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Adaptive Output-Feedback Control for A Class of
Multi-Input-Multi-Output Plants with Applications to Very Flexible
Aircraft”

Zheng Qu', Anuradha M. Annaswamy' and Eugene Lavretsky?

Abstract— A dominant presence of parametric model un-
certainties necessitates an adaptive approach for control of
very flexible aircraft (VFA). This paper proposes an adaptive
controller that includes a baseline design based on observers
and parameter adaptation based on a closed-loop reference
model (CRM), and is applicable for a class of multi-input
multi-output (MIMO) plants where number of outputs exceeds
number of inputs. In particular, the proposed controller allows
the plant to have first-order actuator dynamics and parametric
uncertainties in both plant and actuator dynamics. Conditions
are delineated under which this controller can guarantee
stability and asymptotic reference tracking, and the overall
design is validated using simulations on a nonlinear VFA model.

I. INTRODUCTION

Very Flexible Aircraft (VFA) corresponds to an aerial plat-
form whose equilibrium flight conditions (frims) critically
depend on its flexible wing shape [1], [2], and has been
investigated as a potential solution to generate high-altitude
low-endurance (HALE) flights [2]. One of the challenges
of VFA is a significant change in its rigid-body dynamics
when the flexible wing deforms. For example, the pitch
(short period) mode of VFA can become unstable when
wing dihedral is trimmed at a high value [1], [3]. As a
consequence, control designs based on rigid-body dynamics
only may fail to stabilize the aircraft [3].

Nonlinear VFA models have been investigated in [1], [4],
[5] with focus on capturing the flexibility effects as well as on
advanced control designs. A particular control challenge for
VFA is that only rigid body state measurements are available
for control, while wing flexible states are not. Another con-
trol challenge is that maneuvers of VFA requires navigation
through multiple trims, which necessitates additional gain
scheduling design. This paper proposes an adaptive output-
feedback controller together with gain scheduling.

The classical approach to MIMO adaptive controllers
(see [6, Chapter 10] and [7, Chapter 9]) is based on the
underlying plant transfer function matrix. Such a design
typically requires the knowledge of plant’s Hermite form [8],
[9] and uses a non-minimal observer along with a reference
model. In contrast to the classical method, recent literature
proposes a new approach based on state-space representation,
which uses a minimal observer to generate the underlying
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state estimates [10]-[14, Chapter 14]. Unlike the classical
approach, the minimal observer is also used as a reference
model, by appealing to the notion of a CRM, which is
recently shown to be a highly promising direction in adaptive
control due to improved transients [15]. The controllers pro-
posed in these references, however, are based on a restrictive
assumption that the underlying relative degree of the plant
is uniformly unity, which ignore any actuator dynamics that
may be present. While this was relaxed in [16] to include
a relative-degree two plant, some of the assumptions made
regarding the parametric uncertainties therein prevents the
application of the proposed controller to VFA models. In this
paper, we relax these assumptions. In particular, we assume
that the plant may be non-square, allow a larger class of
parametric uncertainties, and include actuator dynamics that
may be unknown.

This paper is organized as follows. Section II introduces
mathematical preliminaries. Section III formulates the con-
trol problem in the context of VFA control. Section IV
develops an adaptive controller and presents the stability
analysis. Section V presents simulation results.

II. PRELIMINARIES

Consider a MIMO plant model {4, B,C} with m in-
puts and m outputs. The notation {A, B,C} is defined as
{A,B,C} = G(s) = C(sI — A)"!B. The transmission
zeros of the plant model is defined as following.

Definition 1. [17] For a non-degenerate m-input and p-
output linear system with minimal realization (A, B,C),
the transmission zeros are defined as the finite values of
s such that rank[R(s)] < n + min(m,p), where R(s) =
sI—-A B
et
We part B into columns as B = [ b1, by, -+, by |
with b; corresponding to the th input ;. The input relative
degree of the plant model is defined as following.

Definition 2. A linear square plant model {A, B, C'} has

. . T
a) input relative degree v = [ ri, T2, Y Tm ] €

N*L if and only if
i) Vje{l,---,m}, Vke{0,---,r; —2} :
CA*b; = 0,51, and (1)
ii) rank | CA™ by CA™ lh,
CA™1p,, ] =m;((2)



b) uniform input relative degree » € N if and only if it
has input relative degree v = [ 71, o, ©, T ]T and
rT=T1=T2=""=Tm.

¢) nonuniform input relative degree v € N™ if and onl%l
if it has input relative degree v = [ Ty, T2, c, Tm }
and 7; # r; for some 4,5 € 1,2,--- ,;m and i # j.

For G(s) to have input relative degree, u; should start to
have nonzero (and linearly independent) contribution towards
the r;th derivative of at least one output in y. Generically, any
MIMO plant model has input relative degree since condition
i) and 4¢) are generically satisfied.

III. PROBLEM STATEMENT

Our starting point is a nonlinear VFA model including
its complete rigid body dynamics and flexible component
dynamics as derived in [5] using the virtual work method,
assuming control surfaces are on the flexible components:

ERHNER A0
Mpr Mpp 5 Cpr Cgp B
Kprp O € Bp aero
L]l e
e=[¢€l, &, &, -, eff ]T are states of the flex-
ible wing with ¢; being states of each discretized flexible
: T .
segments and b = 3 = [ v wp | are states of rigid
body with vp being linear velocities and wp being angular
velocities. The model is derived by discretizing the flexible
wing into ny components, each of which has 6 degree
of freedom and has compliant joints with its neighboring
components. Kprr is the stiffness of the joints. Define

Jhe = % and Jpp = % as the Jacobian matrices with

h(e(r),b) :== [ p"(r) w'(r) ]T being local positions and
orientations of discretized elements, and r being local wing
coordinate. After summation of their local values at each
component along the r direction, the Jacobian matrices and
the inertia matrices M.y, become functions of ¢ and b
only. In addition, since Jhe = %é + %I} and Jhb =
g;;eé + %i), the compliance matrices C’(‘)(.) are functions
of €, é,b, 8. More specifically [5],

MFF(G) = Jg;MeJhe, MBF(E) = J,%Mejhe
MFB(G) = J]Z;Met]hba MBB(G) = J}?bMe‘]hb + Mgp
CFF(67 676) = J},ZL:.;Mejhe + Ce

CBF(G,é,B) = J}IJL;)MEJ;K )
C‘FB(tE7 é7 ﬂ) = J;{EMSQBJhb + 2J}:;Me=]hb
Cpp(e,¢,B8) = JE, Mg Juy + 28 MoJny, + Cri
BF(G) = Jhe, BB(G). = Jhb
Faero — F(leTO(’e” é, 67 /87 B’ u\s)

“4)
where M. is the effective flexible component inertia and
Mpp is the rigid body inertia; C. is the effective flexible
component compliance, C'rp is the rigid body compliance,
us is the control surface input, and g is a matrix associated
with coordinate rotation effects (see [5]). Further, we assume
that inertia and compliance properties of flexible components

vary slowly with respect to the rigid body positions and
orientations. As a result, J(.)(.), M(i)(.) and B(.) are only
function of €, and the compliance matrices C(.)(.) are only
functions of ¢,¢,3. The generalized aerodynamic loading
F*ere are calculated at each local flexible component using
the 2-D finite inflow theory [5], and then summed along
the r direction. It is noted that because inertia, compliance
and external load effects are all subject to local coordinate
transformation, M(.)(.), C(.)(.) and B(,) all have Jpp or Jp.
as their leading factors.

To design a controller for a trim
. . : T ..

[ € € € Bo Bo wug } , we define deviation states
. .. T

and inputs as x, = [ €e—€y €—¢é B —Po } € R™

and u, = (us —up) € R™, respectively, and perform model
linearization (ignoring high-order error terms) as

Ql(.é()a éOa €0, BO; 507 UO)i'P
= Q2(€o, €0, €0, Bo, Bo, uo)xp + Q3(co, Bo, uo)up, (5)

where () includes inertia matrices, and ()2 includes com-
pliance and stiffness matrices (see Appendix A for detail
derivations). Assuming Qfl exists, Eq.(5) leads to &, =
Q7' Qawp + Q7 'Q3u,, which is linear time invariant (LTI)
around a single trim but becomes linear parameter varying
(LPV) when the aircraft navigates through trims. Control of
the LPV plant requires gain scheduling [18] with respect
to (€, €o, €0, Bo, Bo, uo), which faces difficulties since only
(€0, Bo, up) are measurable, while (é’o,éo,Bo) are not. The
controller has to schedule its gains using an assumed trim
point, which introduces model uncertainties into (5) as

|:Q1(07 07 €0, 07 BO) UO) + AQl(.éOv éOv ﬁo):| i'p =

|:Q2(07 07 €0, 07 607 UO) + AQQ(é.Oa éOv BO):| Ty
+ Qs(e€0, Bo, uo)up  (6)

where AQ; and AQ, are functions of ('e'o,éo,[?o) and
therefore unknown. Further examination reveals that AQq
and AQ can be written as (see Appendix A)

AQ1 = Q30;T, AQy=Q30;]. (7

where @ZlT and @;QT are function of (€, ¢, Bo). Eq.(7)
implies that the local body inertia and compliance changes
caused by wing deformation can be approximated by similar
changes caused by external loads. We assume Qq, (Q1 +
Q30;T) and (I +©;7Q1'Q3) are always invertible. Using
(7) and taking inverse on both sides, (6) becomes

ip = (Ap + Bp@;T)mp + BpATuy
Yp = Cpyp @®)

z2=(Cp, + Dz@;T)xp + D, A*u,
where Ap(eo,ﬂo,uo). Ql_lQE TBp(eo,Eolfuo) =
Q11 Q3. 03T (60,0, B0) = O;T — O, A, — @q% B,O;T,
A*g§07é07ﬁo) = A;A29 A;(€0)é07ﬁ0) = (I - ®q1 Bp) and
0, (é0,€0, Bo) = (I+0:TQ7'Q3) 7107 (see Appendix A
for detail derivations). The constant matrix A} represents loss



of control effectiveness due to possible damage to the control
surfaces. y € RP are measurement outputs and z € R" are
tracking outputs. The numbers of inputs and outputs satisfies
p + 1 > m. Matrices A, € R"»*" B, ¢ R»*™ () €
RP*"> By, = R™*", C,, € R"™™ and D, € R™*™ are
functions of (o, Bo,u0) and are known. ©; € R"»*™ and
A* € R™*™ are functions of (€, €, BO) and are unknown.

Eq.(8) is the actual uncertain LPV plant model when the
controller performs gain scheduling. All matrices in Eq.(8)
are assumed to vary slowly between trims and Eq.(8) are
treated as an uncertain LTI plant when we design control
parameters around a single trim.

(Ap, Bp, Cp) is assumed to be a minimal realization and
have stable transmission zeros. It is also assumed that C}, B,
has full column rank and therefore the plant model has uni-
form input relative degree one (see [14] for a justifications of
these assumptions). Adaptive control design for (A, B,, Cp)
(referred as relative degree one adaptive controller hereafter)
has been developed in Ref. [10], [11], [14] and is able to
achieve asymptotic tracking of a reference trajectory for z.

In this paper, we introduce uncertain first order actuator
dynamics in each input, which is modeled as , + c(I +
O:T)u, = cu where ©F € R™*™ represents the uncer-
tainties in actuator time constants. Define w, = A*u, and

. . . —+T
rewrite the actuator dynamics as w, +c(1+0," )w, = cA*u
with @ZT = A*©;TA*~!. For command tracking, we also
augment the LTI plant with integral error states w,,, :=
J(z = Zema)dt, as shown in Eq.(9), which is rewritten in
a compact form as

= Ar+ BT + BoUsTa + BoA*u + B.2ema
y=Cx
z2=C,x+ D, ¥iTx.

(10)
x € R™ are augmented states, u € R™ are new control in-
puts, y € R™ are augmented measurement outputs. Matrices
A E R?’LX'I’L’ Bl E R?’Lxm’ B2 e Rnxm/’ C E Rm/xﬂ,7 BZ —
R™7" C, € R™*"™ and D, € R"*"™ are known. Uncertainty
matrices have the form of U7 = | @;T 0 0]eRm™*m,
vl = [0 @:T 0] € R™™ A* € R™™ and are
unknown constants. B; W37 are uncertainties in the plant
dynamics and B, W37 are the uncertainties in the actuator
dynamics. The control goal is to design u such that z tracks a
trajectory z,, from a reference model. The adaptive controller
that we will present requires the following assumptions
regarding the plant model (10) to be valid around each trim:

Assumption 1. (A, B, C) is a minimal realization;

Assumption 2. All {A, By, C'}’s transmission zeros (a total
of n,) are stable;

Assumption 3. {A, By, C} has uniform relative degree two
and satisfies (n —n, —2m) > (p — m);

Assumption 4. By can be spanned by a linear combination
of By and ABy, and V3 satisfies Vi1 By = 0;

Assumption 5. V7 and V5 are bounded by a known value,
ie. U < WF .. and |5 < U

max max’

Assumption 6. A* is symmetric positive definite and
bounded by a known value, i.e. |A*|| < Apmaz-

Assumption 1 and 2 is always satisfied if (A4,, By, Cp)
is a minimal realization and has stable transmission zeros.
The fact that (A, By, C) is non-square and typically has
no transmission zeros [19] makes Assumption 2 reasonable.
Assumption 4 is always satisfied if the plant model has the
structure as in (9), in which case By = %ABQ + Bs. For
nominal plant models satisfying Assumptions 1 and 2, a
baseline observer-based controller (such as LQG [20]) with
gain scheduling can be designed to achieve a satisfactory
tracking performance with adequate stability margins.

For adaptive control, additional assumptions on the plant
Cp By

model are needed. For (9), Assumption 3 implies

has column rank m (see [16] for relaxation to nonuniform
relative degree cases). The inequality (n — n, — 2m) >
(p — m) allows a squaring-up method to be carried out.
Assumption 5 is commonly satisfied for aerial platforms
with physical constrains, such as the maximum allowable
deformation rate in VFA. Assumption 6 is satisfied if @;1T
has a small magnitude, which implies that inertia properties
of aircraft varies slowly, and A} is positive definite and
diagonal, which implies that control effectiveness loss is
independent from each other.

IV. ADAPTIVE OUTPUT-FEEDBACK CONTROL

This section will develop an adaptive controller for relative
degree two LTI plant models. In Section IV-A, a squaring-
up procedure is introduced to produce a square plant model.
A special state coordinate suitable for control design is pre-
sented in Section I'V-B. The adaptive controller is developed
in Section IV-C and its parameters are designed in Section
IV-D to guarantee SPR properties of an underlying SPR error
model shown in Section IV-E. Adaptive law and stability
analysis can be found in Section I'V-F.

A. Squaring-Up

The new adaptive control design will be based on a square
plant model, which necessitates a squaring-up procedure
being carried out on (A, Bs, C). Lemma 3 specify the details
of the squaring-up procedure, whose proof can be found in
[21]. Define mg := p — m.

Lemma 3. For plant models satisfying Assumptions 1 to 3,
there exists a Bs; € R™ ™= such that (A, By, C), where

By = [ By By ] has stable transmission zeros and
nonuniform input relative degree r; =2 for i =1,2,--- 'm
andr;=1fortc=m-+1,m+2,--- ,p.

Similar to Bj, we part CT = [ C] C{ |. In the

following design procedures, we will show that By will only
be used to design control parameters.

B. Input Normal Form

For a square plant model that has nonuniform input
relative degree two, there exists an invertible transformation

)
Ty = {(w% Q],:r;.;l:[% M ], where €7 =



P A B 0 x B 0 0
e | = o o we | +] o A*0pTap+ | o [A* [u+ 0 TA* Lwy]+| 0 |zemg
g Cp» D» © wy D 0 -1
-z - i I -—— -—
A z By By B ©)
y:[ oY }1 z=[ Cpz Dz 0 Ju+Dza*e0Tay.
- r - @
c C=
: -1 — 1%
Cy ATC] Cy |,B =] By ABy Bg |, 9Mand It is noted that CinBy;, = CiByy, =

are chosen to satisfy 9B = 0, €9t = 0 and 9N = I,
that transforms (10) into a new coordinate called “input
normal form” (See [22, Corollarly 2.2.5] for proof). In this
paper, matrices in input normal form coordinate will be
denoted with the subscript (-)i,, as in 4, = Tipx, Ajy =
TinAT;:Ll, B2,in = T;,Bo (and therefore BQ_’in = T;,Bs
and le,in = Tinle)a Bl,in = TinBla Bin,z = ,Tian
Cin =CT;;) b, WiT = WiTT, 1 and U3L = WiTT, ! The
input normal form of the plant model (10) is

» 2 1
&i 0 Rg,l R%l V2 £§ Im
: I :
2 | = Rg,z R%,2 O |||+ 8 A*u
_f1 O Rig | Bia | V1 |81 5
7 0 Us U, Z n
—_——
Ain Tin Ba,in
25T 2%T | 1«T | 2T
+ By in| 35 V21 ‘ Y21 ‘ vinl .y Jein
«T
q’l‘in
1I7YL
el 2xT 1x p1xT
+ | —e— [ o w»ff ‘ P11 ‘ YnL ) Jwin + Binz2ema
o T
B
— ¥y in
B1,in
(11
y=[ 0 CABy | CBgy | 0 Ja;p,-

C.

Matrix Z € R(n=r)x(n=7s) \where r, = >, T4, is the zero
dynamics matrix whose eigenvalues are transmission zeros
of the plant model (see [22, Section 2.3]). The norms of

\IP{TM and \IJ§Tm are bounded by known values as
H\Ij;:z”H < @max amax = \Ilmam ||Tl;1H y 1= 1,2 (12)

It is noted that By ;,, = [ x x 0 0 ]T and UiTT, ! =
[ 0 x x X ] since Assumption 4 holds.

Define A, = Ain + B1,in¥i%, + B2in W5k, . Suppose
we add differentiators to all inputs in u, i.e. alv +afv = u.
We then are able to manufacture an artiﬁclzial uniform relative
degree one square plant model {A? , B " Cin} with uT =

ino
[vT,uT}] as inputs, where

0 1,,2+T
ailm, —|1— a1va; 0

B;Tzn = [ B%*zn le,in ] — alolm [f:,g
0 0
B%j;n = A;-*ntma% + Bg,ina(l).
(13)
It is noted that E;*m includes uncertainties because of the
presence of W;7 . The counterpart of F;n in the absence
of \Ilszn is
all,, O
1
0 0
321,m = AinBZ,ina% + B2,ina(1)-

[G%CABQ CBg, ] has full rank by Assumption 3

- -1 -1
and Lemma 3. Examination shows that B;m and B, ,;,
satisfies

By = By + Basmal¥il,. (15)
where
Ul = V3T Opxm, | € R™XP (16)

which is a subset of the elements in W3 ;. It is noted that
(13) also holds for (A}, — LinCiyp) for VL;, € R™*™,
Variants of (13) and (15) in the original coordinate also
hold with definitions of By* = T},' B3, . B} =T;.'B} .
B, = T;ﬁ?;:km, and B, = T;f?é’m. The above discus-
sions illustrate the concept of adding zeros, which will be
explored in the following control design.

C. Control Architecture

Define s as the differential operator. We choose the control
input u as

U = Up; + Uqd o))

where wuy; is determined using a baseline observer-based
controller and u,q by an adaptive controller. The baseline
control uy; is chosen as

up = —K" (18)

where KT € R™*" is designed by the linear quadratic
regulator (LQR) technique. u,q is designed as

Uga = —up + (ags + af) UK (£)x(¢), (19)

where W{(¢t) = [AT ¥T ®I'] and ¥' =
[ —2f -zl ]T; AT(t) € R™X™ is an estimate of
AL U () € R™iX™ and T (t) € R™1*™ are estimate of
;" and T, respectively, which will be defined in Section
IV-E. z,, are the states of a modified closed-loop reference
model (CRM, based on Ref. [15]) as

Ty = A%y, + Boup, + Bo (a%s =+ a(l)) (\Ijg;z(t)éys)

+Bzzcmd + L(y - ym) (20)
Ym = mev Z2m = CoTm + Douy
where U7 (t) € R™*P is an estimate of \If;fm and
eys i= R;}Sey, and ey (=Y — Ym. 21

Signals denoted as (-) are a filtered version of signals (-) as
1,7 0.9, —
ay - Upl + ay - Upy = Upl
1% 0.
a] Ty + 07 - Ty = Ty
1.3 0.5 g1
Qg - €ys T ay - €ys = A1€ys.

(22)



In (22) at,al > 0 are free to design. Control parameters L,
R;n and S will be designed in Section IV-D to guarantee
SPR properties of an underlying error model shown in Sec-
tion IV-E. Adjustable parameters AT (¢), W7 (¢), UZ(t) and
U () will be adapted online by prescribing their derivatives

with respect to ¢, which will be presented in Section I'V-F.

D. Design of L and S

The design of L in (20) and .S in (21) is performed in the
input normal form coordinate and transformed back to the
original coordinate, as

S = (CinBain)"s Cin i= SCin, 23)
R, = (6in§;,in)il[€in‘4in§;in

+ (CinAinBa,i) |(CinBy i)+l (24)

Lin = B, inRi S, (25)

L =T;'Li, = ByR;,'S". (26)

€ > 0 is chosen to be large enough as

€ > Emazx Emaz = gmaw(AinaE;,inaéinaamax) .
(27)

A detail solution of £,,4,; can be found in [16, Eq.(30)].

Emaz 18 SO designed to guarantee the SPR properties of an

underlying error model as will be shown in the next section.

E. Underlying SPR Error Model

This section will present the underlying error model and
its SPR properties. Define

L:‘ _B2 ,in 1S11n7 L :Ti:zlL;kn :EQ 1Szln
(28)
It follows (15) that
L* — L = Bya} V!, R;'S. (29)

Define A* = A+ Bllll’{T + BQ\IIST and A7. = A* - L*C.
By subtracting (20) from (10), substituting u,q with (19) and
L with (29), and appealing to (22)(21), the error model can
be derived as
ér = A} ey + Boal Uil e, + BV, + ByW3"
+ By A* (ubl + uad) — Bouy, — By (als + al) \Ifﬁ(t)éys
— Aey + BYANT 2 4 BoA T 1
+ BoA* (ays +af) [AT () uw — ] (t)zm —
— By (a%s + a?) [\IIT( )eys}
= Aj.eo + BYAT, 2, — By (als + al) [\Tfﬁ(t)éys}
m — VS ()T
(30)

U3 (6)Tm]

+ By A* (a%s + a?) [/NXT(t)ﬂbz 0T (t)z

A*—l L\IJ*T W;T
(a1 m+ wQ*T)) \I!IT] are grouped

v’
A1 [\IJ;T + (1

where and

. ;L 17T
uncertain parameters. Define e, = e, + BaA*a;¥, .

Applying (22)(21) to (30) yields
= Aj.el, — By (ajs +af) [@ﬁ(t)éys}
+ BoA* (ats +ad) Olx 31)

where U1 = [ AT 9T 9T ] with AT(t) = AT(t) —

AL UT() = 9T () -y, WE (1) = wE(t) — T and

Ul (t) =Wl (t)— Wl being parameter estimation errors.
Define a new error variable as

ems = €. + Baal [@ﬁ(f)éys} — BoAd TTY (32)
whose derivatives are found as

me = A% ceme — By VT (e, + By A ULy (33)

ey = Cepy = Cey (34)

after applying (13). It is noted that (34) holds because
CBsy = 0. Eq.s (33) and (34) are our underlying error model.

It is noted that {A*, B3*,C} has all stable transmis-
sion zeros since we only added m transmission zeros at
—a{/a} through filters (22). A formal proof is to write out

In 0 0] 0 1"
00 0[Tr, ] .
N;zn (ME, M)~ ML {I - BQ,m<CmBQ,m) lém}’
and show that it has all stable eigenvalues (see [16, Lemma
1] for a similar proof). The following Lemma states that
Emaz 10 (27) is so designed such that L* and S guarantee
a SPR property. Proof of Lemma 1 is very similar to [16,
Lemma 2] and therefore is omitted here.

Ny Al My, with M, = [

Lemma 1. Given Assumptions I to 6, the finite pair of L* €
R™ ™ and S € R™*™ as in (26), with € chosen in (27),
guarantees that the transfer function {(A*—L*C), F;*, SC}
is strictly positive real.

Define partition ST = [ ST ST | with S €
and S; € R™<*P. Lemma 1 also implies that {(A* —
L*C), By*,8,C} is also SPR.

F. Adaptive Law and Stability Proof

The structure of the SPR error model (33) suggests that the
uncertainty estimates W (¢) and ¥,,(¢) should be adjusted
using

R™MmXp

\I’A( ) = _FTMX@TSQ
W (t) =

where I'y, > 0 and I'y, > 0 are adaptation gains.
The following theorem guarantees the stability and tracking
performance of the adaptive system, whose proof can be
found in Appendix B. Define e.(t) = z — 2, as tracking
errors.

Fd)m eyse S2 (35)

Theorem 1. For an uncertain MIMO plant model (10)
that satisfies Assumptions 1 to 6, and for any zemad(t)
that is piecewise continuous, the adaptive controller
(17)(18)(19)(20)(35), with L and S designed in (26), guar-
antees that i) the closed-loop system has bounded solutions,
i) ey(t) = 0 as t — oo, and iii) e,(t) — 0 as t — oo.



V. APPLICATIONS TO VFA

This section applies the adaptive controller with gain
scheduling on a simple nonlinear VFA model. The model
features three rigid wings hinged side-by-side (see [1]),
which are allowed to rotate about the longitudinal axis (i.e.
dihedral angle 7). The platform features basic flexible wing
effects and can be viewed as building blocks of large VFA.
A 6-state nonlinear model has been developed in [1, Eq.s
(45) and (46)] including aircraft’s pitch mode and dihedral
dynamics. Define « as the angle of attack, 6 as pitch angle
and ¢ as pitch rate. The nonlinear model can be rewritten in

. T
the form of (3) with e =7 and 8 = [ V a g¢q ] as
dz(n) sacn 0 0 7
0 m 0 0 v
0 0 mV 0 &
[¢] [¢] [¢] c1 + ca s2n q
m,*s 5 m*s 4 an*S )
ke — 3 Censnn g9 cnead 0 59— cneca n
+ 0 0 0 g \%
0 0 0 0 @
2¢qensng 3cgensad 0 3cgensa q
kp, 0 0 0 | n cnsn  enea
0 0 0 —g JVvdt 0 0 Se
+ 0 0 o0 0 [ adt 0 0 [ 5q |0 G9
0 0o o 0 0 censn cnsa

where s(-) = sin(-), ¢(-) = cos(-) and 0. and J, are properly
scaled. Parameter c; and cy are inertia constants that depends
on aircraft physical properties. ds is the rotation inertia about
longitudinal axis and therefore a function of 7. Measurements
are vehicle vertical acceleration A, n and ¢. Other states,
« and 7), are unmeasurable and are unavailable for control.
The goal is to use center elevators J, and outer ailerons d,

to track A, command and regulate 7.

The nonlinear model is linearized at 25 trim points defined
by Vi = 30 ft/sec, ap = 0 deg, 8y = 0 deg, ¢ = 0 deg/sec,
no € [9, 11]° with a step of 0.5, and 7 € [—0.2,0.2] deg/sec
with a step of 0.1. Example numerical values of the linearized
model is shown in Eq.(37) for n = 9° and n = 0 deg/sec. It
is verified that the linearized model for n = 9° and 1 = 0.2
deg/sec can be approximated as (8) using

Joar=1

with a norm error of 2.6% ||4,|| and 1.8% || B,||, respec-
tively. The pitch mode of the VFA when n > 10° is unstable.
For realistic simulation, (37) includes two first-order actuator
dynamics with nominal time constant of 1 sec. u, are elevator

commands and u, are aileron commands to the actuators.

For control design, first we designed control parameters
for each trim. For example, L and S; using (26§ and (23)
with a} = 0.2, a = 1, e = 100, Ayaz = 2 and ¥4, = 30
for the linearized model (37) is:
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Then we schedule the control parameters using real-time 7
measurements. For the baseline controller without adaptation
terms, i.e. U (t) = 0 and ¥,,(¢) = 0, the resulting con-
troller is an observer-based gain scheduling linear controller
(referred as the baseline controller) and the CRM acts as an
observer. Performing frequency domain analysis [10, Chapter
5], as shown in the Figure 3 for n = 9°, indicates that the
baseline controller has adequate stability margins and small
output sensitivity; the gain margin is [—15.7, 27.1]dB and
the phase margin is £57.1°.

The time domain simulation results with the nonlinear
VFA model are shown in Figure 1. Two actuator models were
simulated, one with a time constant of 1.5 second, and the
other 4 second. Two adaptive controllers were tested: one is
relative degree one as developed in Ref. [14], which pretends
the actuator dynamics is not present; the other is the relative
degree two shown in Section IV based on a nominal actuator
model as in (37). The baseline controller was also tested.
With fast actuators, both adaptive controllers were able to
achieve tracking goals while the baseline controller failed to
do so, as shown in Figure 1a. When actuator dynamics was
slow as shown in Figure 1, only relative degree two adaptive
controller can achieve stable command tracking after 3 step
commands. The parameter trajectories of the relative degree
two adaptive controller are shown in Figure 2.
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Fig. 1: The tracking of 1 and A, using the relative degree
two adaptive controller, compared with the relative degree
one adaptive controller and the baseline controller
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Fig. 2: The parameter trajectories of the relative degree two
adaptive controller in the simulation shown in Figure 1b
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APPENDIX
A. Linearization of VFA Model

Define (-)/[.]O
tial wvariables.

. : T .
[é ¢ € Bo Bo X wo ] yields

?3% ll]o as partial differen-
Linearizing (3) around a trim point
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where
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Bruy = (Jh) e Ffer® and Bp u, = (Ji) e Ffisr®. Without
loss of generality, we scale each input so that 75;‘0 =1I1.In

AMpp = —(JE )¢ F}lgm

(40)

e . T
realistic application, only [ €g o up | canbe measured
accurately and therefore variables that depend on them can be

gain scheduled. [ €0 €o Bo Ao ]T cannot be measured

accurately and therefore variables that depends on them are
enerally unknown. As a result, ()1, Q2 and Q)3 are known
ut AQ; and AQs are unknown. Examination on (40) using
(4) reveals that

yields
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with 4, = Q7' Q2, B, = Q7 'Qs.
B. Proof of Theorem 1
Proof. We propose a Lyapunov function candidate
V=el Pen.

+Tr [WAT AT | + T [U1T 0| @8)
where P* = T1 P T;, is the matrix that guarantees the
SPR properties of {A]. ,E;*, SC'}, satisfying

P*A}. + A} PP =-Q <0
P*B, =CTs7,

(49)
(50
where Q" = Q* + CTR;,!C > 0 with Q* = TLQ%, Tin.
Partition on both sides of (50) yields

P*[ByBy|=C"[ 8T ST . (51)

By appealing to (33)(34)(35)(49)(51), the derivative of V' has
the following bound

V=el, (AT P + P* A3 ema
—2¢l [P*BY — CTSTIA Uy
—2¢0 [P*By — CTsT)ul e,

=—e},Q eus <0. (52)

Then €0 (t), Ua(t) and U,,(t) are bounded as ¢ — oo,
which proves i). Applying Barbalat’s Lemma shows that
emaz(t) — 0 as t — oo, which proves ii). From (34) and (22),
the fact e, (t) — 0 implies that e, (t) — 0, e,s(t) — 0 and
€,s(t) — 0 as t — oo, which in turn implies that z,,, as well
as T, and Uy, is bounded. Further, define ey, (t) = 2z — zemd
and

emsz(t) = Zm — Zemd + Ba.1 (a%s + a(f) (\I/Z;(t)éys) + Lrey,
(53)
where By and Ly are rows of By and L corresponding
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which leads to a plant model with modeled uncertainties as
(Q1+ Q30;T) ip = (Q2 + Q30;] ) wp + Qaup.  (43)

Assume that Q1, (Q1 + Qg@le) and (I + GZ?Qleg) are
invertible around the equilibrium. Taking inverse on both
sides, and noting

@+ @z0; )™t = @7t - eitesu+eiTer e e Ter !t @

a*T
9'-11

to the integral errors, respectively. From (9), it is noted that
[ ep=(t)dt is an element of x and [ e,,.(t)dt is an element
of z,,. As a result, e,,,(t) — 0 as t — oo, together of the
definition of e, () as in (32), implies

/ e.(t)dt — — By / [(als + ad) (V2 (t)e,)] dt
+ By i N5alUIx — By jal (WY (H)E,.). (54)

Therefore, [ e.(t)dt is bounded as ¢ — oo. Further, é.(t) is
bounded as ¢ — oco. Applying Barbalat’s Lemma shows that
e,(t) — 0 as t — oo, which proves iii).



