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With a view to developing a formalism that will be applicable at second perturbative order, we devise a new
practical scheme for computing the gravitational self-force experienced by a point mass moving in a curved
background spacetime. Our method works in the frequency domain and employs the effective-source
approach, in which a distributional source for the retarded metric perturbation is replaced with an effective
source for a certain regularized self-field.Akey ingredient of the calculation is the analytic determination of an
appropriate puncture field from which the effective source and regularized residual field can be calculated. In
addition to its application in our effective-sourcemethod, we also show how this puncture field can be used to
derive tensor-harmonic mode-sum regularization parameters that improve the efficiency of the traditional
mode-sumprocedure. To demonstrate themethod,we calculate the first-order-in-the-mass-ratio self-force and
redshift invariant for a point mass on a circular orbit in Schwarzschild spacetime.
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I. INTRODUCTION

The detection of gravitational waves from inspiraling
compact binary systemswill begreatly assisted by theoretical
waveform templates. Using matched filtering techniques,
these templates will help to extract the incoming signal from
the detector noise and, once detection becomes routine, the
same templateswill allow the parameters of the source binary
systems to be established. Constructing an appropriate bank
of waveform templates necessitates understanding the two-
body problem in the general-relativistic context. Unlike its
Newtonian counterpart, this problem cannot be solved
analytically with closed-form solutions. Instead, a variety
ofmethods exist to approximate the solution, each best suited
to a particular set of system parameters.
To model binary systems of comparable mass and small

orbital separation it is necessary to turn to numerical
simulations to solve the full nonlinear Einstein field
equations. Numerical relativity has made great progress
in recent years and it is now routine to numerically evolve
binary systems of comparable-mass black holes or neutron
stars through tens of orbits up to, and through, merger [1,2].
Aside from numerical truncation error, these results are
exact. However, the computational cost of running simu-
lations to merger increases rapidly as the mass ratio of
the smaller to the more massive body is decreased. The
computational cost similarly increases as the initial orbital
separation increases. Consequently, in these domains other
approaches are required.
For systems with large orbital separation the post-

Newtonian (PN) expansion can be employed. This is a
perturbative approach to the problem that involves expanding

the field equations in powers of the orbital velocity as a
fraction of the speed of light. This approach has a long and
rich history and today the post-Newtonian expansion of the
dynamics of a binary is now known up to 3PN order, with
many 4PN terms now known; see Ref. [3] for a recent review.
When one of the bodies is substantially more massive

than the other the small mass ratio of the system can be
used as a perturbative parameter. In this approach the less
massive of the two bodies is usually modeled as a point
particle. Flux balance arguments allow the dissipative
dynamics to be modeled [4,5], but in order to include
conservative corrections it is necessary to evaluate the local
“self-force” acting on the particle. With a point-particle
source this then necessitates a regularization procedure to
remove the Coulomb-like divergence of the metric pertur-
bation that does not contribute to the orbital dynamics.
Over the years this regularization procedure has been
placed on very firm theoretical footing at first order in
the mass ratio [6–8] and recently has been understood at
second perturbative order [9–11].
At first perturbative order a large number of practical self-

force calculations have been made; see Ref. [12] for a recent
review. Practical calculation techniques are often prototyped
with scalar-field toy models before the gravitational case is
considered. In both cases motion in the spherically sym-
metric Schwarzschild spacetime is usually tackled first,
before turning attention tomotion in themore astrophysically
relevant Kerr spacetime of a rotating black hole.
In recent years, the calculation of gauge-invariant quan-

tities has proven to be particularly fruitful as it allows for
comparison of self-force resultswith those of post-Newtonian
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theory and numerical relativity. A number of these gauge-
invariant quantities are nowknown [13–16] and using them to
make cross-cultural comparisons has been illuminating; they
help to delineate the region in which perturbative approaches
arevalid, aswell as act as a cross-check on thewidely different
computational approaches taken by each scheme. One
particularly interesting result is that of Le Tiec et al. [17]
which showed that even for comparable-mass systems
perturbative methods can make meaningful statements about
the orbital dynamics. Calibrating effective-one-body theory is
another important use for gauge-invariant results [18–20].
When making self-force calculations, an important con-

sideration is the practical regularization technique to be
employed. All the techniques derive from the same funda-
mental regularization procedure, but different techniques suit
different calculational approaches. One of the most com-
monly employed techniques is the mode-sum prescription
[21]. This approach relies on the mode decomposition
rendering the individual modes of the retarded-field solution
finite at the particle’s location and has hadmuch successwith
1þ 1 time-domain and frequency-domain calculations. For
2þ 1 or 3þ 1 time-domain decompositions, where the
retarded field remains divergent at the particle, so-called
“effective source” techniques were developed [22,23]. This
approach involvesmoving the contribution from the singular
metric perturbation near the particle into the source. This
procedure renders the otherwise divergent source finite and
amenable to numerical treatment.
To date all self-force calculations have been at first order

in the mass ratio. The key motivation for the present work is
to develop a set of techniques that can extend the work
mentioned above to encompass second-order-in-the-mass-
ratio calculations, with the aim of computing conservative
gauge-invariant quantities [24]. This immediately suggests
the basic form our approach should take.
(1) Work in the Lorenz gauge. Currently the regulari-

zation procedure at second order in the mass ratio is
best understood in the Lorenz gauge [9,25].

(2) Work in the frequency domain. At present it is not
known how to stably evolve the monopole and dipole
contributions to the Lorenz-gauge linearized Einstein
equation [26]. These instabilities are observed in
1þ 1-, 2þ 1-, and 3þ 1-dimensional time-domain
decompositions on a Schwarzschild background, and
similar instabilities have been seen in Kerr spacetime
[27]. Even if the multipole l ≥ 2 modes are evolved
separately in the time domain, the l ¼ 0; 1 modes
must be solved in the frequency domain.

(3) Regularize with an effective source. Unlike at first
order in the mass ratio, the individual multipole
modes of the second-order retarded field diverge at
the particle’s location. This precludes the use of the
mode-sum method for regularization as it requires
the multipole modes of the retarded metric pertur-
bation to be finite at the particle’s location.

The details of points 2 and 3 were fleshed out in Ref. [28]
using a toy scalar-field example. In this work we address
point 1 and extend our previous scalar-field results to cover
Lorenz-gauge gravitational perturbations generated by a
point mass on a circular orbit in a Schwarzschild back-
ground spacetime. We leave for future work the issues of
extending our approach to eccentric orbits (possibly mak-
ing use of methods developed for the conventional mode-
sum scheme [29]) and to a Kerr background spacetime
(which would likely require more extensive modification
due to the common practice of using radiation gauge and
spin-weighted spheroidal harmonics in order to achieve
separability of the field equations [30,31]).
In addition to laying out a formalism that will be

applicable at second order in the mass ratio, a natural
by-product of this work is the extension of the standard
mode-sum scheme to allow for the direct regularization of
the retarded tensor modes of the metric perturbation. In the
standard mode-sum procedure the retarded tensor modes of
the metric perturbation must be projected onto a basis of
scalar spherical harmonics before regularization can be
performed. This step is cumbersome and, due to the
coupling between scalar and tensor modes, requires the
computation of additional tensor modes. Our new pre-
scription neatly avoids these issues altogether.
The layout of this article is as follows. In Sec. II we outline

the Lorenz-gauge field equations and their retarded solution
for circular orbits in a background Schwarzschild geometry.
In Sec. III we discuss the standard mode-sum and effective-
source regularization procedures. In Sec. IV we detail the
construction of an effective source for a Lorenz-gaugemetric
perturbation sourced by a particle on a circular orbit. In
Sec. V we outline our numerical procedure and give our
results. Finally, in Sec. VI we extend the mode-sum pre-
scription to work directly with tensor-harmonic modes.
There is additional supporting material in Appendices A–D.
This paper follows the conventions of Misner, Thorne,

and Wheeler [32]; a “mostly positive” metric signature,
ð−;þ;þ;þÞ, is used for the spacetimemetric, the connection
coefficients are defined by Γλ

μν¼1
2
gλσðgσμ;νþgσν;μ−gμν;σÞ, the

Riemann tensor is Rτ
λμν ¼ Γτ

λν;μ − Γτ
λμ;ν þ Γτ

σμΓσ
λν − Γτ

σνΓσ
λμ,

the Ricci tensor and scalar are Rμν ¼ Rτ
μτν and R ¼ Rμ

μ,
and the Einstein equations are Gμν¼Rμν−1

2
gμνR¼8πTμν.

Standard geometrized units are used, with c ¼ G ¼ 1. Greek
indices are used for four-dimensional spacetime components
and capital latin letters are used for indices on the two-sphere.
Weworkwith standard Schwarzschild coordinates ðt; r; θ;φÞ
and also work with a second coordinate system, ðt; r; α; βÞ,
which is related by a rotation. We denote a point on the
worldline of the point mass by a “0” subscript (e.g., x0) and
indices on tensors evaluated on the worldline are indicated
by an overbar (e.g., gμ̄ ν̄). We also find it useful to define
f ≡ 1 − 2M=r, where M is the mass of the background
Schwarzschild black hole.
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II. LORENZ-GAUGE FIELD EQUATIONS
AND THEIR RETARDED SOLUTION

FOR A CIRCULAR ORBIT

In this section we overview the Lorenz-gauge field
equations for linear-in-the-mass-ratio perturbations of
Schwarzschild spacetime, along with their decomposition
into tensor-harmonic and frequency modes. The basis of
tensor-harmonic modes we use is that of Barack and Sago
[33,34], which are themselves a modification of the basis
given by Barack and Lousto [35]. Barack and Sago also
further decomposed the monopole and dipole field equa-
tions into the frequency-domain to side-step instabilities
that occur when evolving those modes in the time domain
(see Ref. [26] for a discussion of this issue). Later, the
frequency decomposition was given for all modes with
calculations for generic bound orbits by Akcay et al.
[36,37] and Osburn et al. [38].

A. Field equations

Let us denote by g the full spacetime metric, which we
shall consider to be the sum of the metric perturbation, h,

and the background Schwarzschild metric, g
∘
, such that

g ¼ g
∘ þ h. Hereafter an over-ring will denote a quantity

defined with respect to the background (vacuum) space-
time. In a given coordinate system, the Einstein field
equations will then take the form

Gμν½g∘μν þ hμν� ¼ 8πTμν ð2:1Þ
where G is the Einstein tensor, a functional of the full
spacetime metric g, and T is the stress-energy tensor.
Let us define the trace of the metric perturbation by

TrðhÞ ¼ g
∘μνhμν. We shall find that the field equations for

the metric perturbation take a simpler form when expressed
in terms of the trace-reversed metric perturbation, h̄μν,
defined by

h̄μν ≡ hμν −
1

2
g
∘
μνTrðhÞ; ð2:2Þ

so named because Trðh̄Þ ¼ −TrðhÞ.
As discussed in the Introduction, when we approach a

second-order-in-the-mass-ratio calculation we will want
to work in the Lorenz gauge. Consequently, to develop
the necessary techniques we will work in the Lorenz
gauge with the first-order-in-the-mass-ratio calculation
we present in this work. The Lorenz-gauge condition is
defined by

∇∘ μh̄μν ¼ 0; ð2:3Þ

where the covariant derivative is taken with respect to the
background metric. By expanding the Einstein tensor in
powers of the mass ratio and only retaining terms linear in μ

we arrive at the (Lorenz-gauge) linearized Einstein equa-
tion given by

□

∘
h̄μν þ 2R

∘ ρ
μ

σ

νh̄ρσ ¼ −16πTμν ð2:4Þ

where □

∘
¼ ∇∘ μ∇

∘ μ
and R

∘
is the Riemann tensor of the

background spacetime. In this work we shall take the metric
perturbation to be sourced by a point particle of mass μ. The
corresponding energy-momentum tensor is given by

Tμν ¼ μ

Z
∞

−∞
½− detðg∘Þ�−1=2δ4ðxμ − xμ0Þuμuνdτ; ð2:5Þ

where detðg∘Þ ¼ r4sin2θ is the determinant of the back-
ground metric tensor, uμ is the particle’s four-velocity and τ
is the proper time measured along the particle’s worldline.
We also use xμ to denote a general spacetime coordinate
and hereafter adopt the notation that a subscript “0” denotes
a quantity’s value evaluated at the particle. Note that for a
circular orbit in the equatorial plane of a Schwarzschild
black hole we have ur ¼ uθ ¼ 0 and ut ¼ −E0, uφ ¼ L0,
where

E0 ¼ f0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0

r0 − 3M

r
; L0 ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

r0 − 3M

s
ð2:6Þ

are the (specific) orbital energy and angular momentum,
respectively. Finally, we mention that the gauge equa-
tion (2.3) and field equation (2.4) are consistent so long as
the particle is moving along a geodesic of the background
spacetime (as then ∇μTμν ¼ 0).
The field equation in the form of Eq. (2.4) is not well

suited to a numerical treatment as the metric perturbation
diverges in the vicinity of the worldline. Instead, an
effective-source approach can be employed to regularize
the field equation and allow for a certain regular field to be
solved for directly. Alternatively, with a 1þ 1-dimensional
or frequency-domain decomposition the individual multi-
pole modes of the metric perturbation become finite at
the particle’s location and the mode-sum scheme can be
employed to regularize on a mode-by-mode basis; see
Sec. III below for an overview of these two regularization
procedures. As discussed in the Introduction, at second
order it will become necessary to employ an effective-
source scheme even within a multipole decomposition.
For that reason, despite not being required for a first-
order-in-the-mass-ratio calculation, we will pursue an
effective-source approach within a multipole and Fourier
decomposition of the field equations. We give the details of
this decomposition now.
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B. Decomposition into tensor-harmonic
and frequency modes

In this section we overview the multipole and Fourier
decomposition of the metric perturbation and source. The
explicit details of this decomposition have been laid out
elsewhere [36,39] and are summarized in Appendix A; here
we shall just present the key results required for this work.
There are many different conventions and notations used

to define a tensor-harmonic basis. In this work we use the
definition chosen by Barack and Lousto [39] with the slight
modification introduced by Barack and Sago [33]. The key
property of the Barack-Lousto-Sago tensor harmonics is
that they form a ten-dimensional basis for any second-rank,
symmetric four-dimensional tensor field in Schwarzschild
spacetime. This allows us to write the ten independent
components of the (trace-reversed) metric perturbation in
terms of the spherical-harmonic modes of ten fields,

h̄ðiÞlmðt; rÞ for i ¼ 1;…; 10 via

h̄ðiÞlmðt; rÞ ¼
r

μaðiÞl

Z
2π

0

Z
π

0

h̄τκητμηκνY
ðiÞlm�
μν dΩ ð2:7Þ

where dΩ ¼ sin θdθdφ and the details of the tensor basis

(including definitions for YðiÞlm
μν , ημν, and aðiÞl ) are given in

Appendix A. We further decompose into Fourier-frequency
modes,

h̄ðiÞlmðt; rÞ≡ 1

2π

Z
∞

−∞
h̄ðiÞlmðω; rÞe−iωtdt: ð2:8Þ

For periodic motion the integral over frequencies reduces
to a sum over discrete harmonics (hereafter modes). In
particular, for a circular geodesic orbit the mode frequency
is a simple overtone of the fundamental azimuthal fre-
quency

ωm ¼ mΩφ; ð2:9Þ

where Ωφ ≡ dφ0=dt ¼
ffiffiffiffiffiffiffiffiffiffiffi
M=r30

q
and m is the azimuthal

mode index. In the remainder of this article, we can

therefore denote the modes by h̄ðiÞlmðrÞ without any ambi-
guity. The stress-energy tensor can be similarly decom-

posed into modes TðiÞ
lmðrÞ [35].

Substituting the mode expansions of h̄μν and Tμν into the
linearized Einstein equation (2.4), the angular and time
dependence decouples. The spherical symmetry of the
background geometry ensures that the individual multipole
modes are eigenfunctions of the wave operator (2.4) and
consequently each multipole mode can be solved for
independently from the others, though in general the ten
tensorial components of each mode remain coupled. The
resulting set of ordinary differential equations for each
multipole mode are given by

□sc
lmh̄

ðiÞ
lm − 4f−2MðiÞðjÞh̄

ðjÞ
lm ¼ J ðiÞ

lmδðr − r0Þ; ð2:10Þ

where J ðiÞ
lm comes from the decomposition of the source

and □
sc
lm is the scalar wave operator,

□
sc
lm ¼ d

dr2
þ f0

f
d
dr

− f−2½VlðrÞ − ω2
m�: ð2:11Þ

Here, a prime denotes differentiation with respect to r and
the potential term is given by

VlðrÞ ¼ fðrÞ
�
2M
r3

þ lðlþ 1Þ
r2

�
: ð2:12Þ

The MðiÞðjÞ that appear in Eq. (2.10) are first-order
differential operators that couple the ten components of
the metric perturbation; we give their explicit form in
Appendix B. In deriving the MðiÞðjÞ we use in this work,
we have used the frequency-domain decomposition of the
Lorenz-gauge condition (2.3) to simplify the resulting
equations. This decomposition of the Lorenz-gauge con-
dition is given by

iωmh̄ð1Þ ¼ − f

�
iωmh̄ð3Þ þ h̄ð2Þ;r þ h̄ð2Þ − h̄ð4Þ

r

�
; ð2:13Þ

iωmh̄ð2Þ¼−fh̄ð1Þ;r þf2h̄ð3Þ;r −
f
r
ðh̄ð1Þ−h̄ð5Þ−fh̄ð3Þ−2fh̄ð6ÞÞ;

ð2:14Þ

iωmh̄ð4Þ ¼ −
f
r
ðrh̄ð5Þ;r þ 2h̄ð5Þ þ Lh̄ð6Þ − h̄ð7ÞÞ; ð2:15Þ

iωmh̄ð8Þ ¼ −
f
r
ðrh̄ð9Þ;r þ 2h̄ð9Þ − h̄ð10ÞÞ; ð2:16Þ

where L ¼ lðlþ 1Þ.
The ten field equations (2.10) are not all coupled

together; instead, they separate out into independent
even- (i ¼ 1;…; 7) and odd-parity (i ¼ 8; 9; 10) sectors.
Examining the sources (given in Appendix B) we see that

J ði¼1;…;7Þ ∝ ½Ylmðπ=2;ΩφtÞ�� ¼ 0 for lþm ¼ odd;

J ði¼8;9;10Þ ∝ ½Ylm
;θ ðπ=2;ΩφtÞ�� ¼ 0 for lþm ¼ even:

Consequently we have h̄ði¼1;…;7Þ ¼ 0 for lþm ¼ odd and
h̄ði¼8;9;10Þ ¼ 0 for lþm ¼ even.
The gauge equations can be used to reduce the number

of fields that need to be solved for simultaneously. For
example, for radiative modes (ωm ≠ 0) in the odd sector
one can solve for the h̄ð9Þ and h̄ð10Þ fields from which the
h̄ð8Þ field can be constructed algebraically from the gauge
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equation (2.16). Similarly, for radiative modes in the even
sector the number of field equations to be solved simulta-
neously can be reduced by using Eqs. (2.13)–(2.15). In this
work we opt to only use Eqs. (2.14) and (2.15) to reduce the
number of fields to be solved from seven to five. The
remaining gauge equation (2.13) can then be used as a
consistency check on the final result.
The static modes (ωm ¼ 0) require a different treatment.

In the odd sector both h̄ð9Þ and h̄ð10Þ are zero as their sources
vanish. The resulting equation for h̄ð8Þ can be solved for
analytically; see Ref. [35] for details. In the even sector, the
gauge equations (2.14) and (2.15) can be used to eliminate
the h̄ð6Þ and h̄ð7Þ fields which appear in Eqs. (B1), (B3),
and (B5). The resulting set of three ordinary differential
equations were first solved numerically [36], but more
recently analytic solutions have been derived [38]. In this
work we opt for the numerical approach.
For the nonradiative low-multipole modes (l ¼ 0; 1;

m ¼ 0) analytic solutions are known [40]. The l¼m¼1
mode is solved for numerically much as the other radiative
even sector modes are, except for this mode h̄ð7Þ ¼ 0
identically. We outline this hierarchical structure for solv-
ing the field equations in Table I.

C. Retarded-field solution

In this section we outline the calculation of the retarded-
field solution to Eq. (2.10) using the standard variation of
parameters method. In this approach the inhomogeneous
solution is constructed by multiplying the homogeneous
solutions by suitable weighting coefficients. In each sector
(odd/even, static/radiative) we must solve for k coupled
equations and correspondingly the space of homogeneous
solutions will be 2k dimensional. Using j ¼ 1;…; k as an
index for the basis of homogeneous solutions, let us define
the “inner” and “outer” homogeneous solutions to the field

equation by ~hðiÞ−j and ~hðiÞþj , respectively. The inner sol-
utions are regular at the horizon but diverge as r → ∞.
Conversely, the outer solutions are regular at spatial infinity
and diverge at the horizon. For the radiative modes the
retarded solutions are selected by ensuring radiation at the
horizon is purely ingoing and radiation at spatial infinity is

purely outgoing. This in turn implies that the asymptotic
behavior of the inner and outer solutions go as

~hðiÞ�ðr� → �∞Þ ∼ e�iωr� ; ð2:17Þ
where r� is the tortoise radial coordinate defined by
dr�=dr ¼ fðrÞ−1. A more in-depth discussion of the
asymptotic behavior of the radial fields is given in
Refs. [36,37].
With the above definitions, the standard variation of

parameters approach can be used to construct the inho-
mogeneous solutions to Eq. (2.10) via

h̄ðiÞðrÞ ¼
Xk
j¼1

ðC−
j ðrÞ ~hðiÞ−j ðrÞ þ Cþ

j ðrÞ ~hðiÞþj ðrÞÞ: ð2:18Þ

To compute the weighting coefficients C�
j we define a

2k × 2k matrix of homogeneous solutions by

ΦðrÞ ¼
 

− ~hðiÞ−j
~hðiÞþj

−∂r
~hðiÞ−j ∂r

~hðiÞþj

!
: ð2:19Þ

The weighting coefficients C�
j ðrÞ are then computed with

the standard variation of parameters prescription:

�C−
j ðrÞ

Cþ
j ðrÞ

�
¼
Z

b

a
Φ−1ðr0Þ

�
0

J ðjÞðr0Þδðr0− r0Þ

�
dr0; ð2:20Þ

where the limits on the integral depend upon which
weighting coefficient is being solved for. For the C−

j ’s
a ¼ r; b ¼ ∞, and for the Cþ

j ’s a ¼ 2M; b ¼ r. The source
vector is given by k zeros followed by the k sources from
the right-hand side of the field equation (2.10).
The delta function in the source means the integration

can be done analytically and the inhomogeneous solutions
can be written explicitly as

h̄ðiÞðrÞ ¼
(P

k
j¼1 C

þ
j0
~hðiÞþj ðrÞ r ≥ r0;P

k
j¼1 C

−
j0
~hðiÞ−j ðrÞ r ≤ r0;

ð2:21Þ

where

�C−
j0

Cþ
j0

�
¼ Φ−1ðr0Þ

�
0

J ðjÞðr0Þ

�
: ð2:22Þ

Note that the C�
j0 are r-independent constants.

III. REGULARIZATION

Building on the work of Mino, Sasaki, and Tanaka [6]
and Quinn and Wald [7], Detweiler and Whiting showed
that the gravitational self-force can be computed as the
derivative of a suitable regular metric perturbation, h̄Rμν, via

TABLE I. Hierarchical structure for solving the field equations.
A “→” implies the field(s) to the right should be algebraically
constructed from the fields to the left using Eqs. (2.13)–(2.16).
An “(A)” implies analytic solutions are known, and we employ
them in this work except in the case of the even static modes.

l m lþm ¼ even lþm ¼ odd

0 0 ðiÞ ¼ 1, 3 → 6 (A) � � �
1 0 � � � ðiÞ ¼ 8 (A)
1 1 ðiÞ ¼ 1; 3; 5; 6 → 2; 4 � � �
≥2 0 ðiÞ ¼ 1; 3; 5 → 6; 7 (A*) ðiÞ ¼ 8 (A)
≥2 m ≠ 0 ðiÞ ¼ 1; 3; 5; 6; 7 → 2; 4 ðiÞ ¼ 9, 10 → 8
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Fμ
selfðx0Þ ¼ μkμνγδ∇δh̄Rνγðx0Þ; ð3:1Þ

where

kμνγδ ¼ 1

2
gμδuνuγ − gμνuγuδ −

1

2
uμuνuγuδ

þ 1

4
uμgνγuδ þ 1

4
gμδgνγ ð3:2Þ

includes a projection operator that ensures the self-force is
orthogonal to the particle’s four-velocity.
The regular metric perturbation is constructed by sub-

tracting an appropriate singular perturbation, h̄Sμν, from the
usual retarded metric perturbation h̄retμν , i.e.,

h̄Rμνðx0Þ ¼ lim
x→x0

½h̄retμνðxÞ − h̄SμνðxÞ�: ð3:3Þ

The construction of an appropriate singular field was
discussed at length in Refs. [8,41]. One of the key features
of the three metric perturbations h̄ret=S=Rμν is that they obey
the field equations

□

∘
h̄ret=Sμν þ 2R

∘ ρ
μ

σ

νh̄
ret=S
ρσ ¼ −16πTμν; ð3:4Þ

□

∘
h̄Rμν þ 2R

∘ ρ
μ

σ

νh̄
R
ρσ ¼ 0; ð3:5Þ

from which we see that the retarded and singular pertur-
bations diverge in the same way at the particle’s location,1

while their difference—the regular perturbation—is smooth
there. Using Eqs. (3.1) and (3.3), we can write the self-force
as

Fμ
selfðx0Þ ¼ μ lim

x→x0
½kμνγδ∇∘ δðh̄retνγ ðxÞ − h̄SνγðxÞÞ�

¼ lim
x→x0

½Fμ
retðxÞ − Fμ

SðxÞ�; ð3:6Þ

where

Fμ
ret=SðxÞ≡ μkμνγδ∇∘ δh̄

ret=S
νγ ðxÞ: ð3:7Þ

The divergence of h̄ret=Sμν at the particle makes it challenging
to work with Eq. (3.6) directly. Consequently, a number of
reformulations have been devised to allow the gravitational
self-force to be computed. Two of these schemes—the
mode-sum method and the effective-source approach—we
discuss now.

A. Mode-sum method

The key observation behind the mode-sum method is
that although the full retarded and singular metric pertur-
bations are divergent at the particle, their individual multi-
pole modes remain finite everywhere. The subtraction
between the retarded and singular contributions in
Eq. (3.6) can then be made on a mode-by-mode basis.
Explicitly, we can write

Fμ
selfðx0Þ ¼ lim

x→x0

X∞
l̂¼0

½Fμl̂
retðxÞ − Fμl̂

S ðxÞ�; ð3:8Þ

where a superscript l̂ denotes a quantity’s decomposition
into scalar spherical-harmonic modes and summed overm,
i.e.,

Fμl̂
ret=S ¼

Xl̂
m¼−l̂

Y l̂mðπ=2;φ0Þ
Z

2π

0

Z
π

0

Fμ
ret=SY

�
l̂m
ðθ;φÞdΩ:

ð3:9Þ

We discuss below how we interface the tensor-mode
computation of the retarded field outlined in Sec. II C
and the standard mode-sum scheme we are outlining now.
The individual multipole modes of the retarded and

singular contributions to the self-force Fðret=SÞl̂ are C−1.
That is, they are finite at the particle but, in general, their
sided limits r → r�0 yield two different values, which we

denote by Fμl̂�
ret=S, respectively. For circular orbits there is no

closed-form analytic solution for Fμ
ret, and typically it is

computed numerically. The singular field, on the other
hand, is amenable to an analytic treatment. The local
structure of the singular field was first analyzed by
Mino et al. [6] and Barack and Ori used these results to
develop the mode-sum scheme shortly thereafter [21].
The scalar-harmonic mode-sum regularization formulas

for the redshift invariant hRuu ≡ hRμνuμuν [13] and for the
self-force are given by

hRuu ¼
X∞
l̂¼0

ðhðretÞl̂μν uμuν −H½0�Þ −DH; ð3:10Þ

Fμ
self ¼

X∞
l̂¼0

ðFμl̂�
ret − Fμ�

½−1�ð2l̂þ 1Þ − Fμ
½0�Þ −Dμ: ð3:11Þ

The l̂-independent H½0�; Fμ�
½−1�; F

μ
½0�; DH;Dμ are known as

regularization parameters and their value is known for
generic geodesic orbits in Schwarzschild [42] and Kerr
spacetimes [43]. In general the coefficients of odd negative
powers of l̂ in the mode-sum formula are zero [44] and in
the Lorenz gauge Dμ ¼ DH ¼ 0. For circular orbits the
other nonzero regularization parameters are given by

1Note that the retarded and singular perturbations are a
solution of the same equation, but with different boundary
conditions. As a result, it is only their local, singular behavior
that agrees.
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H½0� ¼ 4μ

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ L2

0

p K; ð3:12Þ

Fr�
½−1� ¼∓ μ2

2r20

�
1 −

3M
r0

�
1=2

; ð3:13Þ

Fr
½0� ¼

μ2r0E2
0

πðL2
0 þ r20Þ3=2

½E − 2K�; ð3:14Þ

where K≡ R π=20 ð1 − M
r0−2M

sin2xÞ−1=2dx and E ≡ R π=20 ð1 −
M

r0−2M
sin2xÞ1=2dx are complete elliptic integrals of the first

and second kind, respectively.
The series in l̂ in both Eqs. (3.10) and (3.11) is truncated

at l̂−1. This is sufficient to regularize huu and Fr, but the
resulting sum over l̂ converges rather slowly, with each
term going as l̂−2. It is possible to derive higher-order
regularization parameters [44]; Ref. [45] provides the next
two nonzero parameters that serve to increase the rate of
convergence of the mode sum to l̂6. It is common practice
in mode-sum calculations to numerically fit for the yet
higher-order unknown parameters to further increase the
rate of convergence of the mode sum.
Last, as we mentioned above, we compute the retarded

metric perturbation within a tensor-harmonic decomposi-
tion, whereas the standard mode-sum approach requires
the retarded metric perturbation decomposed into scalar-
harmonic modes as input. Thus before regularizing we
must project the tensor-harmonic modes of the metric
perturbation onto a basis of scalar harmonics. The projec-
tion equation takes the form

Fμl̂�
ret ¼ μ2

r20

Xl̂
m¼−l̂

X3
p¼−3

Yl̂mðπ=2;φpÞF μ;l̂þp;m
ðpÞ� ; ð3:15Þ

where the details of the F μ;l̂þp;m
ðpÞ� (but not the self-force

obtained after summing over l) depends on the way in
which the definition for the force (a quantity which is
defined on the worldline) is extended off the worldline to
the whole two-sphere. Barack and Sago [33] made the
computationally convenient choice for kabcd where ua has a
constant value on the two-sphere, and the metric has its

usual tensorial value. Their expressions for theF μ;l̂þp;m
ðpÞ� are

rather cumbersome so we do not give them here; instead,
their explicit form can be found in Appendix C of Ref. [33].
Likewise, a similar formula can be derived for huu [46].
The sum over p in Eq. (3.15) means that in order to

compute the self-force by regularizing l̂max scalar-harmonic
modes one must compute ðlmax þ 3Þ tensor-harmonic
modes. Similarly for huu one must compute ðlmax þ 2Þ
tensor modes. In Sec. VI below we will recast the standard
mode-sum formula to use tensor modes rather than scalar
modes, which will avoid this projection step altogether.

B. Effective-source approach

The effective-source approach is an alternative practical
regularization scheme for handling the divergence of the
retarded field. Rather than first computing the retarded field
and then subtracting the singular piece as a post-processing
step, as in the mode-sum scheme, one can instead work
directly with an equation for the regular field. This idea was
first proposed in Refs. [22,23] and has the distinct advan-
tage of involving only regular quantities, making it appli-
cable in a wider variety of scenarios than the mode-sum
scheme.
Using Eq. (3.3) to rewrite h̄retμν in terms of h̄Rμν and h̄Sμν, we

can rewrite Eq. (2.4) as

□

∘
h̄Rμνþ2R

∘ ρ
μ

σ

νh̄
R
ρσ ¼−16πTμν−□

∘
h̄Sμν−2R

∘ ρ
μ

σ

νh̄
S
ρσ: ð3:16Þ

If h̄Sμν is precisely the Detweiler-Whiting singular metric
perturbation, then the two terms on the right-hand side of
this equation cancel and h̄Rμν becomes a homogeneous
solution of the wave equation. However, one typically
does not have access to an exact expression for h̄Sμν as the
Detweiler-Whiting singular metric perturbation is defined
through a Hadamard parametrix [47,48] which is not even
globally defined. Instead, the best one can typically do is a
local expansion which is valid only in the vicinity of the
worldline. Let us denote such an approximation to h̄Sμν by
h̄Pμν. With the latter we will construct an effective source that
will allow us to directly compute the regular field at the
worldline.
The puncture field h̄Pμν is only valid near the worldline

and so, to avoid ambiguities in the definition of the effective
source, one must ensure that the puncture field goes to zero
far from the particle. This is can be achieved by multiplying
h̄Pμν by a window function, W, with properties such that
multiplying it by h̄Pμν only modifies terms of higher order in
the local expansion about the worldline than those which
are explicitly given in h̄Pμν. In our particular case, it suffices
to choose W such that Wðx0Þ ¼ 1, W 0ðx0Þ ¼ 0,
W 00ðx0Þ ¼ 0, and W ¼ 0 far away from the worldline.
The residual metric perturbation h̄resμν then obeys

□

∘
h̄resμν þ 2R

∘ ρ
μ

σ

νh̄
res
ρσ ¼ Seff ; ð3:17Þ

where the effective source is given by

Seff ≡ −16πTμν −□

∘
ðWh̄PμνÞ − 2R

∘ ρ
μ

σ

νðWh̄PρσÞ: ð3:18Þ

This effective source is smooth and finite everywhere,
except on the worldline where it has limited differenti-
ability. The corresponding residual field has the properties
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h̄resμν ðx0Þ ¼ h̄Rμνðx0Þ; ∇δh̄resμν ðx0Þ ¼ ∇δh̄Rμνðx0Þ;
h̄resμν ðxÞ ¼ h̄retμνðxÞ for x ∉ suppðWÞ: ð3:19Þ

As the residual metric perturbation coincides with the
retarded metric perturbation far from the particle, we can
use the usual retarded metric perturbation boundary con-
ditions when solving Eq. (3.17).

IV. EFFECTIVE SOURCE IN THE
FREQUENCY DOMAIN

A. Construction of the puncture fields

1. Coordinate expansion of the singular field

At the core of our calculation is an effective source for
the field equations which is constructed from an approxi-
mation to the Detweiler-Whiting singular field. A suitable
covariant expansion of the singular field is given by

h̄ðSÞab ¼ 4μgaāgbb̄
�
1

ϵ

uāub̄
s̄

þOðϵÞ
�
; ð4:1Þ

where ϵ is an order-counting parameter, s̄≡ ðgā b̄ þ
uāub̄Þσāσb̄, uā is the four-velocity, and gā b̄ is the back-
ground metric, with both defined as tensors on the world-
line (i.e., at the spacetime point x0). We have also
introduced the bivector of parallel transport gaāðx; x0Þ
and the Synge world function σðx; x0Þ, both of which
are functions of the worldline point x0 and the point where
the singular field is to be evaluated, x.
This approximation is sufficient to produce a residual

field which is finite on the worldline and which gives the
correct, regularized self-force. Several higher-order terms
in this expansion are also known [45] and can be incorpo-
rated into the calculation in order to accelerate conver-
gence. However, for clarity we illustrate the approach with
this simple low-order approximation and note that the
methodology does not fundamentally change at higher
orders.
We now wish to use the approximation (4.1) as a starting

point to compute the puncture fields h̄ðiÞPlm . To this end, we
follow previous regularization strategies [44,45,49–52] by
introducing a Riemann normal coordinate system in the
vicinity of the worldline, and rewrite Eq. (4.1) as a
coordinate expansion in terms of these coordinates.
Specifically, we assume that the spacetime can be repre-
sented in terms of a spherical coordinate system with polar
and azimuthal coordinates α and β, radius r, and time t.
Note that, although our focus here is on the Schwarzschild
spacetime, the assumption of a spherical coordinate system
does not necessarily limit us to spherical symmetry; for
example, the method works equally well in the nonspheri-
cally symmetric Kerr spacetime [52].
Now, orienting our coordinate system such that the

worldline is instantaneously at α ¼ 0, we define the

Riemann normal coordinates w1 ¼ 2 sin α
2
cos β and

w2 ¼ 2 sin α
2
sin β. Using coordinate expansions of

gaāðx; x0Þ and σðx; x0Þ about x ¼ x0 to linear order in
x − x0, we obtain an approximation to Eq. (4.1) in terms of
the ðt; r; w1; w2Þ Riemann normal coordinate system.
Structurally, our coordinate expansion has the form

h̄ðSÞab ¼ 1

ϵ

cð1Þab

ρ
þ ϵ0

�
cð2ÞabΔr

ρ
þ cð3ÞabΔr3

ρ3

�
þOðϵÞ; ð4:2Þ

where ρ is the leading-order term in the coordinate

expansion of s̄ and the coefficients cð1Þab , cð2Þab , and cð3Þab
do not depend on Δr or α (and hence w1 and w2).

2 The
coefficients are also independent of t since we have chosen
Δt ¼ 0, i.e., x and x0 are points on the same time slice.
There is still a potential time dependence, however, through
the dependence of the coefficients on the worldline and
four-velocity.
In the next subsection, we will seek a decomposition

into spherical-harmonic modes. We therefore apply the
(approximate) Jacobian from ðw1; w2Þ coordinates to ðα; βÞ
coordinates. In doing so, we pull out a factor of sinα from
the Jacobian when computing htβ, hrβ, and hαβ, and a factor
of sin2 α when computing hββ. The reason for doing so will
become clear during the mode decomposition, and is
related to the fact that the Riemann normal coordinate
system is regular on the worldline, but the ðα; βÞ coordinate
system is not.
Evaluating Eq. (4.1) for our particular case of a circular

orbit in Schwarzschild spacetime, we arrive at our desired
coordinate expansion of the Detweiler-Whiting singular
metric perturbation. With Riemann normal components
given by

h̄tw1
¼ −

1

ρ

�
4r20Ωφðr0 − 2MÞ

r0 − 3M
þ 2Δrr0Ωφ

r0 − 3M

×
r20 − 3Mr0 þ 2M2 − 2M2sin2β
ðr0 − 2MÞð1 − M

r0−2M
sin2βÞ

�
; ð4:3aÞ

h̄rw1
¼ 4Mr0 sin α cos β

ρðr0 − 3MÞ ; ð4:3bÞ

h̄w1w1
¼ cos2β

ρ

�
4Mr20

r0 − 3M
þ 2ΔrMr0

r0 − 3M

×
3r0 − 7M − 2Msin2β

ðr0 − 2MÞð1 − M
r0−2M

sin2βÞ
�
; ð4:3cÞ

2This form is valid for the case of circular orbits in Schwarzs-
child spacetime, where any quadratic dependence on w1 and w2

can be replaced with a term involving ρ2 andΔr2. The structure is
slightly more complicated in more general cases where odd
powers of w1 and w2 can appear, but nonetheless the following
analysis remains qualitatively unchanged.
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our approximation to the Detweiler-Whiting singular met-
ric is then given by

h̄tt ¼
1

ρ

�
4ðr0−2MÞ2
r0ðr0−3MÞ−

2Δr
r20ðr0−3MÞ

×
r20−7Mr0þ10M2−2Mðr0−4MÞsin2β

1− M
r0−2M

sin2β

�
; ð4:4aÞ

h̄tr ¼ −
4r0Ωφðr0 − 2MÞ sin α cos β

ρðr0 − 3MÞ ; ð4:4bÞ

h̄tα ¼ h̄tw1
cos β; ð4:4cÞ

h̄tβ ¼ −h̄tw1
sin α sin β; ð4:4dÞ

h̄rr ¼ 0; ð4:4eÞ

h̄rα ¼ h̄rw1
cos β; ð4:4fÞ

h̄rβ ¼ −h̄rw1
sin α sin β; ð4:4gÞ

h̄αα ¼ h̄w1w1
cos2β; ð4:4hÞ

h̄αβ ¼ −h̄w1w1
sin α sin β cos β; ð4:4iÞ

h̄ββ ¼ h̄w1w1
sin2αsin2β: ð4:4jÞ

This approximation includes all contributions at order ϵ−1

and ϵ0, with the exception of terms proportional to Δr3=ρ3,
which we neglect as their mode decomposition yields only
terms proportional to Δr2 and higher.

2. Mode decomposition

Wenowproceedwith the decomposition of our coordinate
expansion into tensor spherical-harmonic modes. For this,
wemust evaluate the integrals of the singular field against the
tensor spherical harmonics,

h̄ðiÞPlm ¼ r

μaðiÞl

Z
2π

0

Z
π

0

h̄τκητμηκνY
ðiÞlm�
μν sin α dα dβ: ð4:5Þ

For the circular orbit case we are considering here, the
explicit form for the integrand for each i ¼ 1;…; 10 field is
given in Table II.
The mode decomposition works much the same as with

the scalar-field case described in Ref. [28]. There are,
however, some key differences which introduce additional
complexity to the gravitational case:
(1) The fact that we have tensor (as opposed to scalar)

harmonics makes the mode decomposition integrals
slightly more involved.

(2) Whereas in the scalar case we only required the

m0 ¼ 0 modes, we now requirem0 ¼ 0 for h̄ð1Þlm, h̄
ð3Þ
lm,

and h̄ð6Þlm,m
0 ¼ 1 for h̄ð2Þlm, h̄

ð4Þ
lm, and h̄

ð8Þ
lm,m

0 ¼ 0; 2 for

h̄ð5Þlm, and m0 ¼ 2 for h̄ð7Þlm, h̄
ð9Þ
lm, and h̄ð10Þlm . This is

TABLE II. Integrands appearing in the mode decomposition of all ten tensor-harmonic components of the singular metric perturbation
for the case of a circular geodesic orbit in Schwarzschild spacetime.

ði; l; m0Þ Integrand

ð1;l; 0Þ r
ffiffiffiffiffiffiffiffi
2lþ1
4π

q
ðh̄tt þ f2h̄rrÞP0

lðcos αÞ sin α
ð2;l;�1Þ �2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ1

4πlðlþ1Þ
q

fh̄tr cos βP1
lðcos αÞ sin α

ð3;l; 0Þ r
ffiffiffiffiffiffiffiffi
2lþ1
4π

q
fðh̄tt − f2h̄rrÞP0

lðcos αÞ sin α
ð4;l;�1Þ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þlðlþ1Þ

4π

q
h̄tw1

lðlþ1Þ
h
sin2βP1

lðcos αÞ þ cos2β
l2P1

lþ1
ðcosαÞ−ðlþ1Þ2P1

l−1ðcos αÞ
2lþ1

i
ð5;l; 0Þ

2
ffiffiffiffiffiffiffiffi
2lþ1
4π

q
fh̄rw1

cos β lðlþ1Þ
2lþ1

h
P0
lþ1ðcos αÞ − P0

l−1ðcos αÞ
i

ð5;l;�2Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þlðlþ1Þ
4πðl−1Þðlþ2Þ

q
fh̄rw1

cos β 1
lðlþ1Þ

h
4sin2βP2

lðcos αÞ þ ðcos2β − sin2βÞ ðl−1ÞlP2
lþ1

ðcosαÞ−ðlþ1Þðlþ2ÞP2
l−1ðcos αÞ

2lþ1

i
ð6;l; 0Þ 1

r

ffiffiffiffiffiffiffiffi
2lþ1
4π

q
h̄w1w1

P0
lðcos αÞ sin α

ð7;l;�2Þ 2
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þðl−1Þlðlþ1Þðlþ2Þ

4π

q
1

ðl−1Þlðlþ1Þðlþ2Þ
h̄w1w1
sin α

h
8cos2β sin2β

ðl−1Þ2P2
lþ1

ðcosαÞ−ðlþ2Þ2P2
l−1ðcos αÞ

2lþ1

þðcos2β − sin2βÞ2 ðl−1Þ2l2ð2l−1ÞP2
lþ2

ðcos αÞ−2ðl−3Þðl−1Þðlþ2Þðlþ4Þð2lþ1ÞP2
lðcosαÞþðlþ1Þ2ðlþ2Þ2ð2lþ3ÞP2

l−2ðcosαÞ
2ð2l−1Þð2lþ1Þð2lþ3Þ

i
ð8;l;�1Þ −2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þlðlþ1Þ

4π

q
ih̄tw1

lðlþ1Þ
h
P1
lðcos αÞcos2β þ

l2P1
lþ1

ðcos αÞ−ðlþ1Þ2P1
l−1ðcos αÞ

2lþ1
sin2β

i
ð9;l;�2Þ ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þlðlþ1Þ
4πðl−1Þðlþ2Þ

q
4ifh̄rw1

cos β 1
lðlþ1Þ

h
ðcos2β − sin2βÞP2

lðcos αÞ þ sin2β
ðl−1ÞlP2

lþ1
ðcos αÞ−ðlþ1Þðlþ2ÞP2

l−1ðcos αÞ
2lþ1

i
ð10;l;�2Þ ∓ 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þðl−1Þlðlþ1Þðlþ2Þ

4π

q
1

ðl−1Þlðlþ1Þðlþ2Þ
4ih̄w1w1
sin α

h
ðcos2β − sin2βÞ2 ðl−1Þ2P2

lþ1
ðcos αÞ−ðlþ2Þ2P2

l−1ðcos αÞ
2lþ1

þcos2β sin2β
ðl−1Þ2l2ð2l−1ÞP2

lþ2
ðcosαÞ−2ðl−3Þðl−1Þðlþ2Þðlþ4Þð2lþ1ÞP2

lðcos αÞþðlþ1Þ2ðlþ2Þ2ð2lþ3ÞP2
l−2ðcosαÞ

ð2l−1Þð2lþ1Þð2lþ3Þ
i
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because we would like to compute the metric
perturbation and its derivative (for the self-force)
on the worldline, and these are the only modes which
do not vanish on the worldline at α ¼ 0. Note that in
principle other modes could contribute (m0 ¼ 1 for

h̄ð1Þlm, h̄
ð3Þ
lm, and h̄ð6Þlm, m

0 ¼ 0 for h̄ð2Þlm, m
0 ¼ 0; 2 for

h̄ð4Þlm and h̄ð8Þlm,m
0 ¼ 1 for h̄ð5Þlm and h̄ð9Þlm, andm

0 ¼ 1; 3

for h̄ð7Þlm and h̄ð10Þlm ), but the integrals for those modes
all contain odd powers of sin β or cos β and therefore
their contribution vanishes after integration over β.

(3) The coordinate approximation we are using for the
singular field has a spurious nonsmoothness away
from the worldline at α ¼ π. This can be seen in ρ,
which has a β-direction-dependent limit as α → π.
This problem did not manifest itself in the scalar
case, since the isotropic nature of the m0 ¼ 0 mode
means it cannot include any information about
direction dependence.

The first two items above do not cause any fundamental
issues; they merely add some extra algebraic complexity to
the problem. The third item, however, does cause problems if
not handled appropriately. The nonsmoothness introduces a

spurious component in the puncturewhich behaves as ð−1Þ
l

l in
a mode-sum formula such as Eqs. (3.10) and (3.11). This
renders the sum not absolutely convergent, although the
ð−1Þl factor means that it is in fact conditionally convergent

since, for example,
P∞

l¼1
ð−1Þlþ1ð2lþ1Þ

lðlþ1Þ ¼ 1. In practice, this
makes the sum over modes converge very slowly; see
Fig. 1.

Fortunately, there is a straightforward resolution to this
problem. A smooth window function Wm0 ðαÞ in the α
direction is effective in eliminating the spurious non-
smoothness affecting the modes. To ensure that the self-
force is not affected, we require that Wm0 ðαÞ ∼ 1þOðα2Þ
near α ¼ 0, while eliminating the effect of the nonsmooth-
ness on a particular m0 mode requires Wm0 ðαÞ ∼ ðπ −
αÞ⌈m0=2⌉ near α ¼ π, where ⌈m0=2⌉ is the smallest integer
greater than or equal to m0=2. We make the particular
choice Wm0 ðαÞ ¼ ðcos α

2
Þ⌈m0=2⌉, which satisfies both of the

above criteria.

3. Integrals over α

In the circular geodesic case, the quantity ρ appearing in
the singular metric perturbation is given by

ρ2 ¼ 2χr20ðr0 − 2MÞ
r0 − 3M

ðδ2 þ 1 − cos αÞ; ð4:6Þ

where

δ2 ≡ Δr2

2χr0

r0 − 3M
ðr0 − 2MÞ2 ð4:7Þ

and

χ ≡ 1 −
M

r0 − 2M
sin2β: ð4:8Þ

Then, the integrals over α all take one of nine possible
forms which can be evaluated analytically. In our particular
case, we are only interested in the behavior at the leading
two orders in Δr≡ r − r0. To simplify our expressions, we
introduce

Λ1 ≡ Λ1;0 ¼
lðlþ 1Þ

ð2l − 1Þð2lþ 3Þ ð4:9Þ

and

Λ2 ≡ Λ2;0 ¼
ðl − 1Þlðlþ 1Þðlþ 2Þ

ð2l − 3Þð2l − 1Þð2lþ 3Þð2lþ 5Þ ; ð4:10Þ

where Λm;n is defined later in Eq. (6.3). Then, for h̄
ð1Þ
l0 , h̄

ð3Þ
l0 ,

and h̄ð6Þl0 the Δr-expanded integrals are given by

Z
π

0

P0
lðcos αÞ sin α

ðδ2 þ 1 − cos αÞ1=2 dα

¼ 1

2lþ 1
½2

ffiffiffi
2

p
− 2ð2lþ 1Þjδj þOðδ2Þ�: ð4:11Þ

For h̄ð2Þl1 they are given by

FIG. 1 (color online). Effect of a spurious nonsmoothness away
from the worldline on the convergence of a mode-sum scheme
near the worldline. The nonsmoothness manifests itself as a term

of the form ð−1Þlþ1ð2lþ1Þ
lðlþ1Þ and appears to spoil any hope of rapid

convergence (blue/orange dots). This can be mitigated by using a
smoothing factor which converts the conditionally convergent
behavior into a more rapid absolutely convergent behavior
(green). The final result is not altered since the infinite sum of
conditionally convergent terms is exactly equal to the infinite sum
of absolutely convergent terms.
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Z
π

0

P1
lðcos αÞsin2α

ðδ2 þ 1 − cos αÞ1=2 dα ¼ 1

2lþ 1
½−8

ffiffiffi
2

p
Λ1 þOðδ2Þ�;

ð4:12Þ

For h̄ð4Þl1 and h̄ð8Þl1 they are given by

Z
π

0

W1ðαÞ
lðlþ 1Þ

l2P1
lþ1ðcos αÞ − ðlþ 1Þ2P1

l−1ðcos αÞ
ð2lþ 1Þðδ2 þ 1 − cos αÞ1=2 dα

¼ 1

2lþ 1

�
−

6
ffiffiffi
2

p

ð2l − 1Þð2lþ 3Þ þ ð2lþ 1Þjδj þOðδ2Þ
�

ð4:13Þ

and

Z
π

0

W1ðαÞ
lðlþ 1Þ

P1
lðcos αÞ

ðδ2 þ 1 − cos αÞ1=2 dα

¼ 1

2lþ 1

�
−8

ffiffiffi
2

p
Λ1 þ

6
ffiffiffi
2

p

ð2l − 1Þð2lþ 3Þ

þ ð2lþ 1Þjδj þOðδ2Þ
�
: ð4:14Þ

For h̄ð5Þl0 they are given by

Z
π

0

lðlþ 1Þ
ð2lþ 1Þ

½P0
lþ1ðcos αÞ − P0

l−1ðcos αÞ� sin α
ðδ2 þ 1 − cos αÞ1=2 dα

¼ 1

2lþ 1
½−8

ffiffiffi
2

p
Λ1 þOðδ2Þ�: ð4:15Þ

For h̄ð5Þl2 and h̄ð9Þl2 they are given by

Z
π

0

1

lðlþ 1Þ
W2ðαÞP2

lðcos αÞ sin α
ðδ2 þ 1 − cos αÞ1=2 dα

¼ 1

2lþ 1

�
32

ffiffiffi
2

p
Λ2

−
120

ffiffiffi
2

p ðl − 1Þðlþ 2Þ
ð2l − 3Þð2l − 1Þð2lþ 3Þð2lþ 5Þ þOðδ2Þ

�
ð4:16Þ

and

Z
π

0

W2ðαÞsinα
ð2lþ1Þlðlþ1Þðδ2þ1−cosαÞ1=2

× ½ðl−1ÞlP2
lþ1ðcosαÞ−ðlþ1Þðlþ2ÞP2

l−1ðcosαÞ�dα

¼ 1

2lþ1

�
−32

ffiffiffi
2

p
Λ2

þ 240
ffiffiffi
2

p ðl−1Þðlþ2Þ
ð2l−3Þð2l−1Þð2lþ3Þð2lþ5ÞþOðδ2Þ

�
: ð4:17Þ

Finally, for h̄ð7Þl2 and h̄ð10Þl2 they are given by

Z
π

0

W2ðαÞ csc α
ðl − 1Þlðlþ 1Þðlþ 2Þð2lþ 1Þðδ2 þ 1 − cos αÞ1=2

× ½ðl − 1Þ2P2
lþ1ðcos αÞ − ðlþ 2Þ2P2

l−1ðcos αÞ�dα

¼ 1

2lþ 1

�
10

ffiffiffi
2

p

ð2l − 1Þð2lþ 3Þ −
1

4
ð2lþ 1Þjδj þOðδ2Þ

�
ð4:18Þ

and

Z
π

0

1

ðl − 1Þlðlþ 1Þðlþ 2Þ

×
W2ðαÞ csc α

ðδ2 þ 1 − cos αÞ1=2
1

ð2l − 1Þð2lþ 1Þð2lþ 3Þ
× ½ðl − 1Þ2l2ð2l − 1ÞP2

lþ2ðcos αÞ
− 2ðl − 3Þðl − 1Þðlþ 2Þðlþ 4Þð2lþ 1ÞP2

lðcos αÞ
þ ðlþ 1Þ2ðlþ 2Þ2ð2lþ 3ÞP2

l−2ðcos αÞ�dα

¼ 1

2lþ 1

�
−32

ffiffiffi
2

p
Λ2 þ

40
ffiffiffi
2

p

ð2l − 1Þð2lþ 3Þ

þ ð2lþ 1Þjδj þOðδ2Þ
�
: ð4:19Þ

4. Integrals over β

With the integrals over α having been evaluated ana-
lytically as a power series in δ, we are next faced with the
integrals over β. The functional dependence on β can be
rewritten in terms of integer and half-integer powers of
χ ¼ 1 − M

r0−2M
sin2β. These integrals are straightforward to

evaluate and yield either polynomials in M
r0−2M

, or complete

elliptic integrals with argument M
r0−2M

. Specifically,

Z
2π

0

χndβ ¼ 2π 2F1

�
n;
1

2
; 1;

M
r0 − 2M

�
; ð4:20Þ

which has three special cases: for n ¼ −1=2 it reduces to
the elliptic integral of the first kind, Kð M

r0−2M
Þ; for n ¼ 1=2

it reduces to the elliptic integral of the second kind,
Eð M

r0−2M
Þ; for n an integer it is a polynomial in M

r0−2M
.

All other cases can be related to these three using the
recursion relation for the hypergeometric function,

Fpþ1ðkÞ ¼
p − 1

pðk − 1ÞFp−1ðkÞ þ
1 − 2pþ ðp − 1

2
Þk

pðk − 1Þ FpðkÞ;

ð4:21Þ

where FpðkÞ≡ 2F1ðp; 12 ; 1; kÞ.

APPLYING THE EFFECTIVE-SOURCE APPROACH TO … PHYSICAL REVIEW D 92, 084019 (2015)

084019-11



B. Construction of the effective source
and residual fields

In order to construct an effective source we must choose
a window function W to confine the definition of the
puncture to a neighborhood of the worldline. As discussed
in Sec. III B, the constraints on the window function are that
Wðx0Þ ¼ 1;W 0ðx0Þ ¼ 0;W 00ðx0Þ ¼ 0, and W ¼ 0 far
away from the worldline. These conditions leave consid-
erable freedom when choosing a window function. In this
work we shall use the window function given by

WðrÞ ¼ e−8M
−4ðr−r0Þ4 : ð4:22Þ

We make this choice as it is easy to implement and,
although not formally compact, it is effectively compact
within our numerical scheme. Other authors have made
different choices. Vega et al. [53] used a compact window
function that allowed for a smooth transition from the
residual to the retarded field. Alternatively, a compact
source can be achieved using the worldtube approach of
Barack and Golbourn [22]. In Ref. [28] we used a
Heaviside Π function and showed that this was equivalent
to the worldtube method. In this work we opt not to do this
for ease of implementation, though we note (by building on
a draft of this work) that a worldtube method has been
implemented for the gravitational case [54].
With the window function chosen the effective sources

are given by

SðiÞefflm ¼ J ðiÞ
lmδðr − r0Þ −□

sc
lmðWh̄ðiÞPlm Þ

þ 4f−2MðiÞðjÞðWh̄ðjÞPlm Þ: ð4:23Þ

For brevity we will not display the explicit form of the

SðiÞefflm . Using the field equations in Appendix B and
punctures in Appendix C, it is straightforward to compute
the effective sources using computer algebra packages.
However, we do point out one potential subtlety: in the
above equation we have implicitly assumed that the wave
operator commutes with the mode decomposition, an
assumption which is not necessarily true. Indeed, Barack
and Ori [49] pointed out that the mode decomposition does
not always commute with radial derivatives; likewise, from
the Wigner-Eckart theorem one may be concerned that a
spherical-harmonic mode decomposition which fails to
include all modes would not commute with the angular
derivatives. In the current context both concerns turn out
to be unfounded. The Barack-Ori observation is only an
issue if the limit Δr → 0 is taken, but we avoid doing so
while computing the puncture fields. The higher spherical-
harmonic modes of the puncture that we neglect would
indeed contribute to the effective source one obtains, but
only in a way which affects the higher derivatives of the
residual field (since those higher modes vanish when
evaluated at α ¼ 0).

The construction of the residual metric perturbation
now proceeds as follows. Via the variation of parameters
prescription we have

h̄ðiÞresðrÞ ¼
Xk
j¼1

ðC−res
j ðrÞ ~hðiÞ−j ðrÞ þ Cþres

j ðrÞ ~hðiÞþj ðrÞÞ;

ð4:24Þ

where recall that we use j to index the k basis of a given lm
mode. The weighting coefficients are given by�C−res

j ðrÞ
Cþres
j ðrÞ

�
¼
Z

b

a
Φ−1ðr0Þ

�
0

SðiÞeff

�
dr0; ð4:25Þ

where Φ is the 2k × 2k matrix of homogeneous solutions,
defined in Eq. (2.19). The source vector is formed of k
zeros followed by the k effective sources. The integration
limits in Eq. (4.25) depend upon which weighting coef-
ficient is being solved for. For the C−res

j ’s a ¼ r; b ¼ ∞,
and for the Cþres

j ’s a ¼ 2M; b ¼ r.
In order to compute the self-force we also require the first

radial derivatives of the metric perturbation fields. These
are easily constructed via

h̄ðiÞres0ðrÞ ¼
Xk
j¼1

ðC−res
j ðrÞ ~hðiÞ−j

0ðrÞ þ Cþres
j ðrÞ ~hðiÞþj

0ðrÞÞ:

ð4:26Þ

Last, we discuss how to construct the remaining fields
using the gauge equations and the hierarchical scheme
outlined in Table I. This is achieved by noting that the
gauge equations (2.13)–(2.16) are for the retarded field.
On the worldline we can write h̄ðiÞ ¼ h̄ðiÞres þ h̄ðiÞP. The
remaining residual fields can be obtained by substituting this
split into the gauge equations and rearranging for the h̄ðiÞres.

V. NUMERICAL IMPLEMENTATION
AND RESULTS

The self-force experienced by a particle moving along a
fixed geodesic of the background Schwarzschild spacetime
was first calculated in the Lorenz gauge by Barack and Sago
[33]. In calculating the retarded field they used a time-
domain implementation for the l ≥ 2 modes and used a
frequency-domain method to calculate the monopole
(l ¼ 0) and dipole (l ¼ 1) modes [35,40]. They con-
structed the self-force by projecting the tensor-harmonic
modes of the retarded field onto a basis of scalar harmonics
and regularizing using the standard mode-sum scheme.
Lorenz-gauge calculations were later extended to generic
bound orbits in Schwarzschild spacetime [34,36–38,55,56].
In this section we detail how to compute, in the

frequency domain, the Lorenz-gauge self-force along a
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circular geodesic using the effective-source method we
have developed above. Before giving the algorithm for the
computation we briefly discuss how we construct numeri-
cal boundary conditions in order to solve for the retarded
homogeneous metric perturbation.

A. Numerical boundary conditions

For the radiative modes (ω ≠ 0) the asymptotic boundary
conditions for the retarded-field solutions are given by
Eq. (2.17). In practice we cannot place the boundaries of
our numerical domain at r� ¼ �∞. Instead we construct
boundary conditions at a finite radius by expanding the
asymptotic boundary conditions in an appropriate series.
For the radiative modes we use the expansions

~hðiÞ−ðrinÞ ¼ e−iωmrin�
Xk−max

k¼0

bikðrin − 2MÞk; ð5:1Þ

~hðiÞþðroutÞ ¼ eiωmrout�
Xkþmax

k¼0

aik
rkout

; ð5:2Þ

where rin=out� ≡ r�ðrin=outÞ. How the boundary locations
rin=out and the truncation values k�max are selected in practice
will be discussed in the algorithm section below. The series
coefficients aik; b

i
k are found by substituting the above

expansions into the field equations (2.10) and solving
for the resulting recursion relations. For brevity we do
not repeat these relations here; they can be found in
Appendix A of Ref. [36]. The recursion relations determine
the aik>0; b

i
k>0 in terms of the first coefficients ai0; b

i
0,

respectively. By selecting appropriate linearly independent
vectors of these leading coefficients we construct a basis of
linearly independent solutions that span the solution space
for the field equations. For example, for the odd radiative
modes we have, once the gauge equations are employed,
a solution space with two degrees of freedom, i.e., we
must solve for h̄ð9Þ and h̄ð10Þ. For the outer homogeneous
solutions the two basis are formed by setting fa90; a100 g ¼
f1; 0g and fa90; a100 g ¼ f0; 1g. Similarly we can repeat this
with fb90; b100 g for the inner solutions.
In this work, although analytic solutions are now known

[38], we opt to solve for the even static modes numerically
as we already have code to do so. For these modes the
numerical boundary conditions take the form

~hðiÞ−ðrinÞ ¼
Xk−max

k¼k−min

bikðrin − 2MÞk; ð5:3Þ

~hðiÞþðroutÞ ¼
Xkþmax

k¼kþmin

aik þ āik log rout
rkout

: ð5:4Þ

How the truncation values k�min are selected and the form of
the recursion relations for aik; ā

i
k; b

i
k is again given in

Ref. [36]. The log term in Eq. (5.4) is added to ensure
the recursion relations have sufficient degrees of freedom to
span the space of solutions to the field equations.

B. Numerical algorithm

The following steps describe how we calculate the self-
force in practice via our frequency-domain effective-source
approach.
(1) Choose a radial grid to store the values of various

fields on. In general we require high resolution near
the particle, and lower resolution far from the
particle. Though our chosen window function is
not formally compact, within our numerical pro-
cedure it is effectively compact. It is inside this
effectively compact region that we need high reso-
lution. In general we choose our window function to
be effectively zero outside the region ðr0−2M;r0þ
2MÞ. Inside this region we find a grid spacing
of M=10 sufficient (we pick the grid so that it
includes r ¼ r0). Outside the (effective) support
of the window function we use a grid spacing
of 2M.

(2) For radiative modes (m ≠ 0) and even static modes
(l ¼ even ≥ 2; m ¼ 0), construct numerical boun-
dary conditions at r ¼ rout and r ¼ rin using the
recursion relations in Appendix A of Ref. [36]. For
each lm mode there will be nf inhomogeneous
fields to solve for (see Table I), and correspondingly
nf sets of boundary conditions for the homogeneous
fields will be constructed as described in Sec. VA.

(3) For a given lm mode, solve for each basis of
homogeneous solutions and store the values of the
fields and their derivatives on the preselected radial
grid points.

(4) For the odd static (l ¼ odd; m ¼ 0) modes and the
monopole (l ¼ m ¼ 0) the values of the (in)homo-
geneous fields and their derivatives can be computed
analytically. See Appendix D for an explicit over-
view of the calculation for the monopole mode.

(5) For the given lm mode, compute the effective-
source vector and store the results on the radial grid.

(6) At each grid point invert the matrix of homogeneous
solutions defined in Eq. (2.19) (formed from the
previous stored results) and multiply it by the source
vector to form the integrand of Eq. (4.25). Store the
resulting values of the weighting coefficient inte-
grands at each point on the radial grid.

(7) Interpolate the weighting coefficient integrands us-
ing standard cubic spline techniques. Numerically
integrate the integrand as described by Eq. (4.25).
The regular radial metric perturbation fields and
their radial derivatives are then computed via
Eqs. (4.24) and (4.26), respectively.
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(8) The gauge fields are then constructed as discussed at
the end of Sec. IV B following the hierarchical
structure given in Table I.

(9) The metric and its derivatives are constructed using
the formulas given in Appendix A 6. The self-force
is then constructed via Eq. (3.1).

For comparison we also compute the retarded field with
the method described in Sec. II C. The first four steps of the
algorithm in this case are the same as those above. Then for
the fifth step we use Eq. (2.22) to construct the retarded-
field weighting coefficients. This step only requires

knowledge of the homogeneous fields and the sources
given in Appendix B. The retarded solutions are then
constructed using Eq. (2.21). Finally we compute the self-
force with both the standard mode-sum prescription
described in Sec. III A (which relies on projecting the
retarded tensor modes onto a basis of spherical-harmonics
before regularization) and the tensor mode-sum prescrip-
tion we present in Sec. VI. Note that only the radial
component of the self-force requires regularization as it is
the only component with nonzero regularization parameters
[see Eq. (3.12)]. Correspondingly, the contributions to both
the t and φ components of the self-force converge expo-
nentially in both l̂ and l (the θ component is zero by
symmetry).

C. Results

Using the above algorithm we can compute the residual
metric perturbation at r ¼ r0. Using the residual field at the
particle we can compute hRuu and we find that our results
agree with previously published results to a relative
accuracy of 10−7. Taking a radial derivative of the residual
metric perturbation at the particle, we can compute the
radial self-force without any further regularization required.
For the radial self-force we find agreement with the
previous published results to a relative accuracy of 10−6;
see Table III. In Fig. 2 we plot the residual field for the
ðl; m; iÞ ¼ ð2; 2; 1Þ field for a particle orbiting at r0 ¼ 6M.
A key feature of our procedure is that we only ever work

with tensor-harmonic modes in constructing the self-force.
This is in contrast to the standard mode-sum scheme
whereby the tensor-harmonics of the retarded field are
projected onto a basis of scalar harmonics before regulari-
zation. This projection, though straightforward, is cumber-
some to implement (see, e.g., Appendix C in Ref. [33]).
Furthermore the coupling between the tensor and scalar
modes means that in practice to calculate l̂max scalar modes
one needs to calculate lmax ¼ l̂max þ 3 tensor modes. With
our prescription this is not necessary.
In Fig. 3 we show the convergence of the tensor mode

sum for the regular contributions to hRuu and Fr. The
punctures we use in this work are sufficiently regular that,

FIG. 2 (color online). Sample results for the l ¼ 2, m ¼ 2

mode for a particle orbiting at r0 ¼ 6M. Shown are the h̄ð1Þ and
(scaled) h̄ð7Þ metric perturbations for both the residual and
retarded fields. At r ¼ 6M, the upper solid (red) curve shows
the residual field h̄ð1Þres. The dashed (purple) curve shows the
retarded field h̄ð1Þret. Far from the particle the two coincide.
Similarly, the lower solid (blue) curve shows h̄ð7Þres and the dot-

dashed (orange) curve shows h̄ð7Þret. The inset shows h̄ð1Þres;rr near
the particle. With the punctures we present in the main text the
residual fields are C1 at the particle and correspondingly, as the
inset shows, the second radial derivatives of the residual field are
discontinuous. As the residual fields are C1 at the particle the self-
force can be directly computed from their derivatives. The
punctures we provide online in Supplemental Material [57] give
C2 residual fields at the particle which acts to improve the
convergence rate of the mode sum, as shown in Fig. 3.

TABLE III. Sample results for orbits with r0 ¼ 6M and r0 ¼ 10M computed with lmax ¼ 40. The relative
difference between our results and previously published data is small, being always less than 3 × 10−7. These results
were computed using the higher-order punctures available online as Supplemental Material [57], and by numerically
fitting for the higher-order regularization parameters in order to speed up the convergence of the sum over tensor l
modes. Numbers in brackets denote the estimated error in the final digit of the corresponding result. Note that the
results in this table have been adimensionalized, i.e., hRuu here ≡ðM=μÞhRuu and Fr here ≡ðM=μÞ2Fr.

r0=M this work Akcay et al. [18,37] rel. diff.

hRuu 6 −1.0471852ð4Þ −1.0471854796ð1Þ 2 × 10−7

Fr 6 2.4466487ð8Þ × 10−2 2.4466495ð4Þ × 10−2 3 × 10−7

hRuu 10 −0.48925802ð2Þ −0.48925800172ð4Þ 4 × 10−8

Fr 10 1.3389466ð3Þ × 10−2 1.3389465ð7Þ × 10−2 3 × 10−8
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for high l the contributions to hRuu and Fr drop off as l−4

and l−2, respectively.
In the next section we show how, by taking the limit to

the worldline in our effective-source procedure, we can
formulate a tensor-mode mode-sum scheme.

VI. MODE-SUM REGULARIZATION WITH
TENSOR-HARMONIC MODES

In addition to their use in the effective-source approach
described here, the puncture fields may also be used to
improve the efficiency of the traditional mode-sum scheme.
In the standard mode-sum prescription, regularization is
achieved through mode-sum formulas such as Eqs. (3.10)
and (3.11), which take the form

FR
μ ¼

X∞
l̂¼0

½Fl̂ret
μ − ð2l̂þ 1ÞF½−1�

μ − F½0�
μ � þDμ ð6:1Þ

in the case of the self-force where we recall that an l̂ sub-/
superscript denotes the scalar-harmonic multipole contri-
bution (summed over m). The regularization parameters

F½−1�
μ and F½0�

μ are analytically derived functions of the
instantaneous worldline. Provided the Detweiler-Whiting
singular field is used in their derivation (and the retarded-
field modes Fl̂ret

μ are in Lorenz gauge), the Dμ term
vanishes. Each term in the sum goes like l̂−2 and so the
partial sums converge as l−1

max. One can derive additional
higher-order regularization parameters to accelerate this
rate of convergence. For example, by subtracting an

appropriate term of the form F½2�
μ

ð2l̂−1Þð2l̂þ3Þ one finds that

the terms in the sum now fall off as l̂−4. One can continue
in this way to higher orders, where the order l̂−n term has
the form

X∞
l̂¼0

2l̂þ1

ð2l̂−nþ1Þð2l̂−nþ3Þ…ð2l̂þn−1Þð2l̂þnþ1Þ¼0

ð6:2Þ

for n even. The fact that the infinite sum over l̂ vanishes is
important as it guarantees that the subtraction of higher-
order regularization parameters does not affect the numeri-
cal result (other than accelerating the rate of convergence);
equivalently, these higher-order terms can be seen to come
from pieces of the Detweiler-Whiting singular field which
vanish when evaluated on the worldline.
In the scalar-field case, this mode-sum formula is a

natural choice as one can choose to work with scalar
spherical harmonics labeled by l̂ when solving the field
equations. In the gravitational case, the tensor spherical
harmonics are a more natural choice and a numerical
calculation typically produces tensor harmonic modes
(labeled by l) for the retarded field. Despite this fact,
existing calculations have relied on a scalar-harmonic
mode-sum formula of the form given in Eq. (6.1). As a
result, a necessary step in the regularization procedure is
the projection of the tensor-harmonic modes Flret

μ onto

scalar harmonic modes Fl̂ ret
μ . This is undesirable for at

least two reasons: (i) the projection involves cumbersome
mode coupling formulas which have to be derived on a
case-by-case basis, and (ii) a given scalar-harmonic mode l̂
couples to several tensor-harmonic modes (up to l̂� 2 for
the metric and higher for some of its derivatives). This
second point means that in order to obtain a given number
of scalar l̂ modes, one actually has to compute several
higher tensor-harmonic l modes of the retarded field, and
these are then lost during the projection. Given that the cost
of computing a given retarded-field mode grows quadrati-
cally with l, this turns out to be quite a significant increase
in computational cost.
Fortunately, it turns out that the projection onto scalar

harmonics is unnecessary; in this section we will derive
tensor-harmonic regularization parameters which com-
pletely eliminate the need for scalar harmonics. This
addresses both issuesmentioned above and produces amuch
simpler, more accurate, and computationally efficient result.
First, we consider what form a tensor-harmonic mode-

sum scheme should take. The l dependence of the term of
order l−n will be given by

Λm;n ≡ 2n−2mð2lþ 1Þðl −mþ 1Þ2m
ð2l − 2mþ nþ 1Þðl −mþ n

2
þ 3

2
Þ
2m−n

ð6:3Þ

FIG. 3 (color online). Convergence of the tensor l-mode
contributions to (the adimensionalized) huu and Fr for a particle
orbiting at r0 ¼ 6M. The punctures we present in this article in
Appendix C are sufficiently regular that the contributions to huu
and Fr drop off as l−2. Online we give higher-order punctures in
Supplemental Material [57] that improve the rate of convergence
for huu to l−4. This is not the case for Fr; the higher-order
punctures are still one order lower than would be required to
improve its rate of convergence. Instead, they merely change the
coefficient of the l−2 behavior in such a way that the infinite sum
over l is unaffected.
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for m ≥ 0 and n integers. Here, we use the standard
notation ðaÞn ¼ aðaþ 1Þ…ðaþ n − 1Þ for the
Pochhammer symbol. When m ¼ 0 we can see that this
reduces to the scalar-harmonic case (6.2), as expected. For
m > 0 and n ≥ 2 the infinite sum over l of any of these
terms is zero, meaning we are free to add them without
modifying the final result (other than accelerating con-
vergence). In Eq. (6.2) this was only true when the sum
starts at l ¼ 0, which would not be appropriate for tensor
harmonics. For our generalized expression (6.3), this holds
for the sum starting at any value in the range 0 ≤ l ≤ m. In
practice we will havem equal to the value of m0 used in the
punctures and n will be determined by the power of ρ
appearing in the singular field.
Examining the puncture fields in Appendix C, we can

see they are already written in a form where this l
dependence is manifestly apparent. The task of producing
tensor-harmonic regularization parameters is therefore
merely a matter of reconstructing the l modes of the
singular metric perturbation using the expressions given in
Appendix A 6, summing over m and then evaluating on the
worldline. It is most convenient to do so in the ðα; βÞ
coordinate system, i.e., using the punctures without the
Wigner-D rotation matrices and evaluating at α ¼ 0, as then
only a small number of m0 modes must be summed over.
The only caveat is that this yields the components of the
metric in the ðα; βÞ coordinates. We must therefore also
include a factor of the Jacobian from ðα; βÞ to ðθ;φÞ
coordinates. This Jacobian is given by

∂α
∂θ ¼ − cos α sin βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − sin2αsin2β
p ≈ 0; ð6:4aÞ

∂α
∂φ ¼ cos β ≈ 1; ð6:4bÞ

∂β
∂θ ¼ − cos β

sin α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2αsin2β

p ≈ −
1

sin α
; ð6:4cÞ

∂β
∂ϕ ¼ − cos α sin β

sin α
≈ 0: ð6:4dÞ

Note that because of the factor of 1
sin α appearing here, it is

important to multiply by the Jacobian before taking the
limit α → 0.
Since we are interested in computing the metric pertur-

bation and its derivative (for the self-force), we require
mode-sum formulas for all components of the metric
perturbation and its derivative, i.e.,

hRμν ¼
X∞
l¼0

½hlretμν − h½0�μν� ð6:5Þ

and

hRμν;γ ¼
X∞
l¼0

½hlretμν;γ − ð2lþ 1Þh½−1�μν;γ − h½0�μν;γ�: ð6:6Þ

Here, the retarded-field l modes are computed in the usual
way from numerical data in the ðθ;φÞ coordinates,

hlretμν ≡ Xl
m¼−l

hlmμν

�
r0;

π

2
; 0

�
; ð6:7Þ

where the hlmμν are constructed by combining the hðiÞlm with
the spherical harmonics; explicit expressions are given in
Appendix A 6. The regularization parameters for the metric
perturbation are computed using

h½0�μν ¼
Xl

m0¼−l

�∂xμ0
∂xμ

∂xν0
∂xν h

Plm0
μ0ν0

�
x¼x0

; ð6:8Þ

where x0 denotes the point on the worldline, i.e., r ¼ r0 and
α ¼ 0 ¼ β. The only nonzero contributions in our case
come from m0 ¼ 0 in the scalar sector (i ¼ 1; 3; 6), m0 ¼
�1 in the vector sector (i ¼ 4; 8), and m0 ¼ �2 in the
tensor sector (i ¼ 7; 10). The regularization parameters for
the radial derivative of the metric perturbation are com-
puted using

h½0�μν;r ¼
Xl

m0¼−l

�∂xμ0
∂xμ

∂xν0
∂xν ∂rhPlm

0
μ0ν0

�
x¼x0

; ð6:9Þ

where again the only nonzero contributions in this case
come from m0 ¼ 0 in the scalar sector (i ¼ 1; 3; 6), m0 ¼
�1 in the vector sector (i ¼ 4; 8), and m0 ¼ �2 in the
tensor sector (i ¼ 7; 10). Finally, the regularization param-
eters for the φ derivative of the metric perturbation are
computed using

h½0�μν;φ ¼
Xl

m0¼−l

�∂α
∂φ ∂α

�∂xμ0
∂xμ

∂xν0
∂xν h

Plm0
μ0ν0

��
x¼x0

; ð6:10Þ

where the only nonzero contributions in this case come
from m0 ¼ �1 for hPlm

0
tr (i.e., i ¼ 2) and m0 ¼ ð0;�2Þ for

hPlm
0

rA (i.e., i ¼ 5; 9). Evaluating these with the punctures
given in Appendix C yields the following tensor-harmonic
regularization parameters:

h½0�tt ¼ 4ðr0 −MÞK
πr20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 − 2M
r0 − 3M

s
; ð6:11aÞ

h½0�tφ ¼ −
32M1=2K

πr1=20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 − 2M
r0 − 3M

s
Λ1; ð6:11bÞ

h½0�rr ¼ 4K
π

ðr0 − 3MÞ1=2
ðr0 − 2MÞ3=2 ; ð6:11cÞ
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h½0�θθ ¼
4r0K
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 − 2M
r0 − 3M

s
−

64Mr0K
πðr0 − 2MÞ1=2ðr0 − 3MÞ1=2 Λ2;

ð6:11dÞ

h½0�φφ ¼ 4r0K
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0−2M
r0−3M

s
þ 64Mr0K
πðr0−2MÞ1=2ðr0−3MÞ1=2Λ2;

ð6:11eÞ

h½−1�tt;r ¼∓ ðr0 −MÞ
r5=20 ðr0 − 3MÞ1=2

; ð6:11fÞ

h½0�tt;r ¼
2ðr0 −MÞ½ðr0 − 2MÞE − 2ðr0 − 4MÞK�

πr30ðr0 − 3MÞ1=2ðr0 − 2MÞ1=2 ; ð6:11gÞ

h½−1�rr;r ¼∓ ðr0 − 3MÞ1=2
r1=20 ðr0 − 2MÞ2

; ð6:11hÞ

h½0�rr;r ¼ 2ðr0 − 3MÞ1=2½ðr0 − 2MÞE − 2r0K�
πr0ðr0 − 2MÞ5=2 ; ð6:11iÞ

h½−1�tφ;r ¼ �
�

2M1=2

r0ðr0 − 3MÞ1=2
�
l≥1

; ð6:11jÞ

h½0�tφ;r ¼ −
16M1=2½ðr0 − 2MÞE þ 2MK�
πr3=20 ðr0 − 3MÞ1=2ðr0 − 2MÞ1=2

Λ1; ð6:11kÞ

h½−1�φφ;r ¼∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r0
r0 − 3M

r
∓
�

Mr1=20

ðr0 − 2MÞðr0 − 3MÞ1=2
�
l≥2

;

ð6:11lÞ

h½0�φφ;r ¼ 2ðE þ 2KÞ
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 − 2M
r0 − 3M

s

þ 32MðE þ 2KÞ
πðr0 − 3MÞ1=2ðr0 − 2MÞ1=2 Λ2; ð6:11mÞ

h½−1�θθ;r ¼∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r0
r0 − 3M

r
�
�

Mr1=20

ðr0 − 2MÞðr0 − 3MÞ1=2
�
l≥2

;

ð6:11nÞ

h½0�θθ;r ¼
2ðE þ 2KÞ

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 − 2M
r0 − 3M

s

−
32MðE þ 2KÞ

πðr0 − 3MÞ1=2ðr0 − 2MÞ1=2 Λ2; ð6:11oÞ

h½0�tr;φ ¼ −
32ððr0 − 2MÞE − ðr0 − 3MÞKÞ

πM1=2r3=20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 − 2M
r0 − 3M

s
Λ1;

ð6:11pÞ

h½0�rφ;φ ¼ 16½ðr0 − 2MÞE − ðr0 − 3MÞK�
πðr0 − 2MÞ1=2ðr0 − 3MÞ1=2 ðΛ1 þ 4Λ2Þ;

ð6:11qÞ

where we recall that Λ1 and Λ2 are given by Eqs. (4.9) and
(4.10), respectively, and where we have indicated with a

subscript the cases (h½−1�tφ;r , h
½−1�
θθ;r, and h½−1�φφ;r) where a term is

only nonzero above some minimum value of l. In all of the
above equations, to simplify the presentation we have
omitted an overall factor of the small mass μ.
Finally, we note that these expressions can be combined

to produce tensor-harmonic regularization parameters for
the redshift invariant hμνuμuν and the radial component of
the self-force. Doing so, we find

H½0� ¼ 4μ

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ L2

0

p K

−
1

ð2l − 1Þð2lþ 3Þ
8μMð6r0 − 17MÞK

πr0ðr0 − 3MÞ3=2ðr0 − 2MÞ1=2

þ 1

ð2l − 3Þð2l − 1Þð2lþ 3Þð2lþ 5Þ

×
420μM2K

πr0ðr0 − 3MÞ3=2ðr0 − 2MÞ1=2 ; ð6:12Þ

Fr�
½−1� ¼∓ μ2

2r20

�
1 −

3M
r0

�
1=2

�
�
2μ2Mð2M − r0Þ
r5=20 ðr0 − 3MÞ3=2

�
l<1

�
�

μ2M2

2r5=20 ðr0 − 3MÞ3=2
�
l<2

; ð6:13Þ

Fr
½0� ¼

μ2r0E2
0

πðL2
0 þ r20Þ3=2

½E − 2K� − 1

ð2l − 1Þð2lþ 3Þ

×
2μ2Mðr0 − 2MÞ1=2½ð6r0 − 17MÞE þ 2MK�

πr30ðr0 − 3MÞ3=2

þ 1

ð2l − 3Þð2l − 1Þð2lþ 3Þð2lþ 5Þ

×
105μ2M2ðr0 − 2MÞ1=2ðE þ 2KÞ

πr30ðr0 − 3MÞ3=2 : ð6:14Þ

Note that in giving these parameters we have rewritten Λ1

and Λ2 in a form which highlights the fact thatH½0� and Fr
½0�

both match their scalar-harmonic counterparts [Eq. (3.12)],
with the exception of higher-order terms in 1=l. Since these
terms vanish when summed from l ¼ 0 to infinity they
have no impact on the final result and can be ignored in
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practice. Importantly, this is not the case for Fr�
½−1� which

differs from its scalar-harmonic version. The difference is
in the presence of the second and third terms, which arises
from the fact our mode sum expression (6.9) starts at l ¼ 0
while it should start at l ¼ 1 for the vector sector and at
l ¼ 2 for the tensor sector. However, since this term has
different limits on either side of the worldline, it vanishes
upon averaging the left and right radial limits. As such, we
see that in this case regularization can be achieved without
projection onto scalar harmonics by using the scalar-
harmonic regularization parameters combined with an
averaging procedure.

VII. CONCLUDING REMARKS

In this work we have developed a frequency-domain
application of the effective source approach to computing
the self-force on a point mass in a curved background
spacetime. This new method builds on previous work which
studied the case of a scalar-field toy model [28], extending it
to the more physically relevant gravitational case.
With a numerical implementation for the case of a

circular orbit in Schwarzschild spacetime, our results
demonstrate that the method can reliably produce accurate
numerical results for the regularized metric perturbation
with modest effort and computational cost. While this is
not particularly important in a first-order calculation—the
traditional mode-sum method, for example, can already
produce comparable results with similar or better computa-
tional efficiency—the primary goal of our approach is to
develop a set of methods which will be applicable to a
second-order self-force calculation. Our results provide two
key components in that regard.
(1) Our numerical scheme for solving the sourced field

equations in the frequency domain carries over
immediately to second order. The only change will
be that the sourcewill be amore complicated function
involving the first-order metric perturbation.

(2) The source for the second-order field equations is
most efficiently written in terms of the first-order
Detweiler-Whiting regular field in an extended
region near the worldline. Such an approximation
is exactly the output from our first-order calculation.

In addition to addressing several important aspects of
a second-order self-force calculation, the tensor-harmonic
regularization parameters we derived in Sec. VI can also be
used to improve the computational efficiency of a first-
order mode-sum self-force calculation by avoiding the need
for a cumbersome and wasteful projection onto scalar
harmonics. It is interesting to note the close relation
between the tensor-harmonic regularization parameters
and those one would obtain using a scalar-harmonic
decomposition. In particular, provided one computes an
average of either side of the (radial) limit to the worldline,
we have found that scalar-harmonic regularization

parameters may be used in place of their tensor-harmonic
counterparts. We anticipate that this is more than merely a
coincidence; in a future work we will investigate whether a
similar result holds in more general cases.
There are several future directions in which our results

may be extended. Most important is the application of our
approach to the calculation of conservative effects from the
second-order gravitational self-force [9,24,25]. In addition
to this, it may be interesting to study extensions of the
approach beyond circular orbits, to the Kerr spacetime and
to radiation and Regge-Wheeler gauges. With a view to
identifying other important second-order effects, it may
also be interesting to incorporate our method into an orbital
evolution scheme which makes use of a two-timescale
expansion of the equations of motion [58]. Such a scheme
would likely provide a compelling balance of computa-
tional efficiency and faithfulness to the underlying physics
of extreme-mass-ratio inspirals.
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APPENDIX A: FUNCTIONS ON
THE TWO-SPHERE

When dealing with functions on the two-sphere, there are
a wide number of possible conventions. Our conventions,
which are consistent with those of MATHEMATICA [59], are
summarized in this appendix.

1. Scalar spherical harmonics

The associated Legendre polynomials may be defined in
terms of derivatives of the standard Legendre polynomials,

Pm
l ðxÞ¼ð−1Þmð1−x2Þm=2 dm

dxm
PlðxÞ ½m≥0�; ðA1aÞ

P−m
l ðxÞ ¼ ð−1Þm ðl −mÞ!

ðlþmÞ!P
m
l ðxÞ; ðA1bÞ

where we have included the Condon-Shortley phase factor
ð−1Þm and where the Legendre polynomials satisfy the
Legendre equation
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ð1 − x2Þ d
2PlðxÞ
dx2

− 2x
dPlðxÞ
dx

þ lðlþ 1ÞPlðxÞ ¼ 0:

ðA2Þ
We now define the scalar spherical harmonics as

Ylmðθ;φÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ

4π

ðl −mÞ!
ðlþmÞ!

s
Pm
l ðcos θÞeimφ; ðA3Þ

where −l ≤ m ≤ l. Note that l and m are merely labels
and wewill raise and lower their position freely to wherever
they get in the way the least. The scalar spherical harmonics
are orthonormal,Z

2π

0

Z
π

0

Ylmðθ;φÞY�
l0m0 ðθ;φÞdΩ ¼ δll0δmm0 ; ðA4Þ

where dΩ≡ sin θdθdφ. They also satisfy

Y�
lmðθ;φÞ ¼ ð−1ÞmYl;−mðθ;φÞ; ðA5Þ

and the completeness relation

X∞
l¼0

Xl
m¼−l

Ylmðθ;φÞY�
lmðθ0;φ0Þ ¼ δðcosθ−cosθ0Þδðφ−φ0Þ:

ðA6Þ
Since the scalar harmonics form an orthonormal basis,
an arbitrary scalar function can be expanded in spherical
harmonics,

fðθ;φÞ ¼
X∞
l¼0

Xl
m¼−l

flmYlmðθ;φÞ; ðA7Þ

where the coefficients are given by

flm ¼
Z

2π

0

Z
π

0

fðθ;φÞY�
lmðθ;φÞdΩ: ðA8Þ

At the pole, θ ¼ 0, only the m ¼ 0 spherical harmonics are
nonzero, and Eq. (A7) becomes

fð0;φÞ ¼
X∞
l¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
fl0; ðA9Þ

where

fl0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r Z
2π

0

Z
π

0

fðα; βÞPlðcos αÞdΩ: ðA10Þ

Similarly, the θ derivative only requires modes m ¼ −1; 1,

ð∂θfÞð0;φÞ¼
X∞
l¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þð2lþ1Þ

16π

r
ðe−iφfl;−1−eiφfl1Þ;

ðA11Þ

the second θ derivative requires m ¼ 0;�2,

ð∂θθfÞð0;φÞ ¼
X∞
l¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ

64π

r h
−2lðlþ 1Þfl0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þlðlþ 1Þðlþ 1Þ

p
× ðe−2iβfl;−2 þ e2iβfl2Þ

i
; ðA12Þ

and so on; for n derivatives with respect to θ we need
modes m ¼ −n;−nþ 2;…; n − 2; n.

2. Vector spherical harmonics

The vector spherical harmonics fall into two categories:
those of even parity (lþm even) and those of odd parity
(lþm odd). These categories reflect a difference in
behavior under the parity operation ðθ;φÞ→ðπ−θ;φþπÞ;
the even-parity harmonics are invariant under this trans-
formation while the odd-parity harmonics change sign.
The even-parity vector harmonics are defined by

Zlm
A ¼ ½lðlþ 1Þ�−1=2DAYlm; ðA13Þ

and the odd-parity harmonics are defined by

Xlm
A ¼ −½lðlþ 1Þ�−1=2ϵABDBYlm; ðA14Þ

where DA is the covariant derivative and ϵAB is the Levi-
Civita tensor associated with the metric ΩAB ¼
diagð1; sin2θÞ on the two-sphere (i.e., ϵθφ ¼ sin θ,
ϵφθ ¼ − sin θ, ϵθθ ¼ 0 ¼ ϵφφ). Explicitly, the components
of the vector harmonics are

Zlm
θ ¼ ½lðlþ 1Þ�−1=2∂θYlm;

Xlm
θ ¼ −½lðlþ 1Þ�−1=2 1

sin θ
∂φYlm;

Zlm
φ ¼ ½lðlþ 1Þ�−1=2∂φYlm;

Xlm
φ ¼ ½lðlþ 1Þ�−1=2 sin θ ∂θYlm: ðA15Þ

The vector harmonics satisfy the orthonormality
relations

Z
2π

0

Z
π

0

Xlm
A ðθ;φÞXA�

l0m0 ðθ;φÞdΩ ¼ δll0δmm0 ; ðA16aÞ
Z

2π

0

Z
π

0

Zlm
A ðθ;φÞZA�

l0m0 ðθ;φÞdΩ ¼ δll0δmm0 ; ðA16bÞ
Z

2π

0

Z
π

0

Xlm
A ðθ;φÞZA�

l0m0 ðθ;φÞdΩ ¼ 0: ðA16cÞ

They also satisfy

Xlm�
A ðθ;φÞ ¼ ð−1ÞmXl;−m

A ðθ;φÞ; ðA17aÞ
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Zlm�
A ðθ;φÞ ¼ ð−1ÞmZl;−m

A ðθ;φÞ: ðA17bÞ

These definitions are consistent with Ref. [60] and
with Ref. [61] [apart from the inclusion of the prefactor
½lðlþ 1Þ�−1=2 which ensures orthonormality] and
relate to those of Ref. [62] through the conversion
Zlm
A → ½lðlþ 1Þ�1=2Ylm

A , Xlm
A → ½lðlþ 1Þ�1=2Xlm

A .

3. Tensor spherical harmonics

The tensor spherical harmonics again fall into two
categories: those of even parity (lþm even) and those
of odd parity (lþm odd). The even-parity tensor har-
monics are defined by

Zlm
AB ¼

�
2
ðl − 2Þ!
ðlþ 2Þ!

�1
2

�
DADB þ 1

2
lðlþ 1ÞΩAB

�
Ylm;

ðA18Þ

and the odd-parity harmonics are defined by

Xlm
AB ¼ −

�
2
ðl − 2Þ!
ðlþ 2Þ!

�1
2

ϵðACDBÞDCYlm: ðA19Þ

Explicitly, the components of the tensor harmonics are

Zlm
θθ ¼

�
2
ðl − 2Þ!
ðlþ 2Þ!

�1
2

�
∂θθ þ

1

2
lðlþ 1Þ

�
Ylm; ðA20aÞ

Zlm
θφ ¼

�
2
ðl − 2Þ!
ðlþ 2Þ!

�1
2½∂θφ − cot θ ∂φ�Ylm; ðA20bÞ

Zlm
φφ ¼

�
2
ðl − 2Þ!
ðlþ 2Þ!

�1
2½∂φφ þ sin θ cos θ ∂θ

þ 1

2
lðlþ 1Þsin2θ�Ylm; ðA20cÞ

Xlm
θθ ¼ −

�
2
ðl − 2Þ!
ðlþ 2Þ!

�1
2 1

sin θ
½∂θφ − cot θ ∂φ�Ylm; ðA20dÞ

Xlm
θφ ¼ −

�
2
ðl − 2Þ!
ðlþ 2Þ!

�1
2 1

2 sin θ
½∂φφ − sin2θ∂θθ

þ sin θ cos θ ∂θ�Ylm; ðA20eÞ

Xlm
φφ ¼

�
2
ðl − 2Þ!
ðlþ 2Þ!

�1
2

sin θ½∂θφ − cot θ ∂φ�Ylm: ðA20fÞ

The tensor harmonics satisfy the orthonormality relationsZ
2π

0

Z
π

0

Xlm
ABðθ;φÞXAB�

l0m0 ðθ;φÞdΩ ¼ δll0δmm0 ; ðA21aÞ

Z
2π

0

Z
π

0

Zlm
ABðθ;φÞZAB�

l0m0 ðθ;φÞdΩ ¼ δll0δmm0 ; ðA21bÞ

Z
2π

0

Z
π

0

Xlm
ABðθ;φÞZAB�

l0m0 ðθ;φÞdΩ ¼ 0; ðA21cÞ

and the identity

ΩABZlm
AB ¼ 0 ¼ ΩABXlm

AB: ðA22Þ

They also satisfy

Xlm�
AB ðθ;φÞ ¼ ð−1ÞmXl;−m

AB ðθ;φÞ; ðA23aÞ

Zlm�
AB ðθ;φÞ ¼ ð−1ÞmZl;−m

AB ðθ;φÞ: ðA23bÞ

These definitions are consistent with Thorne [60] and relate
to those of Ref. [61] through an orthonormality factor,

Zlm
AB → ½2 ðl−2Þ!

ðlþ2Þ!�1=2Ylm
AB , X

lm
AB → ½2 ðl−2Þ!

ðlþ2Þ!�1=2Xlm
AB .

4. Rotations

Under a rotation of the coordinate system which is
represented by the Euler angles α; β; γ, the spherical
harmonic components transform according to

flmðθ;φÞ ¼
Xl
m0¼−l

Dl
mm0 ðα; β; γÞflm0 ðθ0;φ0Þ; ðA24Þ

where Dl
mm0 ðα; β; γÞ is the Wigner-D matrix [63]. Here, we

use the convention that the Euler angles correspond to a
z − y − z counterclockwise rotation and our convention3

for Dl
mm0 ðα; β; γÞ is consistent with Rose [64]. Using these

conventions, the Wigner-D matrix satisfies

Dl
m1m2

ðα; β; γÞ ¼ e−im1α−im2γDl
m1m2

ð0; β; 0Þ: ðA25Þ

The vector and tensor harmonics also transform in a similar
way [65], i.e.,

Xlm
A ðθ;φÞ ¼ ∂xA0

∂xA
Xl

m0¼−l

Dl
mm0 ðα; β; γÞXlm0

A0 ðθ0;φ0Þ; ðA26aÞ

Zlm
A ðθ;φÞ ¼ ∂xA0

∂xA
Xl
m0¼−l

Dl
mm0 ðα; β; γÞZlm0

A0 ðθ0;φ0Þ; ðA26bÞ

3This convention is different from that of MATHEMATICA [59]
and Wigner [63]. Our Dl

mm0 ðα; β; γÞ is related to theirs by a
change in the signs of m and m0 [64].
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Xlm
ABðθ;φÞ ¼

∂xA0

∂xA
∂xB0

∂xB
Xl

m0¼−l

Dl
mm0 ðα; β; γÞXlm0

A0B0 ðθ0;φ0Þ;

ðA26cÞ

Zlm
ABðθ;φÞ ¼

∂xA0

∂xA
∂xB0

∂xB
Xl

m0¼−l

Dl
mm0 ðα; β; γÞZlm0

A0B0 ðθ0;φ0Þ;

ðA26dÞ

which is equivalent to stating that the vector- and tensor-
harmonic components of a tensor transform according
to Eq. (A24). Finally, we note that the Wigner-D matrix
relates to the spin-weighted spherical harmonics,

Dl
msðα; β; γÞ ¼ ð−1Þs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
−sY�

lmðβ; αÞe−isγ; ðA27Þ

which for the spin-0 case gives a relation to the scalar
harmonics,

Dl
m0ðα; β; 0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
Y�
lmðβ; αÞ: ðA28Þ

5. Tensor-harmonic basis in Schwarzschild spacetime

Barack and Lousto [39] used the above bases of scalar,
vector, and tensor harmonics to construct a basis of
harmonics for the components of a symmetric rank-2
tensor tμν defined on a Schwarzschild background space-
time. This basis was later modified slightly by Barack and
Sago [33] to improve the behavior of some components
near the horizon. In particular, they chose a basis of ten
fields in t − r space defined by

tð1Þlm ¼
Z

2π

0

Z
π

0

rðttt þ f2trrÞY�
lmdΩ; ðA29aÞ

tð2Þlm ¼
Z

2π

0

Z
π

0

2rfttrY�
lmdΩ; ðA29bÞ

tð3Þlm ¼
Z

2π

0

Z
π

0

rf−1ðttt − f2trrÞY�
lmdΩ; ðA29cÞ

tð4Þlm ¼
Z

2π

0

Z
π

0

2½lðlþ 1Þ�1=2ttAZA�
lmdΩ; ðA29dÞ

tð5Þlm ¼
Z

2π

0

Z
π

0

2½lðlþ 1Þ�1=2ftrAZA�
lmdΩ; ðA29eÞ

tð6Þlm ¼
Z

2π

0

Z
π

0

1

r
tABΩABY�

lmdΩ;

tð7Þlm ¼
Z

2π

0

Z
π

0

1

r

�
2
ðl − 2Þ!
ðlþ 2Þ!

�
1=2

× tAB

�
ZAB�
lm −

1

2
ΩABΩCDZCD�

lm

�
dΩ; ðA29fÞ

tð8Þlm ¼ −
Z

2π

0

Z
π

0

2½lðlþ 1Þ�1=2ttAXA�
lmdΩ; ðA29gÞ

tð9Þlm ¼ −
Z

2π

0

Z
π

0

2½lðlþ 1Þ�1=2trAXA�
lmdΩ; ðA29hÞ

tð10Þlm ¼
Z

2π

0

Z
π

0

1

r

�
2
ðl − 2Þ!
ðlþ 2Þ!

�
1=2

× tAB

�
XAB�
lm −

1

2
ΩABΩCDXCD�

lm

�
dΩ; ðA29iÞ

where f ≡ ð1 − 2M=rÞ. The harmonics i ¼ 1;…; 7 are of
even parity, while the harmonics i ¼ 8; 9; 10 are of odd
parity.
Barack and Sago represented this basis in terms of a set

of ten tensors defined by

Yð1Þ
μν ¼ 1ffiffiffi

2
p ðδtμδtν þ f−2δrμδrνÞYlm; ðA30Þ

Yð2Þ
μν ¼ 1

f
ffiffiffi
2

p ðδtμδrν þ δrμδ
t
νÞYlm; ðA31Þ

Yð3Þ
μν ¼ fffiffiffi

2
p ðδtμδtν − f−2δrμδrνÞYlm; ðA32Þ

Yð4Þ
μν ¼ rffiffiffi

2
p ðδtμZlm

ν þ Zlm
μ δtνÞ; ðA33Þ

Yð5Þ
μν ¼ r

f
ffiffiffi
2

p ðδrμZlm
ν þ Zlm

μ δrνÞ; ðA34Þ

Yð6Þ
μν ¼ r2ffiffiffi

2
p ΩABδ

A
μ δ

B
ν Ylm; ðA35Þ

Yð7Þ
μν ¼ r2

�
Zlm
μν −

1

2
ZA

AΩμν

�
; ðA36Þ

Yð8Þ
μν ¼ −

rffiffiffi
2

p ðδtμXlm
ν þ Xlm

μ δtνÞ; ðA37Þ

Yð9Þ
μν ¼ −

r

f
ffiffiffi
2

p ðδrμXlm
ν þ Xlm

μ δrνÞ; ðA38Þ

Yð10Þ
μν ¼ r2

�
Xlm
μν −

1

2
XA

AΩμν

�
: ðA39Þ
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With the exception of i ¼ 3, this basis is an orthonormal set
in the sense thatZ

2π

0

Z
π

0

ητμηκνYðiÞlm
μν YðjÞl0m0�

τκ dΩ ¼ δijδll0δmm0 ; ðA40Þ

where ητκ ≡ diagð1; f2; r−2; r−2sin−2θÞ. For i ¼ 3, the set is

also orthogonal, but Yð3Þ
μν has a norm of f2.

Finally, we note that Barack and Sago factored out the
coefficients

aðiÞl ¼ 1ffiffiffi
2

p

8>><
>>:

1; i ¼ 1; 2; 3; 6;

ðlðlþ 1ÞÞ−1=2; i ¼ 4; 5; 8; 9;

ððl − 1Þlðlþ 1Þðlþ 2ÞÞ−1=2; i ¼ 7; 10

ðA41Þ

from the tensor-harmonic fields h̄ðiÞ in order to make some
of their expressions for, e.g., the field equations more
compact. We likewise use these coefficients in Eqs. (2.7)
and (4.5).

6. Metric reconstruction

Rebuilding the original metric perturbation hμν from the

h̄ðiÞlm fields is straightforward. The necessary equation can
be derived using Eq. (A29) along with the fact that a trace
reversal, hμν ¼ h̄μν − 1

2
gμνh̄, is equivalent to the inter-

change hð3Þ⇔hð6Þ. This gives

hμν ¼
μ

2r

X∞
l

Xl
m¼−l

hlmμν e−iωmt; ðA42Þ

where

hlmtt ¼ ðh̄ð1Þlm þ fðrÞh̄ð6ÞlmÞYlm; ðA43Þ

hlmtr ¼ fðrÞ−1h̄ð2ÞlmY
lm; ðA44Þ

hlmrr ¼ fðrÞ−2ðh̄ð1Þlm − fh̄ð6ÞlmÞYlm; ðA45Þ

hlmtA ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ðh̄ð4ÞlmZ

lm
A − h̄ð8ÞlmX

lm
A Þ; ðA46Þ

hlmrA ¼ r

fðrÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ðh̄ð5ÞlmZ

lm
A − h̄ð9ÞlmX

lm
A Þ; ðA47Þ

hlmAB ¼ r2ΩABh̄
ð3Þ
lmY

lm

þ r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ðl − 2Þ!
ðlþ 2Þ!

s �
h̄ð7Þlm

�
Zlm
AB −

1

2
ZC

CΩAB

�

− h̄ð10Þlm

�
Xlm
AB −

1

2
XC

CΩAB

��
; ðA48Þ

and where the sum over l begins at l ¼ 0 for the scalar
sector (i.e., h̄1lm, h̄

2
lm, h̄

3
lm, and h̄

6
lm), at l ¼ 1 for the vector

sector (i.e., h̄4lm, h̄
5
lm, h̄

8
lm, and h̄9lm), and at l ¼ 2 for the

tensor sector (i.e., h̄7lm and h̄10lm).

APPENDIX B: FIELD EQUATIONS AND
RETARDED FIELD SOURCES

The coupling terms in the frequency-domain field
equation (2.10) are given by

Mð1ÞðjÞh̄ðjÞ ¼
M
r2

fh̄ð3Þ;r� þ
f
2r2

�
1 −

4M
r

�
ðh̄ð1Þ − h̄ð5Þ − fh̄ð3ÞÞ − f2

2r2

�
1 −

6M
r

�
h̄ð6Þ; ðB1Þ

Mð2ÞðjÞh̄ðjÞ ¼
1

2
ff0h̄ð3Þ;r� þ

1

2
f0½iωðh̄ð1Þ − h̄ð2ÞÞ þ h̄ð2Þ;r� − h̄ð1Þ;r� � þ

f2

2r2
ðh̄ð2Þ − h̄ð4ÞÞ − ff0

2r
ðh̄ð1Þ − h̄ð5Þ − fh̄ð3Þ − 2fh̄ð6ÞÞ; ðB2Þ

Mð3ÞðjÞh̄ðjÞ ¼ −
f
2r2

�
h̄ð1Þ − h̄ð5Þ −

�
1 −

4M
r

�
ðh̄ð3Þ þ h̄ð6ÞÞ

�
; ðB3Þ

Mð4ÞðjÞh̄ðjÞ ¼
1

4
f0½iωðh̄ð5Þ − h̄ð4ÞÞ þ h̄ð4Þ;r� − h̄ð5Þ;r� � −

1

2
lðlþ 1Þ f

r2
h̄ð2Þ

−
ff0

4r
ð3h̄ð4Þ þ 2h̄ð5Þ − h̄ð7Þ þ lðlþ 1Þh̄ð6ÞÞ; ðB4Þ

Mð5ÞðjÞh̄ðjÞ ¼
f
r2

��
1 −

9M
2r

�
h̄ð5Þ −

lðlþ 1Þ
2

ðh̄ð1Þ − fh̄ð3ÞÞ þ 1

2

�
1 −

3M
r

�
ðlðlþ 1Þh̄ð6Þ − h̄ð7ÞÞ

�
; ðB5Þ

Mð6ÞðjÞh̄ðjÞ ¼ −
f
2r2

�
h̄ð1Þ − h̄ð5Þ −

�
1 −

4M
r

�
ðh̄ð3Þ þ h̄ð6ÞÞ

�
; ðB6Þ
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Mð7ÞðjÞh̄ðjÞ ¼ −
f
2r2

ðh̄ð7Þ þ λh̄ð5ÞÞ; ðB7Þ

Mð8ÞðjÞh̄ðjÞ ¼
1

4
f0½iωðh̄ð9Þ − h̄ð8ÞÞ þ h̄ð8Þ;r� − h̄ð9Þ;r� � −

ff0

4r
ð3h̄ð8Þ þ 2h̄ð9Þ − h̄ð10ÞÞ; ðB8Þ

Mð9ÞðjÞh̄ðjÞ ¼
f
r2

�
1 −

9M
2r

�
h̄ð9Þ −

f
2r2

�
1 −

3M
r

�
h̄ð10Þ; ðB9Þ

Mð10ÞðjÞh̄ðjÞ ¼ −
f
2r2

ðh̄ð10Þ þ λh̄ð9ÞÞ; ðB10Þ

where λ ¼ ðl − 1Þðlþ 2Þ.
The sources to the field equation (2.10) take the form

J ðrÞ ¼ −
16πE
f20

αðiÞδðr − r0Þ
�Ylm�ðπ=2;ΩφtÞ; i ¼ 1;…; 7;

Ylm�
;θ ðπ=2;ΩφtÞ; i ¼ 8; 9; 10;

ðB11Þ

where

αð1Þ ¼ f20=r0; αð2Þ ¼ 0; αð3Þ ¼ f0=r0; αð4Þ ¼ 2if0mΩφ; αð5Þ ¼ 0;

αð6Þ ¼ r0Ω2
φ; αð7Þ ¼ r0Ω2

φ½lðlþ 1Þ − 2m2�; αð8Þ ¼ 2f0Ωφ; αð9Þ ¼ 0; αð10Þ ¼ 2imr0Ω2
φ: ðB12Þ

APPENDIX C: PUNCTURE FUNCTIONS FOR CIRCULAR ORBITS IN LORENZ GAUGE

In this appendix we give our explicit expressions for the Lorenz-gauge puncture fields h̄ðiÞPlm for the case of a circular
geodesic orbit in Schwarzschild spacetime. These punctures contain all pieces of the Detweiler-Whiting singular field
necessary to compute the regularized components of the metric and its first derivatives. Written as tensor-harmonic modes
in the ðθ;φÞ coordinate system, the punctures are given by

h̄ð1ÞPlm ¼ rDl
m;0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ1

r �
8ðr0−2MÞ3=2K
πr20ðr0−3MÞ1=2− ð2lþ1ÞjΔrj 2ðr0−2MÞ

r5=20 ðr0−3MÞ1=2
þΔr

4ðr0−2MÞ1=2½ðr0−2MÞE−2ðr0−4MÞK�
πr30ðr0−3MÞ1=2

�
;

ðC1Þ

h̄ð2ÞPlm ¼ rfðrÞ½Dl
m;1 −Dl

m;−1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

lðlþ 1Þ

s �
64ðr0 − 2MÞ1=2½ðr0 − 2MÞE − ðr0 − 3MÞK�

πr3=20 M1=2ðr0 − 3MÞ1=2
Λ1

�
; ðC2Þ

h̄ð3ÞPlm ¼ r
fðrÞD

l
m;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r �
8ðr0 − 2MÞ3=2K
πr20ðr0 − 3MÞ1=2 − ð2lþ 1ÞjΔrj 2ðr0 − 2MÞ

r5=20 ðr0 − 3MÞ1=2

þ Δr
4ðr0 − 2MÞ1=2½ðr0 − 2MÞE − 2ðr0 − 4MÞK�

πr30ðr0 − 3MÞ1=2
�
; ðC3Þ

h̄ð4ÞPlm ¼ lðlþ 1Þ½Dl
m;1 −Dl

m;−1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

lðlþ 1Þ

s �
−
64ðr0 − 2MÞ3=2ðE −KÞ
πM1=2r1=20 ðr0 − 3MÞ1=2

Λ1

þ 48ðr0 − 2MÞ1=2½2ðr0 − 2MÞE − ð2r0 − 5MÞK�
πM1=2r1=20 ðr0 − 3MÞ1=2ð2l − 1Þð2lþ 3Þ

− ð2lþ 1ÞjΔrj 2M1=2

r0ðr0 − 3MÞ1=2

þ Δr
�
32ðr0 − 2MÞ1=2½ðr0 − 4MÞE − ðr0 − 5MÞK�

πM1=2r3=20 ðr0 − 3MÞ1=2
Λ1

−
24½ðr0 − 2MÞð2r0 − 9MÞE − 2ð11M2 − 7Mr0 þ r20ÞK�
πM1=2r3=20 ðr0 − 3MÞ1=2ðr0 − 2MÞ1=2ð2l − 1Þð2lþ 3Þ

��
; ðC4Þ
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h̄ð5ÞPlm ¼ lðlþ 1ÞfðrÞ½Dl
m;2 þDl

m;−2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðl − 1Þlðlþ 1Þðlþ 2Þ

s

×

�
256½ð4r0 − 11MÞðr0 − 2MÞE − ð4r0 − 9MÞðr0 − 3MÞKÞ

πMðr0 − 2MÞ1=2ðr0 − 3MÞ1=2 Λ2

−
ðl − 1Þðlþ 2Þ

ð2l − 3Þð2l − 1Þð2lþ 3Þð2lþ 5Þ
640½ð8r0 − 23MÞðr0 − 2MÞE − ð8r0 − 19MÞðr0 − 3MÞKÞ

πMðr0 − 2MÞ1=2ðr0 − 3MÞ1=2
�

þ fðrÞDl
m;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r �
64½−ðr0 − 2MÞE þ ðr0 − 3MÞKÞ

πðr0 − 2MÞ1=2ðr0 − 3MÞ1=2 Λ1

�
; ðC5Þ

h̄ð6ÞPlm ¼ 1

r
Dl

m;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r �
8Mr0K

πðr0 − 2MÞ1=2ðr0 − 3MÞ1=2 − ð2lþ 1ÞjΔrj 2Mr1=20

ðr0 − 2MÞðr0 − 3MÞ1=2

þ Δr
4MðE þ 2KÞ

πðr0 − 2MÞ1=2ðr0 − 3MÞ1=2
�
; ðC6Þ

h̄ð7ÞPlm ¼ ðl − 1Þlðlþ 1Þðlþ 2Þ
r

½Dl
m;−2 þDl

m;2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðl − 1Þlðlþ 1Þðlþ 2Þ

s

×

�
−
128r0½4ðr0 − 2MÞð2r0 − 5MÞE − ð8r20 − 40Mr0 þ 51M2ÞK�

3πMðr0 − 2MÞ1=2ðr0 − 3MÞ1=2 Λ2

þ 1

ð2l − 1Þð2lþ 3Þ
160r0½8ðr0 − 2MÞð2r0 − 5MÞE − ð4r0 − 9MÞð4r0 − 11MÞK�

3πMðr0 − 2MÞ1=2ðr0 − 3MÞ1=2

− ð2lþ 1ÞjΔrj Mr1=20

ðr0 − 2MÞðr0 − 3MÞ1=2 þ Δr
�
64½ð8r20 − 48Mr0 þ 67M2ÞE − 2ð4r20 − 26Mr0 þ 39M2ÞK�

3πMðr0 − 2MÞ1=2ðr0 − 3MÞ1=2 Λ2

−
1

ð2l − 1Þð2lþ 3Þ
80½ð16r20 − 96Mr0 þ 131M2ÞE − 2ð8r20 − 52Mr0 þ 81M2ÞK�

3πMðr0 − 2MÞ1=2ðr0 − 3MÞ1=2
��

; ðC7Þ

h̄ð8ÞPlm ¼ ilðlþ 1Þ½Dl
m;1 þDl

m;−1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

lðlþ 1Þ

s �
−
64ðr0 − 2MÞ1=2ððr0 − 2MÞE − ðr0 − 3MÞKÞ

πM1=2r1=20 ðr0 − 3MÞ1=2
Λ1

þ 1

ð2l − 1Þð2lþ 3Þ
48ðr0 − 2MÞ1=2½2ðr0 − 2MÞE − ð2r0 − 5MÞK�

πM1=2r1=20 ðr0 − 3MÞ1=2
þ ð2lþ 1ÞjΔrj 2M1=2

r0ðr0 − 3MÞ1=2

þ Δr
�
32½ðr0 − 2MÞðr0 − 5MÞE − ðr0 − 3MÞðr0 − 4MÞK�

πM1=2r3=20 ðr0 − 2MÞ1=2ðr0 − 3MÞ1=2
Λ1

−
1

ð2l − 1Þð2lþ 3Þ
24½ðr0 − 2MÞð2r0 − 9MÞE − 2ð11M2 − 7Mr0 þ r20ÞK�

πM1=2r3=20 ðr0 − 3MÞ1=2ðr0 − 2MÞ1=2
��

; ðC8Þ

h̄ð9ÞPlm ¼ ilðlþ 1ÞfðrÞ½Dl
m;2 −Dl

m;−2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðl − 1Þlðlþ 1Þðlþ 2Þ

s

×

�
512ðr0 − 3MÞ1=2½2ðr0 − 2MÞE − ð2r0 − 5MÞKÞ

πMðr0 − 2MÞ1=2 Λ2

−
ðl − 1Þðlþ 2Þ

ð2l − 3Þð2l − 1Þð2lþ 3Þð2lþ 5Þ
640½ð8r0 − 23MÞðr0 − 2MÞE − ð8r0 − 19MÞðr0 − 3MÞKÞ

πMðr0 − 2MÞ1=2ðr0 − 3MÞ1=2
�
; ðC9Þ
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h̄ð10ÞPlm ¼ iðl − 1Þlðlþ 1Þðlþ 2Þ
r

½Dl
m;−2 −Dl

m;2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðl − 1Þlðlþ 1Þðlþ 2Þ

s

×

�
−
512r0ðr0 − 2MÞ1=2½ð2r0 − 5MÞE − 2ðr0 − 3MÞK�

3πMðr0 − 3MÞ1=2 Λ2

þ 1

ð2l − 1Þð2lþ 3Þ
160r0½8ðr0 − 2MÞð2r0 − 5MÞE − ð4r0 − 9MÞð4r0 − 11MÞK�

3πMðr0 − 2MÞ1=2ðr0 − 3MÞ1=2

þ ð2lþ 1ÞjΔrj Mr1=20

ðr0 − 2MÞðr0 − 3MÞ1=2 þ Δr
�
256½2ðr0 − 4MÞðr0 − 2MÞE − ðr0 − 3MÞð2r0 − 7MÞK�

3πMðr0 − 2MÞ1=2ðr0 − 3MÞ1=2 Λ2

−
1

ð2l − 1Þð2lþ 3Þ
80½ð16r20 − 96Mr0 þ 131M2ÞE − 2ð8r20 − 52Mr0 þ 81M2ÞK�

3πMðr0 − 2MÞ1=2ðr0 − 3MÞ1=2
��

; ðC10Þ

where Dl
mm0 ≡Dl

mm0 ðπ; π=2; π=2Þ is the Wigner-D matrix corresponding to the rotation from ðα; βÞ coordinates to ðθ;φÞ
coordinates and we recall that Λ1 and Λ2 are defined in Eqs. (4.9) and (4.10), respectively.

APPENDIX D: MONOPOLE CONTRIBUTION
TO THE LORENZ-GAUGE METRIC

PERTURBATION

In this section we calculate the monopole (l ¼ 0) con-
tribution to the retarded and residual metric perturbation at
the particle. There is some subtlety to Lorenz-gauge monop-
ole perturbations which we will highlight, but we refer the
reader to the given references for more detailed information.
We begin by providing the field equations and basis of
homogeneous solutions for the monopole perturbation.

1. Field equations and basis of homogeneous solutions

The generic form of the field equations is given by
Eq. (2.10). For the monopole perturbation, which has
l ¼ 0; m ¼ 0, and ωm ¼ 0, only the ðiÞ ¼ 1; 3; 6 modes
are excited. The field equations can be further simplified
using the gauge equation (2.14) to decouple the h̄ð6Þ field;
see the discussion around Table I. The remaining field
equations for h̄ð1Þ; h̄ð3Þ are given by

h̄ð1Þ;rr ¼−
1

r2f
½ðr−4MÞh̄ð1Þ;r − h̄ð1Þ−f2ðrh̄ð3Þ;r − h̄ð3ÞÞ�; ðD1Þ

h̄ð3Þ;rr ¼−
1

r2

�
rh̄ð3Þ;r − h̄ð3Þ þ 1

f2
ðð4M− rÞh̄ð1Þ;r þ h̄ð1ÞÞ

�
: ðD2Þ

In order to display the basis of homogeneous solutions,
let us define

H ≡ ðM=μÞfhtt; hrr; r−2hθθ ¼ ðr sin θÞ−2hφφg
¼ M

4
ffiffiffi
π

p
r
fh̄ð1Þ þ fh̄ð6Þ; f−2ðh̄ð1Þ − fh̄ð6ÞÞ; h̄ð3Þg ðD3Þ

where the second line derives from the metric
reconstruction formulas (A43), (A45) and (A48), noting
that Y00 ¼ 1

2
ffiffi
π

p . The inverse relations are

h̄ð1Þ ¼ 2
ffiffiffi
π

p
μ−1rðhtt þ f2hrrÞ; ðD4Þ

h̄ð3Þ ¼ 4
ffiffiffi
π

p
μ−1r−1hθθ; ðD5Þ

h̄ð6Þ ¼ 2
ffiffiffi
π

p
μ−1

r
f
ðhtt − f2hrrÞ: ðD6Þ

A complete basis of homogeneous solutions to the two
coupled monopole field equations (D1) and (D2) is given
by [37]

HA ¼ f−f; f−1; 1g; ðD7Þ

HB ¼
�
−
fM
r3

PðrÞ; f
−1

r3
QðrÞ; f

r2
PðrÞ

�
; ðD8Þ

HC ¼
�
−
M4

r4
;
M3f−2ð3M − 2rÞ

r4
;
M3

r3

�
; ðD9Þ

HD ¼
�
M
r4

½WðrÞ þ rPðrÞf ln f − 8M3 ln
r
M

�
;

f−2

r4

�
KðrÞ − rQðrÞf ln f − 8M3ð2r − 3MÞ ln r

M

�
;

1

r3

�
3r3 −WðrÞ − rPðrÞf ln f þ 8M3 ln

r
M

��
;

ðD10Þ

where

PðrÞ ¼ r2 þ 2rM þ 4M2; ðD11Þ
QðrÞ ¼ r3 − r2M − 2rM2 þ 12M3; ðD12Þ

WðrÞ ¼ 3r3 − r2M − 4rM2 − 28M3=3; ðD13Þ
KðrÞ ¼ r3M − 5r2M2 − 20rM3=3þ 28M4: ðD14Þ
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By substitution, it is straightforward to verify that the set
fHA;HB;HC;HDg are solutions to the homogeneous field
equations (D1) and (D2).
When constructing the inhomogeneous monopole solu-

tion it is important to ensure that it represents a particle with
the correct mass-energy. That is, by Birkhoff’s theorem, for
the spherically symmetric monopole perturbation the sol-
ution must have the same geometry as the Schwarzschild
solutionwithmassM for r < r0. For r > r0 the solutionmust
again be that of Schwarzschild geometry but with mass
M þ μE0. As we now briefly discuss, perhaps the most
natural method for constructing the inhomogeneous monop-
ole perturbation does not satisfy this condition.
First we note that the solutions HA and HB are regular

at the event horizon but approach nonzero constants as
r → ∞. Conversely, HC and HD are regular at infinity, but
are singular on the horizon. It is therefore tempting to
construct the inhomogeneous “internal” solution for r ≤ r0
as a weighted sum of the fHA;HBg basis functions and an
“external” solution for r ≥ r0 as a weighted sum of the
fHC;HDg basis functions. This turns out to not give a
solution that has the correct mass-energy [26]. Instead a
correction term ΔHih must be added [37] so that for the
retarded field we have

Hret
l¼0 ¼ ΔHih þ

�
CAHA þ CBHB; r ≤ r0;

CCHC þ CDHD; r ≥ r0;
ðD15Þ

where CA; CB; CC; CD are constant weighting coefficients
and

ΔHih ¼ −CAðHA −HBÞ: ðD16Þ
A curious but well understood feature of the Lorenz-

gauge monopole perturbation is that the tt component
approaches a nonzero constant at infinity [13,40]. When
computing gauge-invariant quantities, care must be taken
to account for this minor peculiarity of the Lorenz gauge,
as discussed in Refs. [26,66,67] (for circular orbits) and
Refs. [34,68,69] (for eccentric orbits).
Before we proceed it will be useful to define a matrix of

homogeneous solutions by

Φ ¼

0
BBBBBB@

−h̄ð1ÞA −h̄ð1ÞB h̄ð1ÞC h̄ð1ÞD

−h̄ð3ÞA −h̄ð3ÞB h̄ð3ÞC h̄ð3ÞD

−h̄ð1ÞA;r −h̄ð1ÞB;r h̄ð1ÞC;r h̄ð1ÞD;r

−h̄ð3ÞA;r −h̄ð3ÞB;r h̄ð3ÞC;r h̄ð3ÞD;r

1
CCCCCCA
; ðD17Þ

where the matrix elements are constructed by applying the
relations (D4) and (D5) to the basis of homogeneous
solutions (D7)–(D10).

2. Retarded solution for the monopole mode

The retarded field at the particle is constructed via
Eq. (2.21) where the sources are given by

J ð1Þ ¼ −
8E0

ffiffiffi
π

p
r0

; J ð3Þ ¼ J ð1Þ

f0
: ðD18Þ

Following Eq. (2.22), the (r-independent) coefficients are
given by

ðCA CB CC CDÞT ¼ Φ−1:ð0 0 J ð1Þ J ð3ÞÞT: ðD19Þ
Explicitly, the weighting coefficients take the form

CA ¼ −
2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r0ðr0 − 3MÞp ; ðD20Þ

CB ¼ 8M þ ð6M − 2r0Þ ln f
3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0ðr0 − 3MÞp ; ðD21Þ

CC ¼ 2½8Mr0 − 3r20 − 12M2 þ 24Mð3M − r0Þ ln r0
M�

9M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0ðr0 − 3MÞp ;

ðD22Þ

CD ¼ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3M
r0

s
: ðD23Þ

The monopole contribution to the retarded metric pertur-
bation everywhere in the spacetime is then given by
Eq. (D15).

3. Residual solution for the monopole mode

The residual metric perturbation is constructed using
Eq. (4.24) and Eq. (4.25). The effective sources SðiÞeff that
appear in the latter equation are constructed by making the
replacements h̄ð1=3Þ → Wh̄ð1=3ÞP in Eqs. (D4) and (D5) for
Sð1Þeff and Sð3Þeff , respectively. The two necessary punctures
are given by Eqs. (C1) and (C3) and W is the window
function. The resulting effective sources are rather cum-
bersome so we will not display them but they are easily
constructed using computer algebra packages.
Following Eq. (4.24), the (r-dependent) weighting coef-

ficients can be solved for via

ðCres
A Cres

B Cres
C Cres

D ÞT ¼
Z

b

a
Φ−1ð0 0 Sð1Þeff Sð3ÞeffÞTdr;

ðD24Þ
where for CA and CB the limits on the integral are a ¼
r; b ¼ ∞ and for CC and CD the limits are a ¼ 2M; b ¼ r.
The monopole contribution to the residual metric pertur-
bation everywhere in the spacetime is then given by

Hres
l¼0ðrÞ ¼ ΔHih þ Cres

A ðrÞHAðrÞ þ CBðrÞresHBðrÞ
þ CCðrÞresHCðrÞ þ Cres

D ðrÞHDðrÞ: ðD25Þ
Here, although we are calculating the residual field,ΔHih is
still given by Eq. (D16) with constant CA and CB calculated
via Eq. (D19).
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