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Abstract

The development and growth of microfluidics has stimulated interest in the be-

haviour of complex liquids in microscale geometries and provided a rich platform

for rheometric investigations of non-Newtonian phenomena at small scales. Microflu-

idic techniques present the rheologist with new opportunities for material property

measurement and this review discusses the use of microfluidic devices to measure

bulk rheology in both shear and extensional flows. Capillary, stagnation and con-

traction flows are presented in this context and developments, limitations and future

perspectives are examined.
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1 Introduction

Over the past decade the study of flows in geometries with characteristic

length-scales of less than 100µm has flourished (Stone et al., 2004; Whitesides,

2006). Developments in techniques for investigating and manipulating such

flow configurations have been driven by recent advances in micro-fabrication

techniques allowing the cheap and reliable manufacture of geometries with

micron-scale feature resolution (Quake and Scherer, 2000; Ng et al., 2002;

Marrian and Tennant, 2003) combined with the trend of miniaturization in

the biotechnology, manufacturing and chemical processing industries. Com-

mon microfluidic device applications include coating flows, formation of sus-

pensions, emulsions and foams, heat transfer and flows in lab-on-a-chip devices

(Obot, 2002; Hansen and Quake, 2003; Stone et al., 2004; Squires and Quake,

2005). Many of these ultimate applications involve handling fluids that have a

complex microstructure and the flow of these materials may give rise to non-

Newtonian phenomena (Bird et al., 1987; Larson, 1999). In order to optimize

the design and implementation of microfluidic systems, a detailed understand-

ing of the bulk flow of complex liquids on small scales is clearly desirable.

Classical macroscopic rheometry techniques for measuring fluid properties in

shear and elongation typically involve characteristic length-scales O(1 mm),

require sample volumes O(1 ml) and probe deformation rates of perhaps up to

O(100−1000 s−1) (Macosko, 1994; Petrie, 2006). While these methods are sat-

isfactory for understanding the behaviour of many fluids in a wide variety of

flows, there are circumstances when using devices with smaller length-scales

to investigate rheological response may be advantageous. These include ex-

ploring sensitivity to interfacial conditions, probing large deformation rates
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in the absence of inertia or viscous heating, measuring flow phenomena when

device length-scales approach those of the underlying material microstructure

and the possibility of studying sample volumes on the order of nanolitres.

Straightforward adaptations of classical macro-scale devices to incorporate

micrometric length-scales has been shown to be effective for measuring shear

properties under certain conditions; however, it becomes necessary to incor-

porate large correction factors to compensate for flow non-idealities (Connelly

and Greener, 1985; Duda et al., 1988; Pipe et al., 2008) or to develop advanced

opto-mechanical sub-systems to ensure precise alignment (Dhinojwala and

Granick, 1997; Clasen and McKinley, 2004). Moving down to molecularly thin

films of complex liquids, atomic force microscopy (MacKintosh and Schmidt,

1999) and surface force apparatus instruments (Mukhopadhyay and Granick,

2001) have been used to study nano-scale rheology (Meyer et al., 1998); how-

ever, once again severe instrument artifacts can overwhelm the observations

(McKenna, 2006). Despite the strong impetus driving the miniatuarization of

rheometric instrumentation, the ability of macro-scale systems to probe the

bulk rheology of a fluid at the micro-scale has remained limited, largely be-

cause shrinking down some mechanical subsystems such as torsional motors

and torque transducers is impractical. The arrival of microfluidic technology,

however, has opened significant new possibilities for exploring the behaviour

of complex liquids in micron sized geometries: not only does it allow the pre-

cise, rapid and cheap development of small scale devices but it also provides

the ability to integrate rheological devices with other microfluidic components

for lab-on-a-chip devices, opening new lines of application.

We review some of these recent developments in the present article: among a

range of techniques situated at the junction of microfluidics and rheology we
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focus on the use of microfluidic devices to measure bulk rheological properties

in shear and extensional flow. A very brief summary of other key approaches

is given below and the reader is directed to the references provided for further

information regarding these methods:

? Particle-based methods can be used to estimate the local rheological re-

sponse due to the motions of nanoscale particles (Waigh, 2005; Larson,

2007). Systems can be ‘passively driven’ where the motions of particles due

to thermal fluctuations are analyzed (Weitz and Pine, 1992; Starrs and

Bartlett, 2003) or ‘actively driven’ where forces exerted on beads are mea-

sured using optical traps (Meiners and Quake, 2000; Brau et al., 2007) or

magnetic tweezers (Bausch et al., 1998).

? The dynamics of single polymers, especially fluorescently-labeled DNA, freely

undergoing shear or extensional flow can be directly observed under cer-

tain conditions (Perkins et al., 1997; Smith et al., 1999; Hur et al., 2001)

and related to the macroscopic rheological response measured in conven-

tional rheometers. The use of DNA solutions as a model polymer system for

probing the dynamics of flexible chains in different flow types is reviewed

comprehensively by Shaqfeh (Shaqfeh, 2005).

? Microfluidic devices can also be used to control the creation of droplets in

a repeatable manner (Thorsen et al., 2001; Anna et al., 2003; Link et al.,

2004), allowing the dynamics of single or groups of droplets to be explored,

an important step in understanding the rheology of multiphase liquids.

? Microfluidic studies of ordered complex fluids, such as liquid crystals, can

be used to impose well-defined structural and orientational boundary con-

ditions on length-scales comparable to the dimensions of the observed order

(Choi et al., 2004; Shojaei-Zadeh and Anna, 2006).

4



P
re

pr
in

t

This review is arranged in the following order: section 2 discusses microfluidic

capillary techniques for measuring the steady shear viscosity; in section 3

we discuss microfluidic stagnation point flows; and in section 4 we examine

microfluidic contraction flows for measuring extensional properties. Finally we

examine perspectives for future work on microfluidic devices for investigating

the rheology of complex liquids.

1.1 Device and fluid length-scales

We take the working definition for a microfluidic system as a device with

at least one characteristic length-scale d in the range 1 ≤ d ≤ 100µm. For

complex liquids the continuum hypothesis is still considered to be valid at

such length-scales, but this may not be the case for flows of gases when the

ratio of the mean free path lf to the smallest characteristic dimension is of

order lf/d ∼ 0.001 and compressibility becomes important (Colin, 2005). The

microstructural length-scales of complex liquids, such as the radius of gyra-

tion of a polymer chain or a characteristic radius of a suspended particle,

typically vary from 1 nm to 10 µm, and as such the working fluid may not

be well approximated as microstructurally homogeneous. Additionally, as the

characteristic length-scale of the flow geometry approaches that of the fluid

microstructure, physical confinement can alter the dynamical evolution of the

microstructure (Chen et al., 2004; Stein et al., 2006) and must be taken into

account when considering the bulk response.
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1.2 Surface effects

The ratio of surface area S to volume V for a fluid element is proportional

to S/V ∼ d−1 and therefore moving towards smaller characteristic length-

scales increases the relative importance of surface interactions compared to

the behaviour of the bulk. While the classical ‘no-slip’ hypothesis at a smooth

solid-fluid interface is generally regarded valid down to length-scales 10 nm

(Lauga et al., 2007), interactions at surfaces may lead to substantial apparent

slip. Thus depletion layers are a potential source of non-homogeneity in the

sample being investigated (Barnes, 1995; Granick et al., 2003) and may affect

the measured rheological response. Apparent slip can be caused by surface

roughness, the confining effect of the walls causing solute-poor regions near

the wall, hydrophilic/hydrophobic interactions at interfaces and the influence

of electrical properties in ionic liquids or liquids containing charged particles

(Lauga et al., 2007; Voronov et al., 2008).

1.3 Relevant dimensionless groups

The small length-scales characteristic of microfluidic devices generally result

in flows of liquids in which viscous stresses dominate inertia with typical

Reynolds numbers Re = ρUd/η < 1, where η is the dynamic viscosity, ρ

is the fluid density and U is a characteristic velocity of the flow which is

controlled by the volumetric flow rate U ∼ Q/d2. While low Reynolds num-

ber flows present challenges that limit efficient mixing in microfluidic systems

(Stroock et al., 2002), they are advantageous when seeking to impose lami-

nar viscometric flows with controlled kinematics and, for Newtonian fluids at

6



P
re

pr
in

t

least, it is possible to accurately compute steady two-dimensional and three-

dimensional flows (Oliveira et al., 2008). Microfluidic devices manufactured

using conventional lithographic techniques are usually planar and for steady

shearing flow in devices where the ratio of width w to depth d (see figure 1(a))

w/d � 1; classical lubrication approximations (Batchelor, 1967) can also be

used to model many aspects of the flow field, except in regions where the

geometry changes rapidly in the streamwise direction.

In microfluidic flows of complex liquids the Bond number Bo = ρd2g/σ � 1,

where σ is the interfacial tension and g is the acceleration due to gravity,

and capillary forces dominate body forces in the formation of fluid interfaces.

Capillary forces are also usually large compared to viscous forces leading to

capillary numbers Ca = ηU/σ � 1. Because capillary forces are so large in

microfluidic devices dislodging air bubbles can be extremely problematic, and

because the capillary length lcap = (σ/ρg)1/2 is an order of magnitude greater

than device length-scales, residual air bubbles can substantially distort local

flow profiles.

Many complex liquids used in microfluidic applications (for example solutions

containing proteins, DNA or other biopolymers) exhibit viscoelastic relaxation

times λ ∼ 10−3 s or smaller and therefore do not show extravagant viscoelas-

tic phenomena in laminar macro-scale flows. It is thus difficult to measure

the material functions that characterize the fluid rheology in a conventional

rheometer. However, at the high deformation rates γ̇ ∼ U/d ∼ Q/d3 which can

be achieved in the absence of inertia using microfabricated geometries, large

Deborah numbers De = γ̇ λ > 1 become accessible and viscoelastic stresses

may be significant.
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The increasing importance of understanding viscoelastic fluid effects as flow

geometries are miniaturized is highlighted by the elasticity number El =

De/Re = λη/(ρd2); because both De and Re increase linearly with Q, the

ratio is independent of flow rate and controlled by material properties and

geometry. For a given viscoelastic liquid, increasing elastic effects are realized

at smaller length-scales. This is especially noteworthy for low viscosity poly-

mer solutions, for which the elasticity number may be El� 1 in macroscopic

flows, whereas in microscale geometries, flows with El� 1 are possible (Rodd

et al., 2005).

2 Microfluidic capillary devices

Capillary viscometry using macro-scale devices can be an extremely reliable

and accurate technique for measuring shear viscosities (Macosko, 1994). The

shear viscosity η is calculated as a function of the flow rate Q and pressure

drop ∆P through a straight capillary of known dimensions (White, 1991), with

axisymmetric or planar slit geometries commonly used. One seeks to measure

a very low value of wall shear stress τ at a given shear rate γ̇ ∼ Q/(wd2),

where for a rectilinear channel w is the channel width, d is the channel depth

and typically the aspect ratio w/d � 1. For steady fully-developed flow in a

rectilinear channel the pressure drop is given by the force balance wd∆P =

2L(w+d)τ , where L is the channel length. Hence the measured pressure drop

∆P = 2τL(w+ d)/(wd) ∼ 2τL/d which can be very large when L/d� 1 and

w/d� 1. We note that this is in direct contrast to rotational-based rheometric

systems where the measured torque T ∼ 2ηπR2L (with R the radius of the

measuring fixture), can become very small when the device length-scales R and
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L are reduced. Consequently microfluidic rheometry is naturally predisposed

to exploiting the well-developed principles of capillary viscometry due to the

inherent simplicity of the design combined with the ease of microfabricating

straight planar channels with small depths compared to the channel length.

2.1 Principles of operation

A sketch of a prototypical planar microfluidic capillary viscometer is shown

in figure 1(a). The fundamental principle employed by microfluidic capillary

viscometers is identical to their macroscale counterparts and the shear vis-

cosity is found from the pressure drop ∆P and flow rate Q for a capillary

of length L. A key difference between conventional and microfluidic capillary

viscometers, however, is that the former are often gravity-driven resulting in

measurements of the kinematic shear viscosity ν = η/ρ while the latter give

the dynamic shear viscosity η directly. For laminar Newtonian flow in a cap-

illary the viscosity is given by η = wd3∆P/[2LkQ(1 + d/w)], where k is a

numerical factor depending on the channel geometry; k = 6 for a slit channel

(w/d � 1) and k = 14.3 for a square channel (w/d = 1). For fluids with a

shear-rate dependent viscosity the Weissenberg–Rabinowitsch–Mooney equa-

tion for rectilinear channels is used to calculate the viscosity and in this case

a factor of [2 + d(lnQ)/d(ln ∆P )]/3 must be included (Macosko, 1994).

Two main approaches to microfluidic capillary viscometry can be identified:

(a) imposing a pressure drop and measuring the flow rate (Srivastava et al.,

2005; Lee and Tripathi, 2005; Degré et al., 2006; Guillot et al., 2006; Lin et al.,

2007; Han et al., 2007; Masselon et al., 2008), and (b) imposing the flow rate

and measuring the resulting pressure drop (Kang et al., 2005; Pipe et al., 2008).
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For pressure driven flows, a variety of methods have been exploited including

capillary pressure (Srivastava et al., 2005), electrowetting (Lin et al., 2007),

controlling upstream hydrostatic pressure (Degré et al., 2006; Guillot et al.,

2006; Masselon et al., 2008) and decreased downstream pressure in a controlled

volume of air as the gas is slowly absorbed into a porous PDMS elastomer (Han

et al., 2007). Techniques for measuring the flow rate include micro particle

image velocimetry (µPIV) (Degré et al., 2006; Guillot et al., 2006; Masselon

et al., 2008) and the observation of the fluid free surface by video microscopy

(Srivastava et al., 2005; Guillot et al., 2006; Lin et al., 2007; Han et al., 2007).

The controlled-pressure microfluidic device of Lee and Tripathi (2005) enables

direct measurement of the intrinsic viscosity of biopolymer solutions and the

flow rate is evaluated by fluorescence intensity of the bulk flow.

In both of the controlled flow rate studies published to date the volumet-

ric flow rate was imposed using a syringe pump and the pressure drop was

monitored using either traditional pressure sensors (Kang et al., 2005) or mi-

crofabricated pressure sensors (Pipe et al., 2008). The potential issue of ‘hole

pressure corrections’ (i.e. additional extra viscoelastic stresses arising from

streamline curvature near the channel boundary (Higashitani and Pritchard,

1972)) can be circumvented either by using flush-mounted transducers or by

directly measuring a differential pressure drop. In this latter case, the sensing

elements are located at two geometrically identical wall locations; the extra

viscoelastic stresses are then of identical magnitude at both locations and can-

cel each other out in the differential measurement (Rodd et al., 2005). The

theoretical paper of Zimmerman et al. (2006) proposes a wholly different ap-

proach whereby the pressure opposite the entrance to a T-junction is measured

and the shear viscosity for shear-thinning fluids can thus be calculated.
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The current capabilities of both imposed rate and imposed pressure techniques

are illustrated in figure 2. The shear rate-dependent viscosity of a strongly

shear-thinning xanthan gum solution measured in a rectangular microchannel

by imposing the flow rate and monitoring the wall shear stress is shown in

figure 2(a) (reproduced from Pipe et al., 2008). Using high pressure syringe

pumps, wall shear rates up to γ̇ = 30000 s−1 were obtained. Good agreement

is found with measurements from conventional rotational rheometers and we

note that the microfluidic device is able to probe shear rates at least an order

of magnitude greater than is achievable in the macroscale geometries, which

are typically constrained by the onset of inertial instabilities. MicroPIV mea-

surements of the velocity profile in microchannel flows of a shear-banding

wormlike micellar solution are presented in figure 2(b) (reproduced from Mas-

selon et al., 2008). The progressive deviation in the velocity profile from the

parabolic profile expected for a constant viscosity Newtonian fluid is evident

as the driving pressure is increased. These local velocity measurements can

be used to determine the flow curve shown in figure 2(c) and the results are

found to agree well with macro-scale cone and plate measurements for shear

rates γ̇ < 10 s−1 before the onset of the shear stress plateau.

2.2 Range of operation

Any of the techniques outlined in 2.1 can be used for measuring the viscos-

ity of constant viscosity aqueous solutions. Certain methods are also capable

of measuring the viscosity of non-Newtonian liquids where η may vary as a

function of the imposed shear rate (Srivastava and Burns, 2006; Kang et al.,

2005; Degré et al., 2006; Guillot et al., 2006; Masselon et al., 2008; Pipe et al.,
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2008). Some designs impose restrictions on the types of fluids which can be

measured, and may require liquids with a sufficiently large surface tension (Sri-

vastava et al., 2005), ionic liquids (Lin et al., 2007) or two immiscible liquids

(Guillot et al., 2006); devices constructed using PDMS are limited to liquids

which do not react with or swell the PDMS elastomer (Han et al., 2007).

The viscosity - shear rate parameter space which can be explored depends

on the device geometry, how the flow is driven and the measuring technique.

When the flow is pressure driven and the flow rate is measured the chief limi-

tations on the shear rate range are the dynamic range of the image capturing

system, the driving pressure and the mechanical strength of the device; fluids

with shear viscosities 0.001−10 Pa s have been measured over a range of shear

rates 10−1 − 103 s−1 (Srivastava and Burns, 2006; Degré et al., 2006; Guil-

lot et al., 2006; Masselon et al., 2008). For systems in which the flow rate is

imposed and the pressure drop is measured, the channel geometry combined

with the accuracy and full scale of the pressure sensors are the determining

factors in the range of shear rates which can be explored for a given sample

viscosity (Pipe et al., 2008). Shear rates up to γ̇ = 106 s−1 were explored by

Kang et al. (2005) for a dilute polymer solution and at such large deformation

rates the onset of polymer degradation was observed.

The effects of viscous heating are characterized by the Nahme number Na =

ηβγ̇2d2/(kT ), where k is the thermal conductivity, T is the temperature and

β = ∂(log η)/∂(log T ) is the logarithmic derivative of viscosity with tempera-

ture or ‘thermal sensitivity’, and can be considered negligible when Na � 1.

Thus, since Na ∼ d2, microfluidic devices offer a significant advantage over

conventional macroscopic rheometers when measuring material properties at

large deformation rates (Pipe et al., 2008).
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Besides fluid degradation and viscous heating, the upper limit on the shear

rate that can be imposed is governed by the loss of viscometric flow beyond

a critical Reynolds number Rec and the transition from laminar to turbulent

flow. As discussed in the review by Obot (2002), the experimental evidence so

far suggests that the transition to turbulence in smooth walled microchannels

occurs at Rec ∼ 2000, comparable to the usual value for macroscale flows. Tur-

bulent fluctuations can also contribute substantially to polymer degradation

in the device (Vanapalli et al., 2006).

2.3 Further considerations

Certain fluids can show significant changes in viscosity for small changes in

temperature. Thus the ability to impose a well defined temperature on the de-

vice is an important consideration when trying to accurately determine fluid

viscosity and silicon-based devices are preferable here to poor thermal conduc-

tors such as PDMS elastomers. Indeed, a well controlled thermal environment

may be critical for biological fluids where the biological integrity of the fluid

is dependent on being kept at physiological temperature (Srivastava et al.,

2005; Han et al., 2007). A further issue of particular importance when using

biological fluids is that of sample contamination and, to avoid time consuming

cleaning between tests, disposable devices may be desirable. Thus in this case

the cost of microfluidic viscometry systems can be a key factor (Srivastava

et al., 2005; Han et al., 2007).

The microfluidic systems presented by Srivastava et al. (2005), Lin et al. (2007)

and Han et al. (2007) are able to function using sample volumes on the or-

der of nanolitres, offering a ∼ 106 reduction in the required sample volume
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compared to conventional viscometric techniques. This is particularly advan-

tageous when dealing with biological samples where large volumes may not be

available. Conversely, microfluidic devices involving syringe pumps and con-

necting tubing typically require larger volumes in the range 100µl−10 ml in

order to fill the system and establish steady flow conditions (Pipe et al., 2008).

Finally we note that the presence of apparent wall slip in capillary flow may

be assessed either directly or indirectly depending on the system. µPIV mea-

surements (Degré et al., 2006; Guillot et al., 2006; Masselon et al., 2008) allow

the velocity profile in the near-wall region to be observed and the effects of

wall slip may be evaluated independently of the viscosity (Degré et al., 2006).

If the local velocity profile is not known, apparent wall slip can be deduced

indirectly using microchannels with different channel dimensions (Kang et al.,

2005; Pipe et al., 2008) or by comparison with measurements from other ex-

perimental techniques (Guillot et al., 2006).

3 Microfluidic stagnation point flows

The vorticity-free state of the flow near a stagnation point can result in large

extensional deformation and orientation of the microstructural components of

complex fluids (Frank et al., 1971; Fuller and Leal, 1980; Fuller et al., 1987;

Schoonen et al., 1998). This non-equilibrium microstructural configuration re-

sults in an increase in the extensional viscosity ηe of the fluid beyond the

Trouton limit ηe = 3η or ηe = 4η expected in homogeneous uniaxial or planar

extensional flows, respectively (Bird et al., 1987). With the notable exception

of the Rheometrics RFX opposed nozzles rheometer (Fuller et al., 1987), in-

formation on the extensional properties is usually extracted by monitoring the
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flow birefringence in the region of the stagnation point (Fuller, 1990). Due to

the high spatial resolution that is achievable, microfluidic geometries combined

with modern microscopic imaging platforms are, in principle, well suited to

exploring the optical properties of flows in the region of stagnation points and

extracting rheological information.

A generic sketch of a microfluidic stagnation point flow is shown in figure 1(b).

Currently two fundamental configurations for exploring these flows have been

proposed: microfluidic implementations of the four roll mill (Hudson et al.,

2004; Lee et al., 2007) and the ‘cross slot’ flow geometry (Pathak and Hudson,

2006; Arratia et al., 2006, 2008). Microfluidic analogues of four roll mill devices

allow rotational as well as irrotational flows to be established with varying

degrees of vorticity (Hudson et al., 2004; Lee et al., 2007) and the behaviour

of macromolecules in flows with mixed shear and elongational characteristics

can potentially be investigated. However, while flow fields have been validated

experimentally and numerically for Newtonian liquids in these devices, so far

no measurements of the bulk extensional properties of complex liquids have

been reported in these geometrues due to the difficulty in measuring the global

pressure drop or stress field in such devices.

The microfluidic cross-slot device developed by Pathak and Hudson (2006)

was used to study the extensional rheology of semi-dilute surfactant solutions.

The very high stress-optical coefficient of wormlike micellar systems enables

spatially-resolved birefringence measurements near the stagnation point (fig-

ure 3(a)) and the elongational flow leads to the formation of a ‘birefringent

strand’ of highly-aligned material along the centerline of the outflow region of

the device (Harlen et al., 1992).
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Strong deformation of the microstructure in such flows generate large tensile

stresses in a viscoelastic fluid that can ultimately lead to a steady symmetry-

breaking instability followed at higher De by the onset of time-dependent flow

(Arratia et al., 2006). This symmetry-breaking bifurcation has also recently

been simulated by (Poole et al., 2007); as shown in figure 3(b) the symmetric

Newtonian viscous flow observed at low flow rates (upper left image) undergoes

a transition at Deborah numbers De ∼ 1 to an increasingly asymmetric flow,

with highly localized viscoelastic stresses along the outflow centerline.

The ‘flow focusing’ characteristics of the planar extensional flow generated in

microfluidic cross-slot geometries has also recently been used to investigate the

necking and pinch-off of immiscible Newtonian and polymeric fluid filaments

(Steinhaus et al., 2007; Arratia et al., 2008). In this geometry (see figure 3(c))

three of the flow channels supply the two immiscible fluids (here the viscoelas-

tic core fluid is supplied from the lefthand input and a mineral oil is supplied

from the upper and lower arms), and there is only one outflow. The outer

(lower viscosity) fluid relieves the shear induced at the microchannel walls by

the usual no-slip boundary condition. Experiments with immiscible Newto-

nian fluids show breakup into a series of monodisperse drops with dimensions

controlled by the geometry, flow rate and viscosity ratio (Link et al., 2004).

However, when the inner fluid is viscoelastic the filament length and time to

pinch-off is controlled by the molecular weight of the polymeric chains and the

elastocapillary number of the solution (Steinhaus et al., 2007). By monitor-

ing the filament diameter h(t) and constructing a force balance based on the

viscous, elastic and capillary driving forces the steady extensional viscosity ηe

of the polymer solution can be estimated as a function of the extensional rate

ε̇ = (−2/h)(dh/dt) in the filament. For flow of a Newtonian outer fluid with
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shear viscosity ηA at a flow rate QA, the extensional viscosity of the inner

polymeric fluid is given by ηe = 3ηAQA/(ε̇w
2d) (Arratia et al., 2008).

4 Microfluidic contraction flows

Contraction flows have been used for many years to investigate the extensional

properties of complex liquids in macroscale flow geometries (Cogswell, 1972;

Williams and Williams, 1985; Binding, 1988; James et al., 1990) by relat-

ing the measured pressure drop across a contraction to the imposed flow rate.

Two main approaches can be identified: experiments using abrupt contractions

which are easier to design and build and those using hyperbolic contractions

which provide a better approximation to a uniform extension rate (Everage

and Ballman, 1978). Macroscopic studies are typically restricted to viscous

liquids η & 1 Pa s because the extension rates O(1000 s−1) needed to probe

the elongational behaviour of low viscosity solutions η ∼ 0.001 Pa s often re-

sult in large inertial stresses which dominate the viscous contribution to the

total pressure drop across the contraction plane. Thus microfluidic devices -

which are capable of imposing large deformation rates while remaining in low

inertia flow regimes - offer the potential to apply these techniques to low vis-

cosity polymer solutions. Excepting early work by James and Saringer (1980)

who used precision-machined hyperbolic axisymmetric contraction geometries

with dimensions of O(100µm), it should be noted that in contrast to macro-

scopic experiments, microfluidic studies of contraction flows have to date been

principally limited to planar geometries.

It must be noted that contraction flows are of mixed kinematic type and

typically contain both strong shear and elongational components. This is
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important as coupling between the extensional (‘irrotational’) and shearing

(‘rotational’) deformations may lead to a significantly different microstruc-

tural response compared to a pure irrotational extensional deformation. Thus

we emphasize that estimates of extensional material properties derived from

contraction flows are only apparent measures (Petrie, 2006). This limitation

notwithstanding, such flows can provide important insight into how complex

fluids behave in mixed flows with strong elongational components, which are

highly relevant to industrial applications such as inkjetting and of academic

interest in their own right.

Experiments with dilute and semi-dilute polymer solutions have shown that

measurements of the pressure drop across planar contraction geometries (see

figure 1(c)) increase linearly at low flow rates corresponding to De < 0.5

but that as the flow flow rates increase beyond De > 0.5 viscoelastic effects

lead to an enhanced pressure drop (Groisman et al., 2003; Rodd et al., 2005;

Kang et al., 2006; Pipe and McKinley, In preparation). From an appropriate

global force balance across the contraction (Cogswell, 1972; Binding, 1988) it

is possible to evaluate an apparent elongational viscosity which can be refer-

enced against the independently measured steady-shear viscosity to evaluate

the Trouton ratio of a complex fluid. The apparent extensional viscosity is

found by separating the pressure drop due to shear stresses from that due to

extensional stresses. Relating the pressure drop across the contraction (due to

the presence of the polymer chains undergoing extension) to the first normal

stress difference N1, combined with a suitable estimate of the extension rate

ε̇, gives the apparent extensional viscosity ηe = N1/ε̇ and hence the Trouton

ratio. For viscoelastic liquids, care must be taken to ensure that the desired

kinematics in the device are also achieved, because the coupling between the
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enhanced stress field arising from strain-hardening and the local kinematics

can also lead to rearrangement of the converging streamlines upstream of the

contraction for De ∼ 1. Representative measurements for solutions of flexible

polyethylene oxide (PEO) polymer chains and for a semi-rigid hydroxyethyl-

cellulose (HEC) solution are shown in Figure 4(a)[reproduced from (Kang

et al., 2006)]. Independent measurements of the apparent extensional viscos-

ity in a spinline rheometer show that as the total Hencky strain imposed on the

sample is increased, the Trouton ratios diverge from the expected (constant)

Newtonian value, with the flexible chain system showing strain-hardening due

to molecular elongation; by contrast the semi-rigid molecules shows a progres-

sive strain-softening as a result of increasing molecular flow alignment. These

deviations lead to substantial differences in the flow characteristics through a

microfabricated contraction geometry (with 36◦ convergence angle) and local

strain-hardening eventually leads to the generation of vortices as shown in the

lower portion of Figure 4(a). Similar observations have now been made with

a range of different fluids in a number of different converging channel designs

(Groisman et al., 2003; Rodd et al., 2005; Kang et al., 2006; Rodd et al., 2007;

Pipe and McKinley, In preparation).

The mean extensional Hencky strain imposed on a fluid element flowing along

the centerline of the contraction is ε = ln(w1/w2), where w1 is the upstream

width and w2 the width at the throat (see figure 1(c)), and can be calculated

independently of the form of the contraction. The applied rate of extension ε̇,

however, is governed by the flow rate and the shape of the converging section

and can be written in the form ε̇ ∼ Q (w1 − w2)/(w1w2 Ld), where for hyper-

bolic contractions L is the length of the contraction and for aprupt contractions

L is selected by the flow. Different shapes of contraction have been investi-
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gated including abrupt (Rodd et al., 2005, 2007), angled (Kang et al., 2006)

and hyperbolic geometries (Pipe and McKinley, In preparation). Numerical

calculations and experimental measurements of the local velocity fields in hy-

perbolic contractions can be used in combination to investigate how well flows

with constant extension rate along the centre line can be realized in such de-

vices. In Figure 4(b) we show a detailed comparison for steady flow of water

through hyperbolic contractions with Hencky strain ε = 1 and ε = 2 (Oliveira

et al., 2007). The colors indicate contours of constant axial velocity through

the contraction and spatial derivatives of this velocity field with respect to ax-

ial and lateral positions give the local extensional and shearing contributions

to the rate of material deformation. The effects of shear induced by the no slip

boundary condition are localized to the hyperbolic channel walls. With care,

very good quantitative agreement between numerical computation and exper-

imental measurement can be achieved and this enables computational design

explorations to be performed in advance for optimizing the performance of mi-

crofluidic rheometers for measuring elongational properties of liquids in well

defined extensional kinematic fields.

Measurements of the pressure drop across a symmetric contraction - expansion

geometry using a series of low viscosity polymer solutions (Pipe and McKin-

ley, In preparation) as a function of flow rate are shown in figure 4(c). For

the viscous Newtonian solvent (a glycerin/water mixture) the pressure drop

increases linearly with flow rate and the extensional viscosity (or Trouton ra-

tio) remains constant. However, as the concentration of polymer is increased,

the characteristic relaxation time λ of the solution increases and the enhanced

extra pressure drop across the contraction leads to substantial increases in

the apparent planar extensional viscosity ηe as a function of the extensional
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rate through the device. At low flow rates the sensitivity of the extensional

rheometer is limited by the background noise fluctuations in the pressure sen-

sors and precision in control of the imposed flow rate; because the extensional

viscosity involves a ratio of the measured pressure drop and the flow rate this

leads to rapid increase in the magnitude of the error bars at low flow rates.

At moderate Reynolds numbers there is an additional enhancement to the to-

tal pressure drop across the contraction - expansion even for Newtonian fluids

due to the presence of inertia Re > 10 (Rodd et al., 2005; Oliveira et al.,

2007). Experiments and finite element calculations have shown that this is ac-

companied by the formation of steady and three-dimensional vortex structures

downstream of the contraction (Rodd et al., 2005; Tsai et al., 2007; Oliveira

et al., 2007, 2008). It is thus essential to ensure that inertial corrections are

accounted for and that the elasticity number El = De/Re of proposed mi-

crofluidic rheometric devices remains suitably large to ensure that the elastic

effects one seeks to measure dominate over inertial non-idealities.

5 Perspectives

The arrival of microfluidic technology has not only increased the need for rhe-

ological information about the flow of non-Newtonian liquids in microscale

geometries and at high deformation rates, but has also provided a new plat-

form for the design and testing of new rheometric devices to explore fluid

rheology. While recognizing the restrictions that current (planar) microfluidic

manufacturing techniques impose on the types of flow configurations that can

be realized, we have shown that microfluidic systems also present a number

of new opportunities for the rheologist interested in measuring material prop-
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erties in shear, shear-free and mixed kinematics.

A wide range of novel methods for measuring the steady shear viscosity of

complex fluids using microfluidic capillary channels have been surveyed as well

as microfluidic stagnation and contraction flows for investigating the exten-

sional properties of complex liquids. These devices offer viable alternatives to

conventional rheological characterization techniques; allowing smaller sample

volumes to be used, higher deformation rates to be attained and disposable

devices to be made cheaply. These rheometric subystems can also (poten-

tially) be integrated into lab-on-a-chip systems, and - in combination with

microscopy or other optical techniques - they can probe the coupling between

the macroscopic stress and the microstructural deformation of complex liq-

uids. In particular, microfluidic devices show great potential to offer insights

into two long-standing problems in rheology: the high shear rate response of

complex liquids and the extensional behaviour of low viscosity viscoelastic

liquids. A number of important technological challenges remain outstanding,

including the challenge of fabricating reproducible and reliable microdevices in

moderate volumes and with high yields. If the devices are flow-rate controlled

(e.g. by an external syringe pump) then the principal challenge is constructing

and calibrating on-chip pressure sensors with good linearity and wide dynamic

range. If the system is pressure controlled then the limited dynamic range of

many optical-based techniques for measuring local fluid velocity constrains the

capabilities of the microfludic rheometer. The overall compliance of the device,

total volume of liquid required and the nucleation/growth of microscopic air

bubbles must also be considered.

For all of these reasons, calibration of the final system with a simple Newto-

nian fluid (with constant viscosity) which has been independently tested in
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macroscale experiments is highly recommended. The ‘open’ nature of the flow

geometry (i.e. the presence of inflow and outflow boundaries) is fundamentally

different from many conventional torsional rheometers. Computational anal-

ysis of the steady three-dimensional flow fields that are typically present in

microfluidic devices is also desirable. To date almost all such numerical stud-

ies have been performed with Newtonian constitutive models only, and similar

analyses for more complex rheological equations of state (incorporating for ex-

ample shear-thinning in the viscosity, fluid viscoelasticity and/or the presence

of a yield stress) presents a golden opportunity for computational rheologists.

Many of the complex fluids studied experimentally have exhibited the onset

of either steady flow transitions or three-dimensional time-dependent insta-

bilities; and the ability to rationally design modifications to devices (such as

optimizing aspect ratios, minimizing flow inhomogeneities and reducing stress

concentrations near sharp corners) would prove invaluable. On the macroscale,

the combination of bulk rheometry with local rheo-optical probes (e.g. birefrin-

gence, dichroism and scattering techniques over a wide range of wavelengths)

in the 1980s and beyond greatly expanded the impact and microstructural

insight that could be attained from rheometry. Microfluidic rheometry is nat-

urally predisposed to similar evolutionary developments because of the ready

availability of high resolution imaging platforms with many different modes

of optical illumination. It is to be anticipated that integrated microfluidic de-

vices combining full-field diagnostic techniques such as micro particle image

velocimetry and flow-induced birefringence with mechanical measurement of

stresses or pressures will be developed in the coming years.
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Figure captions

Figure 1: Overview of microfluidic devices for investigating rheometry on a

chip: (a) capillary slit devices for measuring shear viscosity; (b) stagnation

point flows in a ‘cross-slot’ for measuring extensional properties; and (c) two

different possible contraction flows (an abrupt contraction - expansion and a

planar hyperbolic contraction) also used for investigating extensional proper-

ties. Dimensions where given are explained in the text.

Figure 2: Measurements of shear viscosity in microfluidic capillary flows: (a)

Viscosity η as a function of shear rate γ̇ for a strongly shear-thinning 0.3%

aqueous xanthan gum solution measured using a microfluidic capillary vis-

cometer as well as conventional cone and plate and plate-plate rotational de-

vices (reproduced from Pipe et al., 2008). (b) Velocity profiles for flow of a

cetylpyridinium chloride/sodium salicylate wormlike micellar solution through

a rectilinear microfluidic channel at driving pressures© 200, � 300, 2 400, 3

500, and 4 600 mbar; (c) flow curve of shear stress σ against shear rate γ̇ cal-

culated from the velocity profiles (hollow symbols) and shown with cone and

plate geometry measurements (×) (reproduced from Masselon et al., 2008).

Figure 3: Stagnation point flows used to investigate extensional properties:

(a) False color images of optical retardance sin θ (left) and transmitted light

intensity images (right) for flow of a cetylpyridinium chloride/sodium salicy-

late wormlike micellar solution in a cross-slot geometry at flow rates Q =

0.1, 0.3, 0.45, 0.7 and 0.8µl/hour (from top to bottom). The stagnation point

is indicated ‘SP’ and the central birefringent band signifies a high degree of

microstructural alignment at large flow rates (reproduced from Pathak and

32



P
re

pr
in

t

Hudson, 2006). (b) Numerically calculated streamlines and contour plots of

the normalized first normal stress difference for a Newtonian fluid and for a

Maxwell fluid with De = 0.3, 0.32 and 0.4 (a–d respectively) in a cross-slot

geometry (reproduced from Poole et al., 2007). (c) Formation of a viscoelas-

tic filament of aqueous polyacrylamide solution dispersed in mineral oil in a

cross-slot geometry. The filament is shown with measurement locations (top)

along with the time evolution of the local filament radius (middle) and the

local extension rate in the filament (bottom) (reproduced from Arratia et al.,

2008).

Figure 4: Microfluidic contraction flows: (a) The apparent Trouton ratio Tr =

ηe/η0 for solutions of PEO and HEC measured in a spinline rheometer; the

changes in the extensional rheology with increasing strain lead to transitions

in the local extensional flow field in a microfluidic converging channel rheome-

ter (reproduced from Kang et al., 2006). (b) Streamwise velocity measured

experimentally (left) and calculated numerically (right) for Newtonian flow

through hyperbolic contraction geometries with strains ε = 2 (top) and ε = 1

(bottom) (reproduced from Oliveira et al., 2007). (c) Apparent Trouton ra-

tio Tr = ηext/η as a function of the apparent non-dimensional extension rate

De = γ̇λ for flows of dilute polyethylene oxide solutions through a symmet-

ric hyperbolic contraction expansion (reproduced from Pipe and McKinley, In

preparation).
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