the p53 pathway is 

activated in the absence of Bmi1. In response to ribosomal stress, several ribosomal 

proteins, including RPL5 and RPL11, bind to MDM2 and block MDM2-mediated p53 

ubiquitination and degradation, resulting in p53-dependent cell cycle arrest [39-41, 48]. It is 

possible that similar mechanisms may apply to the activation of p53 pathway in Bmi1-

deficient cells. Bmi1 is a potent negative regulator of the Ink4a-Arf locus, which encodes 

the cell cycle regulator and tumor suppressor p16Ink4a and p19Arf proteins [3]. p19 interacts 

with Mdm2 and stabilize the p53 protein [1-3]. We found that p19 expression is upregulated 

in Bmi1-deficient cells, suggesting accumulation of p53 protein may also be due to 

increased expression of p19Arf.

Deletion of p53 in mouse models of human DBA and 5q-syndrome can rescue the erythroid 

defects [34, 38-40]. We found that inhibiting p53 activity with a dominant-negative mutant 

p53 partially rescues the erythroid defects of the Bmi1 null mice, suggesting that a p53-

dependent mechanism underlies the pathophysiology of anemia. Human K562 

erythroleukemia cells have been used to study the impact of RPS19 mutations on ribosome 

biogenesis [32]. Therefore, we utilized these cells investigate how BMI1 regulates ribosome 

biogenesis. We found that knockdown of BMI1 expression in K562 cells results in 

downregulation of multiple ribosomal protein genes as we observed in human CD34+ cells 

(data not shown). Given that K562 cells are p53 null, our data suggest that BMI1 regulate 

ribosomal protein gene expression in a p53-independent manner.

Stabilization of p53 leads to cell cycle arrest and/or apoptosis in mouse model of human 

DBA and 5q-syndrome [34, 38, and 40]. In addition, haploinsufficiency for ribosomal 

protein gene activates the p53 pathway in human erythroid progenitor cells, leading to 

accumulation of p21 and consequent cell cycle arrest [39]. We observed that Bmi1 

deficiency in both mouse and human erythroid progenitor cells results in upregulation of p21 

and G0/G1 cell cycle arrest. Bmi1 null proerythroblasts appear to have higher rate of 

apoptosis, but the difference is not statistically significant. In addition, we found that anti-

apoptotic gene Mcl1 was downregulated in Bmi1 null cells (Figure 3A), indicating that 

enhanced apoptosis may play a role in the erythroid defect seen in Bmi1 null mice. Given 

that cell cycle progression and ribosomal biogenesis is coupled [48], the reduced ribosomal 

protein gene expression in Bmi1 null erythroid precursors could also be due to cell cycle 

arrest. While inhibiting p53 activity using dominant-negative p53 rescued the cell cycle 

arrest of Bmi1 null cells, inhibiting p53 activity had no effect on ribosomal protein gene 

expression in these cells, suggesting that Bmi1 regulates ribosome biogenesis in a cell-cycle 

independent manner.

Although peripheral blood counts from 7 to 8 weeks old Bmi1 null mice were close to 

normal (data not shown), these mice started to show anemic features from 10 to 12 weeks 

old, manifested by reduced RBC, HB and HCT levels compared with wild type mice. 

Interestingly, we observed that MCV levels are increased in Bmi1 deficient mice, which is a 

key feature of DBA and 5q-syndrome [18-21]. Rps19-deficient mice develop a macrocytic 

anemia together with leukocytopenia, leading to the exhaustion of hematopoietic stem cells 
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and bone marrow failure [34]. In a mouse model of human 5q-syndrome, haploinsufficiency 

of the Cd47-Nid67 interval (containing Rps14) caused macrocytic anemia and prominent 

erythroid dysplasia in the bone marrow [38]. Thus, Bmi1 deficiency may link to the 

pathogenesis of ribosomopathies, including DBA and 5q-syndrome.

Recent advances in characterizing the genetic abnormalities underlying DBA have 

demonstrated mutations or deletions of genes encoding both large (RPL) and small (RPS) 

ribosomal subunit proteins in 50 to 60% of affected patients [49-50]. We reported clinical 

analysis of 45 cases of DBA in China and found that clinical features of these Chinese DBA 

patients are similar to other ethical groups [51]. We performed mutational analysis of 

ribosomal protein genes in 21 cases of DBA as well [52]. However, genetic abnormalities in 

the remaining DBA patients are largely unknown. We observed decreased expression of 

multiple ribosomal protein genes encoding both the small and large subunits of ribosome in 

Bmi1 null erythroid progenitor cells, including Rps14, Rps19, Rps27 and Rpl11, which has 

been implicated in the pathogenesis of DBA and 5q-syndrome [18-20]. Moreover, the 

erythroid defects seen in Bmi1 null mice recapitulate several, but not all clinical features of 

human DBA and 5q-syndrome [18-20]. In this study, we found that BMI1 expression in 

CD34+ cells from patients with DBA correlate with the expression of some ribosomal 

protein genes in a small cohort of DBA patients. While there is no direct link between BMI1 

and the pathogenesis of DBA, our data suggest that BMI1 may play a pathological role in 

DBA and other ribosomopathies. Exome sequencing has identified GATA1 mutations in 

DBA patients without ribosomal protein gene mutations [53]. Reduced BMI1 expression in 

patients with DBA may be due to mutations. In the future, we will perform exome 

sequencing to detect BMI1 mutations in DBA patients without ribosomal protein gene 

mutations.
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Figure 1. Bmi1 regulates mouse erythroid differentiation
(A) Real time PCR analysis of Bmi1 mRNAs in LSKs, CMPs, GMPs, MEPs, Pro-E, Baso-E 

and Chro-E cells. LSKs, Lin-Sca1+Kit+ cells; CMPs, common myeloid progenitors; GMPs, 

granulocyte-macrophage progenitors; MEPs, megakaryocyte-erythrocyte progenitors; Pro-E, 

proerythroblasts; Baso-E, basophilic erythroblasts; and Chro-E, chromatophilic 

erythroblasts. Bmi1 mRNA level in GMPs was arbitrarily set to 1. Data are means ± SD. 

Value are shown for three biological replicates. (B) Peripheral blood of 10 to 12 weeks old 

WT and Bmi1 null mice were collected and analyzed. Data are means ± SD, n=10 for WT 

mice, n=11 for Bmi1 null mice. *p<0.05; **p<0.01; ***p<0.001. (C) Erythroid progenitor 

frequency in the bone marrow (BM) of WT and Bmi1 null mice was measured by CD71 and 
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Ter119 staining in combination with cell size (FSC). Representative FACS profile (left 

panel) and the absolute number of Pro-E, Baso-E, Chro-E and Ortho-E (right panel) in the 

bone marrow of wild type and Bmi1 null mice are shown. Data are means ± SD, n=6, 

*p<0.05; ***p<0.001. (D) Equal number of bone marrow mononuclear cells from WT and 

Bmi1 null mice were plated on methylcellulose medium. Colonies were counted on day 2-3 

(CFU-E) or day 9-10 (BFU-E). Data are means ± SD, n=3, *p<0.05; **p<0.01. (E) 

Mononuclear cells from the Bmi1 null mice were infected with Bmi1 overexpressing or 

control retroviruses. Sorted GFP+ cells were plated on methylcellulose medium and colonies 

were counted on day 2-3 (CFU-E) or day 9-10 (BFU-E). Data are means ± SD, n=3, 

*p<0.05; **p<0.01.
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Figure 2. BMI1 regulates human erythropoiesis
(A) Lentiviral constructs expressing shRNAs targeting luciferase (control) or BMI1 led to 

efficient knockdown of BMI1 expression in human CB CD34+ cells, as assessed by 

quantitative RT-PCR. Data are means ± SD. Value are shown for three biological replicates. 

**p<0.01. (B) Expression of CD71 and GlyA on human CD34+ cells, as assayed by flow 

cytometric analysis at day 7 of EPO-induced culture. Data are means ± SD. ***p<0.001, 

n=3. (C) Expression of CD71 and GlyA on human CD34+ cells, cultured with different 

concentrations of EPO, as assayed by flow cytometric analysis at day3, day 5 and day7. 

Data are means ± SD. *p<0.05; ***p<0.001, n=3. (D) Proliferation of control shRNA or 
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BMI1 shRNA transduced CD34+ cells at different time points after culturing in EPO-

induced liquid culture. Data are means ± SD. ***p<0.001, n=3. (E) Seventy two hours after 

lentiviral infection, 500 sorted GFP+ CD34+ cells were placed in CFU assays and the 

number of BFU-E colonies quantified. Data are means ± SD. ***p<0.001, n=3.
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Figure 3. Bmi1 deficiency results in decreased expression of some ribosomal protein genes in 
erythroid progenitor cells
(A) Transcript profiling of Pro-E cells from WT and Bmi1-/- mice were analyzed by Agilent 

Whole Mouse Genome Oligo Microarrays. Genes whose expressions are increased or 

decreased more than 2-fold in Bmi1-/- Pro-E cells compared to wild-type cells are shown. 

Data shown are relative expression as compared to WT Pro-E cells (set as 1). We utilized 

Ingenuity pathways Analysis (Ingenuity Systems) to group genes into specific canonical 

pathways. Values are shown for three biological replicates. (B) Real time RT-PCR analysis 

of ribosomal protein gene expression in Pro-E cells from WT and Bmi1-/- mice. Data shown 
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are relative expression as compared to WT Pro-E cells (set as 1). Data are means ± SD. 

Value are shown for three biological replicates. *p<0.05; **p<0.01;***p<0.001. (C) Real 

time RT-PCR analysis of expressions of different ribosomal protein genes in transduced 

human CD34+ cells. Data shown are relative expression as compared to control shRNA 

transduced cells (set as 1). Data are means ± SD. Value are shown for three biological 

replicates. *p<0.05; ***p<0.001. (D) Northern blot analysis of total RNA from K562 cells 

infected with control or BMI1 shRNA. (E) Knockdown of BMI1 in K562 cells reduces 

polysome levels. Representative polysome profiles of K562 cells infected with control or 

BMI1 shRNAs by sucrose gradient centrifugation are shown.
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Figure 4. Bmi1 associates with the promoter of some ribosomal protein genes and enhances their 
expression
(A) Representative Ring1b and control IgG ChIP-seq profiles of loci occupied by Ring1b in 

murine L8057 megakaryoblastic cells. It appears that Ring1b associates with the 

transcription start site (TSS) of multiple ribosomal protein genes. (B) BMI1 and RING1b 

associates with the promoter of some ribosomal protein genes in vivo. Chromatin-bound 

DNA from K562 cells were immunoprecipitated with a BMI1-antibody, a RING1b-antibody 

or with normal mouse IgG. qPCR amplification was performed on corresponding templates 

using primers for RPS14, RPS19, RPL5, RPL11 and RPL23 genes. (C) Chromatin-bound 

DNA from K562 cells were immunoprecipitated with a BMI1-antibody, a RING1B-

antibody, a H3K9ac-antibody, a H3K4me3-antibody, a H3K27me3-antibody or with normal 
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mouse IgG. qPCR amplification was performed on corresponding templates using primers 

for RPS19 gene. (D) Knockdown of BMI1 decreases the activation of the RPL11 promoter. 

K562 cells with reduced BMI1 expression were transfected with RPL11 promoter-driven 

luciferase plasmid. Luciferase activity was assayed 24 hr after transfection. Values are 

means ± SD, n=3, *p<0.05; **p<0.01.
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Figure 5. Loss of Bmi1 leads to activation of the p53 pathway in erythroid progenitor cells
(A) Real time RT-PCR analysis of p53 and p21 expression in proerythroblasts 

(CD71highTer119low) from the bone marrow of WT and Bmi1 null mice. Data shown are 

relative expression as compared to WT Pro-E cells (set as 1). Data are means ± SD. Value 

are shown for three biological replicates. ***p<0.001. (B) Knockdown of BMI1 expression 

in human CB CD34+ cells upregulates p21 expression as assessed by quantitative RT-PCR. 

Data are means ± SD. Value are shown for three biological replicates. ***p<0.001. (C) p53 

and p21 proteins in bone marrow mononuclear cells from both wild type and Bmi1 null mice 

were assessed by Western blot analysis. (D) Annexin V staining of bone marrow cells 

isolated from WT and Bmi1 null mice. Cells were cultured without cytokine for 24 hours. 

Data are means ± SD (n=3). (E) Cell cycle analysis of erythroblasts from the bone marrow 

of WT and Bmi1 null mice. Data are means ± SD, *p<0.05, n=3. (F) Cell cycle analysis of 
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control shRNA or BMI1 shRNA transduced CD34+ cells after 7 days in EPO-induced liquid 

culture. Data are means ± SD. ***p<0.001, n=3.
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Figure 6. Genetic inhibition of p53 activity rescues the erythroid defects seen in the Bmi1 null 
mice
(A) Peripheral blood from 10 to 12 weeks old mice with indicated genotype were collected 

and analyzed. Data are means ± SD, *p<0.05; **p<0.01, ***p<0.001, n=3-8 mice per group. 

(B) Erythroid progenitor frequency in the bone marrow (BM) of mice with indicated 

genotype was measured by CD71 and Ter119 staining in combination with cell size (FSC). 

Data are means ± SD, n=3-8 mice per group, *p<0.05; **p<0.01. (C) Equal number of bone 

marrow mononuclear cells from 4 genotype mice were plated on methylcellulose medium 

supplemented with EPO (CFU-E) or EPO, SCF and IL-3 (BFU-E) in triplicates (25K cells/ 

well). Colonies were counted on day 2-3 (CFU-E) or day 9-10 (BFU-E). Data are means ± 
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SD, n=3, *p<0.05; **p<0.01. (D) Total nucleated cells per femur from 10-12 weeks old 

mice were counted. Data are means ± SD, n=3-8. *p<0.05; ***p<0.001.
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Figure 7. BMI1 is differentially expressed in CD34+cells from patients with DBA
(A) Increased BMI1 expression in CD34+ cells from some DBA patient samples as assayed 

by quantitative RT-PCR assays. BMI1 mRNA levels in normal human cord blood CD34+ 

cells were arbitrarily set to 1. (B) Reduced BMI1 expression in CD34+ cells from some DBA 

patient samples as assayed by quantitative RT-PCR assays. (C) The expression of some 

ribosomal protein genes in DBA patient samples with high BMI1 expression. Ribosomal 

protein gene expression levels in normal human cord blood CD34+ cells were arbitrarily set 

to 1. (D) Ribosomal protein gene expression in DBA patient samples with low BMI1 

expression. (E) A schematic model showing how BMI1 regulates ribosome biogenesis in 

erythroid progenitor cells. BMI1 associates with the promoter of ribosomal protein genes 
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and positively regulate their expression. BMI1 promotes erythroid development through 

regulating ribosome biogenesis in erythroid progenitor cells (left panel). In the absence of 

BMI1, ribosome biogenesis is impaired. Defective ribosome biogenesis activates the p53 

pathway, resulting in cell cycle arrest and impaired erythroid differentiation (right panel). 

Our work indicates that BMI1 deficiency may contribute to the pathogenesis of 

ribosomopathies, including Diamond Blackfan anemia (DBA).
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