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Abstract—For a power grid to operate properly, electrical
frequency must be continuously maintained close to its nominal
value. Increasing penetration of distributed generation, such as
solar and wind generation, introduces fluctuations in active power
while also reducing the natural inertial response of the electricity
grid, creating reliability concerns. While frequency regulation
has traditionally been achieved by controlling generators, the
control of Demand Response resources has been recognized in
recent smart grid literature as an efficient means for providing
additional regulation capability. To this end, several control
methodologies have been proposed recently, but various features
of these proposals make their practical implementations difficult.
In this paper, we propose a new control algorithm that facilitates
optimal frequency regulation through direct control of both
generators and Demand Response, while addressing several issues
that prevent practical implementation of other proposals. In
particular, i) our algorithm is ideal for control over a large,
low-bandwidth network as communication and measurement is
only required every 2 seconds, ii) it enables Demand Response
resources to recover energy lost during system transients, and iii)
it accommodates both measured disturbances and unmeasured
disturbances. We demonstrate the viability of our approach
through dynamic simulations on a 118-bus grid model.

Index Terms—Optimal AGC, direct load control, demand
response, frequency regulation

I. INTRODUCTION

Maintaining a constant balance between generation and
consumption of power is critical to effective power system
operations. Several control layers maintain this balance at
various time scales. Primary frequency control, based on
governor action, is a decentralized control system that adjusts
the mechanical power of a generator in response to deviations
in local frequency. Following a disturbance, primary control
arrests the decline (or rise) in grid frequency in less than a
minute or so, but will not restore it to nominal. Secondary con-
trol (also called Automatic Generation Control (AGC)) updates
generator set-points every few seconds in a centralized fashion
in an attempt to restore nominal frequency and/or inter-area
tie line flows to their scheduled values [1] [2]. While effective,
the current AGC system does not incorporate DR, and it does
not in general allocate generation optimally. Finally, tertiary
control (also called economic dispatch) calculates optimal
system set-points, typically every 5 minutes.
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In recent literature, control of DR resources has been
proposed as a means to improve many aspects of power
system operation, including frequency regulation (see for
example [4]-[20], and [4] for a detailed overview). Unlike
most generation units, loads can respond to control signals
almost instantaneously [5] and the development of advanced
metering infrastructure (AMI) [6] has made real-time load
control achievable if appropriate control signals are provided.
Many control strategies such as [7]-[10] adjust loads based on
local frequency, enabling loads to mimic the natural response
of synchronous generators. These approaches have been shown
to improve the primary frequency response of the grid in both
simulations and in small-scale field tests [11]. However, one
of the challenges with load control is balancing the objectives
of consumers with those of the grid [4], and so the cost (or
disutility) to consumers must also be considered.

In [12], an optimal load control (OLC) strategy is de-
veloped that minimizes disutility from deferred consumption
and grid frequency deviations, and an analytical guarantee
of stability for such strategies is provided. In [13], this
strategy is expanded to restore nominal frequency following a
disturbance. However, these strategies are not integrated with
existing primary and secondary control on the generation side.
Simultaneous optimal control of generation and deferrable
loads using Lagrange multiplier methods was explored in [14]-
[20]. However, there are several issues in these approaches that
make their practical implementations difficult.

A common feature to many of the approaches in [4]-[20]
is to design and analyze the control system assuming rapid
or even instantaneous communication is available, which is
not practical for implementation on large networks. As noted
in [21], power system SCADA communications and measure-
ments can experience delays of several hundred milliseconds,
depending on the communication medium. Such large delays
can have a substantial impact on the stability and settling time
of network control systems [22]. In this paper, we propose
an algorithm for frequency control with DR-compatible loads
that is practically implementable. In particular, our algorithm
requires discrete communications and measurements only once
every 2 seconds (i.e. a time-scale already achieved by existing
AGC implementations).

Another issue with load control that is not often addressed
is the so-called recovery peak [4] in which loads consume
additional power following a period of deferment. Some types
of DR, such as electric vehicles, have requirements on how
much energy they need to consume over a certain horizon [23].
Other types of DR are shiftable (i.e. their required energy
is fixed, but their time of consumption is flexible) [24]. Our
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algorithm addresses these effects by ensuring that DR entities
eventually recover all of their energy following a system
transient.

Finally, unlike many approaches, our algorithm can accom-
modate unmeasured disturbances - that is, disturbances that
are not directly available to the control law and thus can
only be implicitly detected via frequency deviations. This is
important for practical implementation in a real power system,
in which load fluctuations, line losses, and other disturbances
can impact frequency but are difficult to measure directly.

The outline of this paper is as follows. In Section II we
model the dynamics of the electric grid and derive a controller
to send the grid state to its optimal set-point. In Section III we
present the details of our simulations on the IEEE 118-bus test
case and discuss the results of these simulations. Section IV
provides concluding remarks.

II. CONTROLLER DERIVATION

In this section we describe the proposed network-based
optimal AGC controller. We start by modeling the dynamics
of the power grid, including frequency dynamics of individual
buses. Then we design an algorithm that iteratively calculates
the optimal generation and consumption set-points. These
iterations are broadcast over a wide area network and serve
as control references for generators and flexible consumers.
Finally, we discuss modifications to enable Demand Response
resources to recover their energy following a large transient
event (e.g. a rapid drop in renewable generation or a generator
tripping offline).

A. Power System Dynamics

Our dynamic model for the power system is based on [19].
The power grid can be modeled as an undirected graph in
which buses are modeled as nodes and transmission lines as
edges. As in [19], we assume that a bus is either a generator
bus G with a single synchronous generator or a load bus L
with aggregated flexible power consumption. In addition, every
bus has a fixed, conventional consumption. Buses are con-
nected via transmission lines E . An arbitrary connected grid
topology may be converted to this form by adding fictitious
buses [25]. For simplicity, we adopt a linearized DC power
flow model [26] which includes the following assumptions:
i) voltage magnitudes of buses remain fixed, ii) resistances
of electrical lines are negligible, iii) voltage angle differences
are small, iv) reactive power flows are neglected. To simplify
notation, we define these state variables as their deviation from
a nominal set-point, which is solved on a slower time scale
(via the real-time market for example). The power network
dynamics, at the fast primary level time-scale, can then be
written as

Miω̇i +Diωi = PMi
− PDci

−∆i −
∑

(i,j)∈E

Bijδij , i ∈ G (1)

Diωi = −P kDri − PDci −∆i −
∑

(i,j)∈E

Bijδij , i ∈ L (2)

δ̇ij = ωi − ωj , (i, j) ∈ E (3)

ṖMi
= τ−1

i (P kGi
− PMi

−R−1
i ωi), i ∈ G. (4)

In the above equations, Mi is generator inertia, Di is the
damping rate of a bus, PMi

is mechanical power generation,
and PDri is flexible power consumption. Each bus also
has conventional (i.e. non-flexible) consumption PDci and
experiences disturbances ∆i. The difference between these
quantities is that PDci is a measured quantity which is directly
available to the control algorithm, while ∆i is an unmeasured
disturbance whose effects can only be detected indirectly
through system frequency. In Eq. (4) we model the turbine-
governor dynamics as a first order system with time constant
τi and primary control coefficient Ri. Finally, we define
δij = δi−δj = −δji, (i, j) ∈ E as the voltage angle difference
between two adjacent buses and Bij as the susceptance of a
transmission line (i, j) ∈ E .

The terms P kGi
and P kDri are setpoints for generators and

flexible consumers. These setpoints are updated periodically
at discrete time increments tk, k ∈ Z+ every ∆t seconds and
held constant between updates. In the next subsections we
discuss how these setpoints are determined, as well as the
period ∆t.

To simplify further analysis, we write the power grid
dynamics (1)-(4) compactly as

ẏ = Agridy +Bgridv (5)

where y =
[
ωTG δT PTM

]T
, ωG is a set of ωi, i ∈ G,

v =
[

(PDc + ∆)T PTDr PTG
]T

, and Agrid and Bgrid are
constant matrices containing parameters of system (1)-(4).

B. Optimal Power Flow

For our controller to operate efficiently, it is desired to
update P kG and P kDr iteratively at each tk, such that the
controlled system satisfies Optimal Power Flow (OPF) at
equilibrium. The purpose of OPF is to determine the most cost-
effective way to meet power demands, subject to constraints on
generators, consumers, and transmission lines. In this paper,
we use the DC-OPF formulation given in [17], which includes
flexible consumption as decision variables. An independent
system operator (ISO) attempts to solve this problem by
maximizing Social Welfare, denoted by SW and defined as

SW =
∑
i∈L

UDri(PDri)−
∑
i∈G

CGi
(PGi

)

where quadratic utility curves of flexible consumers and
quadratic cost curves of generators are given in (6) and (7)
respectively.

UDri(PDri) = bDriPDri +
cDri

2
P 2
Dri (6)

CGi
(PGi

) = bGi
PGi

+
cGi

2
P 2
Gi

(7)



The overall DC-OPF can then be formulated as the follow-
ing optimization problem, written in simplified matrix-vector
notation.

min − SW (8)

subject to

h(x) = PDc +ADrPDr −AGPG +Bbusθ + ρ = 0 (9)

PminG ≤ PG ≤PmaxG (10)

PminDr ≤ PDr ≤PmaxDr (11)
−Pmax ≤ Blineθ ≤Pmax (12)

Here our decision vectors are voltage angles θ, flexible
consumption PDr, and generation PG. We refer to the entire
decision vector as x = [θTPTDrP

T
G ]T . Matrices Bbus and Bline

give the net power flow out of a bus and through a transmission
line, respectively, when multiplied by θ, and ADr and AG are
incidence matrices that map flexible consumers and generators
to their respective buses. The equality constraints h(x) = 0
represent power balance at each bus in the grid. The vector
ρ corresponds to feedback control from grid frequency, which
will be discussed in Section II-D.

Equations (10)-(12) correspond to inequality constraints,
written compactly as g(x) ≤ 0. The components of g(x) are
given by g1(x) = PminG −PG, g2(x) = PG−PmaxG , g3(x) =
PminDr −PDr, g4(x) = PDr−PmaxDr , g5(x) = −Pmax−Blineθ,
and g6(x) = Blineθ − Pmax, where gn(x), n = 1, ..., 6 are
themselves vectors.

C. An Iterative Solution of OPF

To solve this optimization problem, first we form its La-
grangian with penalty vectors λ and µ for the equality and
inequality constraints, respectively.

L(x, λ, µ) = −SW (x) + λTh(x) + µT1 g1(x) + µT2 g2(x)

+ µT3 g3(x) + µT4 g4(x) + µT5 g5(x) + µT6 g6(x) (13)

To simplify notation, we re-write the Lagrangian as

L(x, λ, µ) = f(x, µ) + λTh(x) (14)

We utilize a solution method similar to the one found
in [18], which is a Newton-like primal dual interior point
method. We define the Hessian matrix as

H = ∇2
xxf(x, µ) =

 0 0 0
0 −cDr 0
0 0 cG

 . (15)

We now construct an augmented Hessian matrix by choosing a
positive parameter γ such that the following matrix is positive
definite

H̄ = H + γNNT (16)

where N = ∇xh(x) is a constant matrix. We then define the
update equations for x and µ as

xk+1 = xk − αH̄−1∇xL(xk, λ̂k) (17)

µk+1
n = [µkn +Kµgn(xk)]+, n = 1, ..., 6 (18)

where

λ̂k = (NT H̄−1N)−1(h(xk)−NT H̄−1∇xf(xk, µk)) (19)

∇xf(xk, µk) =

 BTline(µ
k
6 − µk5)

−bDr − cDrP kDr + µk4 − µk3
bG + cGP

k
G + µk2 − µk1

 (20)

∇xL(xk, λ̂k) = ∇xf(xk, µk) +Nλ̂k (21)

and α and Kµ are positive parameters chosen at the design
stage such that iterates (17)-(18) converge. The operation
[·]+ = max (0, ·). At convergence, the solution satisfies the
Karush-Kuhn-Tucker (KKT) optimality conditions which are
sufficient for global optimality (see Theorem 1).

D. Feedback Control using ACE

One thing to notice about our control law is that the
unmeasured disturbances ∆i in (1) do not appear directly
in any of the update equations (17)-(18). As outlined in the
Introduction, these disturbances can only be detected through
grid frequency.

Large electricity grids are usually divided into balancing
areas, which are connected to one another via tie lines. Each
balancing area is managed by a corresponding balancing
authority, whose goal is to maintain system frequency within
acceptable limits. Typically Area Control Error (ACE) is
used to determine each balancing authority’s obligation to
support frequency control by adding or removing generation.
Imbalances arise due to discrepancies in supply and demand
within the balancing area, as well as discrepancies in tie line
flows between areas [1]. In this paper, we include the power
imbalance within the balancing area, but neglect discrepancies
in tie line flow.

We define the frequency response bias factor of a bus as
βi = Di + R−1

i , i ∈ G for generator buses and βi = Di, i ∈
L for load buses. The total bias of the area is βarea =∑
i∈G∪L βi. Define ω̄(t) as the average of ωi(t), i ∈ G ∪ L.

The area control error can be expressed as

ACE(t) = βareaω̄(t). (22)

The parameter βarea identifies the excess or shortage of power
in the grid per unit of frequency deviation. We can equivalently
express ACE in terms of the state variables introduced in
Eq. (5) as

ACE(t) = βarea(Qy(t) +Rv(t)) (23)

where Q and R are constant matrices of parameters from
system (1)-(4) used to calculate ω̄(t). Typical practice is to
measure ACE at discrete time invervals tk. To model this



procedure, we express ACE as a discrete time signal given
by

ACEk = βarea(Qyk +Rvk) (24)

where yk and vk are discrete samples of continuous variables
y and v in (5). We feed the ACE signal into the algorithm
through the vector ρ in the power balance constraints (9).
Recall that h(xk) is used to update iterates (17)-(18). We
update ρk as

ρk+1
i = ρki −Kf

βi
βarea

ACEk, i ∈ G ∪ L (25)

where Kf is a suitably chosen feedback gain (see Theorem
1 for stability analysis). The purpose of ρk is to distribute
power imbalance measured through ACE to individual buses
(weighted by their bias factors βi), such that these imbalances
can be met optimally by the control algorithm. Unlike existing
Automatic Generation Control (AGC), this enables our control
algorithm to deploy flexible consumption as well as generation
to stabilize grid frequency, and to do so in a way that
maximizes Social Welfare.

We note that (25) can be viewed as an aggregation scheme,
in an effort to incorporate unmeasured disturbances in gen-
eration and load. As ACE is an indirect measure of these
disturbances, the use of ρ can be viewed as an aggregate,
based on the frequency bias factors of buses. This may lead to
suboptimality, which may be reduced by using more advanced
algorithms in lieu of (25).

E. Energy Recovery for DR Resources

Another feature of our control algorithm is the inclusion
Demand Response (DR) resources PDr in a way that allows
them to recover their energy following a large excursion in
system frequency. Our goal is to modify the control algorithm
to ensure that the additional net energy consumed or deferred
by a DR resource converges to zero. To this end, we introduce
a new set of state variables EDr which are scaled measures
of the net energy consumed or deferred by the DR resources.
This energy is updated as

Ek+1
Dr = EkDr +KEP

k
Dr (26)

where KE is a diagonal matrix of positive scaling values.
Some DR resources may need their energy back very quickly,
while others can defer for longer periods. The effect of these
scaling values on how quickly each DR resource recovers
energy is explored in Section III.

We then replace the DR resources’ inequality constraints
in (18) with

g′3(xk) = −EkDr − P kDr (27)

g′4(xk) = P kDr + EkDr (28)

It is seen that at equilibrium, we have E∗Dr = P ∗Dr = 0, which
ensures that the total energy consumed converges to zero, and
that the power of each DR resource returns to its nominal
value.

F. Stability Analysis

To summarize, the primary and secondary level dynamics of
the grid together with our proposed controller can be expressed
as the following hybrid dynamic system.

ẏ = Agridy +Bgridv (29)

µk+1
n = [µkn +Kµg

′
n(xk)]+, n = 1, ..., 6 (30)

xk+1 = xk − αH̄−1∇xL(xk, λ̂k) (31)

ρk+1
i = ρki −Kfβi(Qy

k +Rvk), i ∈ G ∪ L (32)

Ek+1
Dr = EkDr +KEP

k
Dr (33)

This includes both the existing primary control system as
part of Eq. (29) as well as the new secondary control system
given by Eqs. (30)-(33). We analyze stability and convergence
properties of this combined primary-secondary system with
the following Theorem:

Theorem 1: For properly chosen control parameters α, Kµ,
Kf , and KE , system (29)-(33) is stable and converges to the
global optimum of Problem (8)-(12).

To prove Theorem 1 we make the following assumptions.
Assumption 1: Problem (8)-(12) is feasible. We assume that

sufficient generation has been scheduled in advance to meet
power demands, and that the transmission system is capable
of handling the necessary power flows. This involves a unit
commitment problem which is solved at a slower time-scale.

Assumption 2: At equilibrium, a subset of the elements
of µ are projected. As Problem (8)-(12) includes bounds on
decision variables, it is not possible for a decision variable
to simultaneously equal its minimum and maximum value
at equilibrium. Thus, some of the corresponding Lagrange
multipliers µ must be projected.

See Appendix for the proof of Theorem 1.

G. Network Implementation

Next we discuss how this control algorithm might be
implemented over a large network. An independent system
operator (ISO) broadcasts set-points xk to each of the buses
every ∆t seconds (in this paper ∆t = 2 seconds). Upon
receiving their set-points, each generator and DR consumer
responds to the ISO with its entry of ∇xf(xk, µk), given
by (20). These quantities can be thought of as the marginal
cost or marginal utility for each participant at the current
set-point. Each generator and DR consumer is responsible
for updating its own value of µ, given by (30), and DR
consumers update their own value of EDr, given by (33). The
ISO is responsible for measuring system frequency, calculating
ACE, and updating ρ using (32). At this point, the ISO has
everything it needs to compute the next set of set-points
xk+1, and the process repeats. We note that the existing
AGC/SCADA system updates set-points every 4-6 seconds [2],
which includes frequency measurement, processing, and com-
munication. Thus, the communication requirements of our
control algorithm should be within the capability of existing
communication and measurement infrastructure with minimal
modification, making the algorithm feasible to implement.

As it is not practical for thousands or millions of devices
to interface directly with an ISO or other central authority,



we envision a hierarchy in which demand response aggre-
gators [4][27][28] communicate with the ISO and distribute
control actions for their respective DR resources. These ag-
gregators would gather information from their constituents
and determine characteristics of the group (such as the utility
curves in Eq. (6)). The design and operation of such aggrega-
tors is an open research question and beyond the scope of this
paper. Notable work in this area includes [28] which discusses
specific modeling methodologies as well as case studies with
supermarket HVAC systems.

III. SIMULATION STUDIES ON IEEE 118 BUS GRID

In this section we simulate the combined primary-secondary
control system on a 118 bus grid. We define a measured
disturbance as one that can be made available to the control
algorithm in real time. These disturbances enter a bus as a
change in conventional demand PDci , and is simulated as
a known quantity. We define an unmeasured disturbance as
one that is not available to the control algorithm, and whose
effects are only felt indirectly through the impact on system
frequency. These disturbances enter a bus through ∆i in
Eq.’s (1)-(2). Disturbances (both measured and unmeasured)
may be used to model a rapid drop in renewable generation,
a sharp increase in conventional (inflexible) demand, or a
generator tripping offline.

To analyze the performance of the algorithm, we run a total
of 3 tests. In Test 1, we subject the system to an unmeasured
disturbance with no feedback control (i.e. Kf = 0). This
models the primary control response of the system. In Test 2,
we subject the system to the same unmeasured disturbance,
but this time with feedback control. In Test 3, we subject
the system to a measured disturbance with feedback control.
In all tests, disturbances have the same magnitude and are
distributed randomly among the buses. After 10 seconds of
nominal operation, a disturbance of +5% of base load is
applied, followed by a disturbance of −3% of base load 60
seconds later.

To evaluate system performance, we analyze both ACE and
the achieved Social Welfare. We define the achieved Social
Welfare as

SWa
=
∑
i∈L

UDri(PDri)−
∑
i∈G

CGi
(PMi

) (34)

which is identical to (6) but with the commanded generation
PG replaced by the actual mechanical generation PM .

A. IEEE 118 Bus Grid

Our test system is a modified IEEE 118-bus test case [29],
of which 54 are generator buses and the other 64 are load
buses modified with a certain amount of flexible consumption.
Each bus also experiences a conventional, fixed demand PDc.
The system contains a total of 186 transmission lines. Unless
otherwise specified, system parameters are taken directly from
the test files [29].

For system parameters not given in the test files, we ran-
domly selected values in the following ranges: Mi ∈ [8, 12],
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Fig. 1. ACE following an unmeasured disturbance using no feedback

τi ∈ [3, 7], Di ∈ [0.3, 2], Ri = 0.05, cG ∈ [0.04, 0.05], bG ∈
[1, 2], cDr ∈ [−2,−1], bDr ∈ [4, 5], and Pmax = 150MW.

We implement our controller using α = 0.9, Kµ = 0.08,
Kf = 0.04, KE ∈ [0.2, 0.4], and γ = 1. The distribution for
KE models potentially different energy recovery requirements
of DR resources. As noted previously, we use a communication
period ∆t of 2 seconds.

B. Results and Discussion

First we discuss Test 1, which models primary control only.
As seen in Fig. 1, the ACE stabilizes at negative values,
indicating a shortage of power in the system. As this test
includes no feedback control, generators adjust based on their
physical characteristics rather than cost parameters, and DR
resources receive no signal to defer consumption.

Next we discuss Test 2 in which we implement feedback
control from ACE through Eq. (32). As seen in Fig. 2, the
ACE returns to zero as desired. We see in Figs. 3 and 4 that
both generators and flexible consumers are adjusted by the
algorithm. The DR resources return to their nominal setpoints
at equilibrium, and their total energy consumed converges to
zero as shown in Fig. 5. Due to the distribution of gains in
KE , some of the DR resources recover their energy quickly,
while others are allowed a longer recovery period. As the
DR resources recover their energy, the generators continue to
adjust to maintain ACE at zero. With these improvements, we
also see in Fig. 6 that the achieved social welfare is much
closer to the optimal value. The slight discrepancy is due to
the suboptimality introduced by Eq. (25).

Next we discuss Test 3 in which the disturbance is now
measured (i.e. available directly for control). We see in Fig. 7
that the achieved Social Welfare is equal to the optimal value.
Plots of active power generation, flexible consumption, and
ACE are similar to Test 2 and are not shown.

IV. SUMMARY AND CONCLUDING REMARKS

In this paper we have outlined a practical control algorithm
that integrates Automatic Generation Control and Demand
Response. This algorithm allows DR resources to participate
in frequency control to maximize Social Welfare, enables
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Fig. 2. ACE following an unmeasured disturbance using feedback control
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Fig. 3. Generation following an unmeasured disturbance using feedback
control
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Fig. 4. Demand Response following an unmeasured disturbance using
feedback control
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Fig. 6. Social Welfare following an unmeasured disturbance using feedback
control
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Fig. 7. Social Welfare following a measured disturbance using feedback
control



DR resources to recover their energy following a frequency
excursion, accommodates both measured and unmeasured dis-
turbances, and does not introduce excessive communication or
measurement requirements. In future work we plan to model
larger power systems and subject the model to more detailed
disturbance profiles, such as load variation, wind/solar power
fluctuation, AC losses, or equipment failures.
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APPENDIX

A. Proof of Theorem 1:

We prove Theorem 1 using the following 3 steps.
Step 1: Problem (8)-(12) is strictly convex. Step 1 follows

because the constraints are affine and the objective function
is strictly convex over its domain, since the cost curves of
the generators are strictly convex and the utility curves of the
flexible consumers are strictly concave. This implies that the
KKT conditions [30] are sufficient for global optimality. �

Step 2: The equilibrium of system (29)-(33) is stable. To
show this, we convert power grid dynamics (29) into an
equivalent discrete-time model using the methods outlined
in [31]. This model is appropriate because the control inputs
utilize a zero-order-hold between sampling. Therefore,

yk+1 = Φyk + Γvk (35)

where Φ = eAgrid∆t and Γ =
∫∆t

0
eAgridsdsBgrid.

Under Assumption 2, system (29)-(33) is linearized about
its equilibrium, with the projected state variables removed.
Define z =

[
xT µ′T yT ρT ETDr

]T
and uk =[

PTDc ∆T
]T

. The system can be written as

zk+1 = A′zk +B′uk (36)

where

A′ =


I − αΩ1 αΩ′2 0 αΩ3 0
KµΩ′4 I 0 0 KµΩ′5

Ω6 0 Φ 0 0
KfΩ7 0 KfΩ8 I 0
KEΩ9 0 0 0 I

 , (37)

where Ωi are constant matrices that depend on the grid
parameters, and µ′ is the vector µ with the projected elements
removed. If control gains are chosen such that A′ is Schur
stable, then the equilibrium of (29)-(33) is stable. �

Step 3: The equilibrium of (29)-(33) satisfies the KKT
conditions. By inspection, Eq. (31) satisfies stationarity of the
Lagrangian at equilibrium. Dual feasibility is enforced by the
projection operator on µ. From Eq. (30), we observe that if
gi(x

∗) < 0 then µ∗i = 0 and gi(x
∗) > 0 is not possible at

equilibrium and so complementary slackness gi(x∗)µ∗i = 0∀i
is satisfied at equilibrium. By combining (19) and (21), we



observe that h(x∗) = 0 so primal feasibility is satisfied
at equilibrium. Thus, all the KKT conditions are satisfied
at equilibrium, which is a sufficient condition for global
optimality, proving Theorem 1. �


