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Adaptive Output-Feedback Control for A Class of
Multi-Input-Multi-Output Plants with Applications to Very Flexible

Aircraft∗
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Abstract— A dominant presence of parametric model un-
certainties necessitates an adaptive approach for control of
very flexible aircraft (VFA). This paper proposes an adaptive
controller that includes a baseline design based on observers
and parameter adaptation based on a closed-loop reference
model (CRM), and is applicable for a class of multi-input
multi-output (MIMO) plants where number of outputs exceeds
number of inputs. In particular, the proposed controller allows
the plant to have first-order actuator dynamics and parametric
uncertainties in both plant and actuator dynamics. Conditions
are delineated under which this controller can guarantee
stability and asymptotic reference tracking, and the overall
design is validated using simulations on a nonlinear VFA model.

I. INTRODUCTION

Very Flexible Aircraft (VFA) corresponds to an aerial plat-
form whose equilibrium flight conditions (trims) critically
depend on its flexible wing shape [1], [2], and has been
investigated as a potential solution to generate high-altitude
low-endurance (HALE) flights [2]. One of the challenges
of VFA is a significant change in its rigid-body dynamics
when the flexible wing deforms. For example, the pitch
(short period) mode of VFA can become unstable when
wing dihedral is trimmed at a high value [1], [3]. As a
consequence, control designs based on rigid-body dynamics
only may fail to stabilize the aircraft [3].

Nonlinear VFA models have been investigated in [1], [4],
[5] with focus on capturing the flexibility effects as well as on
advanced control designs. A particular control challenge for
VFA is that only rigid body state measurements are available
for control, while wing flexible states are not. Another con-
trol challenge is that maneuvers of VFA requires navigation
through multiple trims, which necessitates additional gain
scheduling design. This paper proposes an adaptive output-
feedback controller together with gain scheduling.

The classical approach to MIMO adaptive controllers
(see [6, Chapter 10] and [7, Chapter 9]) is based on the
underlying plant transfer function matrix. Such a design
typically requires the knowledge of plant’s Hermite form [8],
[9] and uses a non-minimal observer along with a reference
model. In contrast to the classical method, recent literature
proposes a new approach based on state-space representation,
which uses a minimal observer to generate the underlying
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state estimates [10]–[14, Chapter 14]. Unlike the classical
approach, the minimal observer is also used as a reference
model, by appealing to the notion of a CRM, which is
recently shown to be a highly promising direction in adaptive
control due to improved transients [15]. The controllers pro-
posed in these references, however, are based on a restrictive
assumption that the underlying relative degree of the plant
is uniformly unity, which ignore any actuator dynamics that
may be present. While this was relaxed in [16] to include
a relative-degree two plant, some of the assumptions made
regarding the parametric uncertainties therein prevents the
application of the proposed controller to VFA models. In this
paper, we relax these assumptions. In particular, we assume
that the plant may be non-square, allow a larger class of
parametric uncertainties, and include actuator dynamics that
may be unknown.

This paper is organized as follows. Section II introduces
mathematical preliminaries. Section III formulates the con-
trol problem in the context of VFA control. Section IV
develops an adaptive controller and presents the stability
analysis. Section V presents simulation results.

II. PRELIMINARIES

Consider a MIMO plant model {A,B,C} with m in-
puts and m outputs. The notation {A,B,C} is defined as
{A,B,C} = G(s) = C(sI − A)−1B. The transmission
zeros of the plant model is defined as following.

Definition 1. [17] For a non-degenerate m-input and p-
output linear system with minimal realization (A,B,C),
the transmission zeros are defined as the finite values of
s such that rank[R(s)] < n + min(m, p), where R(s) =[
sI −A B
C 0

]
.

We part B into columns as B =
[
b1, b2, · · · , bm

]
with bi corresponding to the ith input ui. The input relative
degree of the plant model is defined as following.

Definition 2. A linear square plant model {A,B,C} has
a) input relative degree r =

[
r1, r2, · · · , rm

]T ∈
Nm×1 if and only if

i) ∀j ∈ {1, · · · ,m}, ∀k ∈ {0, · · · , rj − 2} :

CAkbj = 0m×1, and (1)
ii) rank

[
CAr1−1b1 CAr2−1b2

· · · CAr2−1bm
]

= m; (2)



b) uniform input relative degree r ∈ N if and only if it
has input relative degree r =

[
r1, r2, · · · , rm

]T
and

r = r1 = r2 = · · · = rm.
c) nonuniform input relative degree r ∈ Nm if and only

if it has input relative degree r =
[
r1, r2, · · · , rm

]T
and ri 6= rj for some i, j ∈ 1, 2, · · · ,m and i 6= j.

For G(s) to have input relative degree, ui should start to
have nonzero (and linearly independent) contribution towards
the rith derivative of at least one output in y. Generically, any
MIMO plant model has input relative degree since condition
i) and ii) are generically satisfied.

III. PROBLEM STATEMENT

Our starting point is a nonlinear VFA model including
its complete rigid body dynamics and flexible component
dynamics as derived in [5] using the virtual work method,
assuming control surfaces are on the flexible components:[

MFF MFB

MBF MBB

] [
ε̈

β̇

]
+

[
CFF CFB
CBF CBB

] [
ε̇
β

]
+

[
KFF 0

0 0

] [
ε
b

]
=

[
BF
BB

]
F aero. (3)

ε =
[
εT1 , εT2 , εT3 , · · · , εTnf

]T
are states of the flex-

ible wing with εi being states of each discretized flexible
segments and ḃ = β =

[
vTB ωTB

]T
are states of rigid

body with vB being linear velocities and ωB being angular
velocities. The model is derived by discretizing the flexible
wing into nf components, each of which has 6 degree
of freedom and has compliant joints with its neighboring
components. KFF is the stiffness of the joints. Define
Jhε = ∂h

∂ε and Jhb = ∂h
∂b as the Jacobian matrices with

h(ε(r), b) :=
[
pT (r) wT (r)

]T
being local positions and

orientations of discretized elements, and r being local wing
coordinate. After summation of their local values at each
component along the r direction, the Jacobian matrices and
the inertia matrices M(·)(·) become functions of ε and b

only. In addition, since J̇hε = ∂2h
∂2ε ε̇ + ∂2h

∂ε∂b ḃ and J̇hb =
∂2h
∂b∂ε ε̇+ ∂2h

∂2b ḃ, the compliance matrices C(·)(·) are functions
of ε, ε̇, b, β. More specifically [5],

MFF (ε) = JThεMeJhε, MBF (ε) = JThbMeJhε
MFB(ε) = JThεMeJhb, MBB(ε) = JThbMeJhb +MRB

CFF (ε, ε̇, β) = JThεMeJ̇hε + Ce
CBF (ε, ε̇, β) = JThbMeJ̇hε

CFB(ε, ε̇, β) = JThεMeΩBJhb + 2JThεMeJ̇hb
CBB(ε, ε̇, β) = JThbMeΩBJhb + 2JThbMeJ̇hb + CRB

BF (ε) = Jhε, BB(ε) = Jhb
F aero = F aero(ε̈, ε̇, ε, β̇, β, us)

(4)
where Me is the effective flexible component inertia and
MRB is the rigid body inertia; Ce is the effective flexible
component compliance, CRB is the rigid body compliance,
us is the control surface input, and ΩB is a matrix associated
with coordinate rotation effects (see [5]). Further, we assume
that inertia and compliance properties of flexible components

vary slowly with respect to the rigid body positions and
orientations. As a result, J(·)(·), M(·)(·) and B(·) are only
function of ε, and the compliance matrices C(·)(·) are only
functions of ε, ε̇, β. The generalized aerodynamic loading
F aero are calculated at each local flexible component using
the 2-D finite inflow theory [5], and then summed along
the r direction. It is noted that because inertia, compliance
and external load effects are all subject to local coordinate
transformation, M(·)(·), C(·)(·) and B(·) all have Jhb or Jhε
as their leading factors.

To design a controller for a trim[
ε̈0 ε̇0 ε0 β̇0 β0 u0

]T
, we define deviation states

and inputs as xp =
[
ε− ε0 ε̇− ε̇0 β − β0

]T ∈ Rnp
and up = (us − u0) ∈ Rm, respectively, and perform model
linearization (ignoring high-order error terms) as

Q1(ε̈0, ε̇0, ε0, β̇0, β0, u0)ẋp

= Q2(ε̈0, ε̇0, ε0, β̇0, β0, u0)xp +Q3(ε0, β0, u0)up, (5)

where Q1 includes inertia matrices, and Q2 includes com-
pliance and stiffness matrices (see Appendix A for detail
derivations). Assuming Q−1

1 exists, Eq.(5) leads to ẋp =
Q−1

1 Q2xp +Q−1
1 Q3up, which is linear time invariant (LTI)

around a single trim but becomes linear parameter varying
(LPV) when the aircraft navigates through trims. Control of
the LPV plant requires gain scheduling [18] with respect
to (ε̈0, ε̇0, ε0, β̇0, β0, u0), which faces difficulties since only
(ε0, β0, u0) are measurable, while (ε̈0, ε̇0, β̇0) are not. The
controller has to schedule its gains using an assumed trim
point, which introduces model uncertainties into (5) as[

Q1(0, 0, ε0, 0, β0, u0) + ∆Q1(ε̈0, ε̇0, β̇0)
]
ẋp =[

Q2(0, 0, ε0, 0, β0, u0) + ∆Q2(ε̈0, ε̇0, β̇0)
]
xp

+Q3(ε0, β0, u0)up (6)

where ∆Q1 and ∆Q2 are functions of (ε̈0, ε̇0, β̇0) and
therefore unknown. Further examination reveals that ∆Q1

and ∆Q2 can be written as (see Appendix A)

∆Q1 = Q3Θ∗Tq1 , ∆Q2 = Q3Θ∗Tq2 . (7)

where Θ∗Tq1 and Θ∗Tq2 are function of (ε̈0, ε̇0, β̇0). Eq.(7)
implies that the local body inertia and compliance changes
caused by wing deformation can be approximated by similar
changes caused by external loads. We assume Q1, (Q1 +
Q3Θ∗Tq1 ) and (I + Θ∗Tq2 Q

−1
1 Q3) are always invertible. Using

(7) and taking inverse on both sides, (6) becomes

ẋp = (Ap +BpΘ
∗T
p )xp +BpΛ

∗up
yp = Cpxp

z = (Cpz +DzΘ
∗T
p )xp +DzΛ

∗up

(8)

where Ap(ε0, β0, u0) = Q−1
1 Q2, Bp(ε0, β0, u0) =

Q−1
1 Q3, Θ∗Tp (ε̈0, ε̇0, β̇0) = Θ∗Tq2 − Θ

∗T
q1 Ap − Θ

∗T
q1 BpΘ

∗T
q2 ,

Λ∗(ε̈0, ε̇0, β̇0) = Λ∗pΛ
∗
d, Λ∗p(ε̈0, ε̇0, β̇0) = (I − Θ

∗T
q1 Bp) and

Θ
∗T
q1 (ε̈0, ε̇0, β̇0) = (I+Θ∗Tq1 Q

−1
1 Q3)−1Θ∗Tq1 (see Appendix A

for detail derivations). The constant matrix Λ∗d represents loss



of control effectiveness due to possible damage to the control
surfaces. y ∈ Rp are measurement outputs and z ∈ Rr are
tracking outputs. The numbers of inputs and outputs satisfies
p + r > m. Matrices Ap ∈ Rnp×np , Bp ∈ Rnp×m, Cp ∈
Rp×np , Bpz = Rnp×r, Cpz ∈ Rr×np and Dz ∈ Rr×m are
functions of (ε0, β0, u0) and are known. Θ∗p ∈ Rnp×m and
Λ∗ ∈ Rm×m are functions of (ε̈0, ε̇0, β̇0) and are unknown.

Eq.(8) is the actual uncertain LPV plant model when the
controller performs gain scheduling. All matrices in Eq.(8)
are assumed to vary slowly between trims and Eq.(8) are
treated as an uncertain LTI plant when we design control
parameters around a single trim.

(Ap, Bp, Cp) is assumed to be a minimal realization and
have stable transmission zeros. It is also assumed that CpBp
has full column rank and therefore the plant model has uni-
form input relative degree one (see [14] for a justifications of
these assumptions). Adaptive control design for (Ap, Bp, Cp)
(referred as relative degree one adaptive controller hereafter)
has been developed in Ref. [10], [11], [14] and is able to
achieve asymptotic tracking of a reference trajectory for z.

In this paper, we introduce uncertain first order actuator
dynamics in each input, which is modeled as u̇p + c(I +
Θ∗Ta )up = cu where Θ∗a ∈ Rm×m represents the uncer-
tainties in actuator time constants. Define wu = Λ∗up and
rewrite the actuator dynamics as ẇu+c(1+Θ

∗T
a )wu = cΛ∗u

with Θ
∗T
a = Λ∗Θ∗Ta Λ∗−1. For command tracking, we also

augment the LTI plant with integral error states wpz :=´
(z − zcmd)dt, as shown in Eq.(9), which is rewritten in

a compact form as

ẋ = Ax+B1Ψ∗T1 x+B2Ψ∗T2 x+B2Λ∗u+Bzzcmd
y = Cx

z = Czx+DzΨ
∗T
1 x.

(10)
x ∈ Rn are augmented states, u ∈ Rm are new control in-
puts, y ∈ Rm are augmented measurement outputs. Matrices
A ∈ Rn×n, B1 ∈ Rn×m, B2 ∈ Rn×m, C ∈ Rm×n, Bz =
Rn×r, Cz ∈ Rr×n and Dz ∈ Rr×m are known. Uncertainty
matrices have the form of Ψ∗T1 = [ Θ∗Tp 0 0 ] ∈ Rm×n,
Ψ∗T2 = [ 0 Θ

∗T
a 0 ] ∈ Rm×n, Λ∗ ∈ Rm×m and are

unknown constants. B1Ψ∗T1 are uncertainties in the plant
dynamics and B2Ψ∗T2 are the uncertainties in the actuator
dynamics. The control goal is to design u such that z tracks a
trajectory zm from a reference model. The adaptive controller
that we will present requires the following assumptions
regarding the plant model (10) to be valid around each trim:

Assumption 1. (A,B2, C) is a minimal realization;

Assumption 2. All {A,B2, C}’s transmission zeros (a total
of nz) are stable;

Assumption 3. {A,B2, C} has uniform relative degree two
and satisfies (n− nz − 2m) ≥ (p−m);

Assumption 4. B1 can be spanned by a linear combination
of B2 and AB2, and Ψ∗1 satisfies Ψ∗T1 B2 = 0;

Assumption 5. Ψ∗1 and Ψ∗2 are bounded by a known value,
i.e. ‖Ψ∗1‖ < Ψ∗max and ‖Ψ∗2‖ < Ψ∗max;

Assumption 6. Λ∗ is symmetric positive definite and
bounded by a known value, i.e. ‖Λ∗‖ < Λmax.

Assumption 1 and 2 is always satisfied if (Ap, Bp, Cp)
is a minimal realization and has stable transmission zeros.
The fact that (A,B2, C) is non-square and typically has
no transmission zeros [19] makes Assumption 2 reasonable.
Assumption 4 is always satisfied if the plant model has the
structure as in (9), in which case B1 = 1

cAB2 + B2. For
nominal plant models satisfying Assumptions 1 and 2, a
baseline observer-based controller (such as LQG [20]) with
gain scheduling can be designed to achieve a satisfactory
tracking performance with adequate stability margins.

For adaptive control, additional assumptions on the plant

model are needed. For (9), Assumption 3 implies
[
CpBp
Dz

]
has column rank m (see [16] for relaxation to nonuniform
relative degree cases). The inequality (n − nz − 2m) ≥
(p − m) allows a squaring-up method to be carried out.
Assumption 5 is commonly satisfied for aerial platforms
with physical constrains, such as the maximum allowable
deformation rate in VFA. Assumption 6 is satisfied if Θ∗Tq1
has a small magnitude, which implies that inertia properties
of aircraft varies slowly, and Λ∗d is positive definite and
diagonal, which implies that control effectiveness loss is
independent from each other.

IV. ADAPTIVE OUTPUT-FEEDBACK CONTROL

This section will develop an adaptive controller for relative
degree two LTI plant models. In Section IV-A, a squaring-
up procedure is introduced to produce a square plant model.
A special state coordinate suitable for control design is pre-
sented in Section IV-B. The adaptive controller is developed
in Section IV-C and its parameters are designed in Section
IV-D to guarantee SPR properties of an underlying SPR error
model shown in Section IV-E. Adaptive law and stability
analysis can be found in Section IV-F.

A. Squaring-Up

The new adaptive control design will be based on a square
plant model, which necessitates a squaring-up procedure
being carried out on (A,B2, C). Lemma 3 specify the details
of the squaring-up procedure, whose proof can be found in
[21]. Define ms := p−m.

Lemma 3. For plant models satisfying Assumptions 1 to 3,
there exists a Bs1 ∈ Rn×ms such that (A,B2, C), where
B2 =

[
B2 Bs1

]
, has stable transmission zeros and

nonuniform input relative degree ri = 2 for i = 1, 2, · · · ,m
and ri = 1 for i = m+ 1,m+ 2, · · · , p.

Similar to B2, we part CT =
[
CT2 CT1

]
. In the

following design procedures, we will show that Bs1 will only
be used to design control parameters.

B. Input Normal Form
For a square plant model that has nonuniform input

relative degree two, there exists an invertible transformation

Tin =

[
(CB)−1C

N

]
, T−1

in =
[
B M

]
, where CT =



 ẋp
ẇu
ẇz

 =

 Ap Bp 0
0 −cI 0

Cpz Dz 0


︸ ︷︷ ︸

A

 xp
wu
wz


︸ ︷︷ ︸

x

+

 Bp
0
Dz


︸ ︷︷ ︸
B1

Λ∗Θ∗T
p xp +

 0
cI
0


︸ ︷︷ ︸
B2

Λ∗
[
u + Θ∗T

a Λ∗−1wu

]
+

 0
0

−I


︸ ︷︷ ︸
Bz

zcmd

y =

[
Cp 0 0
0 0 I

]
︸ ︷︷ ︸

C

x, z =
[
Cpz Dz 0

]
︸ ︷︷ ︸

Cz

x +DzΛ∗Θ∗T
p xp.

(9)

[
CT2 ATCT2 C1

]
, B =

[
B2 AB2 Bs1

]
, N and

M are chosen to satisfy NB = 0, CM = 0 and NM = I ,
that transforms (10) into a new coordinate called “input
normal form” (See [22, Corollary 2.2.5] for proof). In this
paper, matrices in input normal form coordinate will be
denoted with the subscript (·)in, as in xin = Tinx, Ain =
TinAT

−1
in , B2,in = TinB2 (and therefore B2,in = TinB2

and Bs1,in = TinBs1), B1,in = TinB1, Bin,z = TinBz ,
Cin = CT−1

in , Ψ∗T1,in = Ψ∗T1 T−1
in and Ψ∗T2,in = Ψ∗T2 T−1

in . The
input normal form of the plant model (10) is

ξ̇21
ξ̇22
ξ̇11
η̇

 =


0 R2

2,1 R1
2,1 V2

I R2
2,2 R1

2,2 0

0 R2
1,1 R1

1,1 V1
0 U2 U1 Z


︸ ︷︷ ︸

Ain


ξ21
ξ22
ξ11
η


︸ ︷︷ ︸
xin

+


Im
0

0

0


︸ ︷︷ ︸
B2,in

Λ
∗
u

+ B2,in

[
ψ2∗T

20 ψ2∗T
21 ψ1∗T

21 ψ2∗T
(n−rs)

]
︸ ︷︷ ︸

Ψ∗T
1,in

xin

+


Im
1
c
Im

0

0


︸ ︷︷ ︸
B1,in

[
0 ψ2∗T

11 ψ1∗
11 ψ1∗T

(n−rs)

]
︸ ︷︷ ︸

Ψ∗T
1,in

xin + Bin,zzcmd

(11)

y =
[

0 CAB2 CBs1 0
]

︸ ︷︷ ︸
Cin

xin.

Matrix Z ∈ R(n−rs)×(n−rs), where rs =
∑
i ri, is the zero

dynamics matrix whose eigenvalues are transmission zeros
of the plant model (see [22, Section 2.3]). The norms of
Ψ∗T1,in and Ψ∗T2,in are bounded by known values as∥∥Ψ∗i,in

∥∥ ≤ Ψmax Ψmax := Ψmax

∥∥T−1
in

∥∥ , i = 1, 2. (12)

It is noted that B1,in =
[
× × 0 0

]T
and Ψ∗T1 T−1

in =[
0 × × ×

]
since Assumption 4 holds.

Define A∗in = Ain + B1,inΨ∗T1,in + B2,inΨ∗T2,in. Suppose
we add differentiators to all inputs in u, i.e. a1

1v̇+ a0
1v = u.

We then are able to manufacture an artificial uniform relative
degree one square plant model {A∗in, B

1∗
in, Cin} with uT =

[vT , uTs1] as inputs, where

B
1∗
2,in =

[
B1∗

2,in Bs1,in
]

=


a0

1Im + a1
1ψ

2∗T
20 0

a1
1Im 0
0 Ims
0 0

 ,
B1∗

2,in = A∗inB2,ina
1
1 +B2,ina

0
1.

(13)
It is noted that B

1∗
2,in includes uncertainties because of the

presence of Ψ∗Ti,in. The counterpart of B
1∗
2,in in the absence

of Ψ∗Ti,in is

B
1

2,in =
[
B1

2,in Bs1,in
]

=


a0

1Im 0
a1

1Im 0
0 Ims
0 0

 ,
B1

2,in = AinB2,ina
1
1 +B2,ina

0
1.

(14)

It is noted that CinB
1

2,in = CinB
1∗
2,in =[

a1
1CAB2 CBs1

]
has full rank by Assumption 3

and Lemma 3. Examination shows that B
1∗
2,in and B

1

2,in

satisfies

B
1∗
2,in = B

1

2,in +B2,ina
1
1Ψ∗Tin,m. (15)

where
Ψ∗Tin,m =

[
ψ2∗T

20 0m×ms
]
∈ Rm×p (16)

which is a subset of the elements in Ψ∗2,in. It is noted that
(13) also holds for (A∗in − LinCin) for ∀Lin ∈ Rn×m.
Variants of (13) and (15) in the original coordinate also
hold with definitions of B1∗

2 = T−1
in B

1∗
2,in, B1

2 = T−1
in B

1
2,in,

B
1∗
2 = T−1

in B
1∗
2,in, and B

1

2 = T−1
in B

1

2,in. The above discus-
sions illustrate the concept of adding zeros, which will be
explored in the following control design.

C. Control Architecture

Define s as the differential operator. We choose the control
input u as

u = ubl + uad (17)

where ubl is determined using a baseline observer-based
controller and uad by an adaptive controller. The baseline
control ubl is chosen as

ubl = −KTxm (18)

where KT ∈ Rm×n is designed by the linear quadratic
regulator (LQR) technique. uad is designed as

uad = −ubl +
(
a1

1s+ a0
1

)
ΨT

Λ(t)χ(t), (19)

where ΨT
Λ(t) =

[
ΛT ΨT

1 ΨT
2

]
and χT =[

uTbl −xTm −xTm
]T

; ΛT (t) ∈ Rm×m is an estimate of
Λ∗−1. ΨT

1 (t) ∈ Rm1×n and ΨT
1 (t) ∈ Rm1×n are estimate of

Ψ
∗T
1 and Ψ

∗T
2 , respectively, which will be defined in Section

IV-E. xm are the states of a modified closed-loop reference
model (CRM, based on Ref. [15]) as

ẋm = Axm +B2ubl +B2

(
a1

1s+ a0
1

) (
ΨT
m(t)eys

)
+Bzzcmd + L(y − ym)

ym = Cxm, zm = Czxm +Dzubl

(20)

where ΨT
m(t) ∈ Rm×p is an estimate of Ψ∗Tin,m and

eys := R−1
in Sey, and ey := y − ym. (21)

Signals denoted as (·) are a filtered version of signals (·) as

a1
1 · u̇bl + a0

1 · ubl = ubl
a1

1 · ẋm + a0
1 · xm = xm

a1
1 · ėys + a0

1 · eys = a1
1eys.

(22)



In (22), a1
1, a

0
1 > 0 are free to design. Control parameters L,

R−1
in and S will be designed in Section IV-D to guarantee

SPR properties of an underlying error model shown in Sec-
tion IV-E. Adjustable parameters ΛT (t), ΨT

1 (t), ΨT
2 (t) and

ΨT
m(t) will be adapted online by prescribing their derivatives

with respect to t, which will be presented in Section IV-F.

D. Design of L and S

The design of L in (20) and S in (21) is performed in the
input normal form coordinate and transformed back to the
original coordinate, as

S = (CinB
1

2,in)T , Cin := SCin, (23)

R−1
in = (CinB

1

2,in)−1[CinAinB
1

2,in

+ (CinAinB
1

2,in)T ](CinB
1

2,in)−1 + εI (24)

Lin = B
1

2,inR
−1
in S

1
in, (25)

L = T−1
in Lin = B

1

2R
−1
in S

1. (26)

ε > 0 is chosen to be large enough as

ε > εmax, εmax = εmax(Ain, B
1

2,in, Cin,Ψmax) .
(27)

A detail solution of εmax can be found in [16, Eq.(30)].
εmax is so designed to guarantee the SPR properties of an
underlying error model as will be shown in the next section.

E. Underlying SPR Error Model

This section will present the underlying error model and
its SPR properties. Define

L∗in = B
1∗
2,inR

−1
in S

1
in, L∗ = T−1

in L
∗
in = B

1∗
2 R

−1
in S

1
in.

(28)
It follows (15) that

L∗ − L = B2a
1
1Ψ∗Tin,mR

−1
in S. (29)

Define A∗ = A+B1Ψ∗T1 +B2Ψ∗T2 and A∗L∗ = A∗ − L∗C.
By subtracting (20) from (10), substituting uad with (19) and
L with (29), and appealing to (22)(21), the error model can
be derived as

ėx = A∗L∗ex +B2a
1
1Ψ∗Tm eys +B1Ψ∗T1 xm +B2Ψ∗T2 xm

+B2Λ∗(ubl + uad)−B2ubl −B2

(
a1

1s+ a0
1

)
ΨT
m(t)eys

= A∗L∗ex +B1∗
2 Λ∗Ψ

∗T
1 xm +B2Λ∗Ψ

∗T
2 xm

+B2Λ∗
(
a1

1s+ a0
1

) [
ΛT (t)ubl −ΨT

1 (t)xm −ΨT
2 (t)xm

]
−B2

(
a1

1s+ a0
1

) [
Ψ̃T
m(t)eys

]
= A∗L∗ex +B1∗

2 Λ∗Ψ
∗T
1 xm −B2

(
a1

1s+ a0
1

) [
Ψ̃T
m(t)eys

]
+B2Λ∗

(
a1

1s+ a0
1

) [
Λ̃T (t)ubl −ΨT

1 (t)xm − Ψ̃T
2 (t)xm

]
,

(30)

where Ψ
∗T
1 = Λ∗−1 c

a1
1
Ψ∗T1 and Ψ

∗T
2 =

Λ∗−1
[
Ψ∗T2 +

(
Im − c

a1
1
(a0

1Im + ψ2∗T
20 )

)
Ψ∗T1

]
are grouped

uncertain parameters. Define e′x = ex + B2Λ∗a1
1Ψ
∗T
1 xm.

Applying (22)(21) to (30) yields

ė′x = A∗L∗e′x −B2

(
a1

1s+ a0
1

) [
Ψ̃T
m(t)eys

]
+B2Λ∗

(
a1

1s+ a0
1

)
Ψ̃T

Λχ (31)

where Ψ̃T
Λ =

[
Λ̃T Ψ̃T

1 Ψ̃T
2

]
with Λ̃T (t) = ΛT (t) −

Λ∗−1, Ψ̃T
1 (t) = ΨT

1 (t) − Ψ
∗T
1 , Ψ̃T

2 (t) = ΨT
2 (t) − Ψ

∗T
2 and

Ψ̃T
m(t) = ΨT

m(t)−Ψ∗Tin,m being parameter estimation errors.
Define a new error variable as

emx := e′x +B2a
1
1

[
Ψ̃T
m(t)eys

]
−B2Λ∗a1

1Ψ̃T
Λχ (32)

whose derivatives are found as

ėmx = A∗L∗emx −B1∗
2 Ψ̃T

m(t)eys +B1∗
2 Λ∗Ψ̃T

Λχ (33)
ey = Cemx = Cex (34)

after applying (13). It is noted that (34) holds because
CB2 = 0. Eq.s (33) and (34) are our underlying error model.

It is noted that {A∗, B1∗
2 , C} has all stable transmis-

sion zeros since we only added m transmission zeros at
−a0

1/a
1
1 through filters (22). A formal proof is to write out

N
1∗
2,inA

∗
inMin with Min =

[
Im 0 0 0
0 0 0 In−rs

]T
and

N
1

2,in = (MT
inMin)−1MT

in

[
I −B1

2,in(CinB
1

2,in)−1Cin

]
,

and show that it has all stable eigenvalues (see [16, Lemma
1] for a similar proof). The following Lemma states that
εmax in (27) is so designed such that L∗ and S guarantee
a SPR property. Proof of Lemma 1 is very similar to [16,
Lemma 2] and therefore is omitted here.

Lemma 1. Given Assumptions 1 to 6, the finite pair of L∗ ∈
Rn×m and S ∈ Rm×m as in (26), with ε chosen in (27),
guarantees that the transfer function {(A∗−L∗C), B

1∗
2 , SC}

is strictly positive real.

Define partition ST =
[
ST2 ST1

]
with S2 ∈ Rm×p

and S1 ∈ Rms×p. Lemma 1 also implies that {(A∗ −
L∗C), B1∗

2 , S2C} is also SPR.

F. Adaptive Law and Stability Proof
The structure of the SPR error model (33) suggests that the

uncertainty estimates ΨΛ(t) and Ψm(t) should be adjusted
using

Ψ̇Λ(t) = −Γψλχe
T
y S

T
2

Ψ̇m(t) = Γψmeyse
T
y S

T
2

(35)

where Γψλ > 0 and Γψm > 0 are adaptation gains.
The following theorem guarantees the stability and tracking
performance of the adaptive system, whose proof can be
found in Appendix B. Define ez(t) = z − zm as tracking
errors.

Theorem 1. For an uncertain MIMO plant model (10)
that satisfies Assumptions 1 to 6, and for any zcmd(t)
that is piecewise continuous, the adaptive controller
(17)(18)(19)(20)(35), with L and S designed in (26), guar-
antees that i) the closed-loop system has bounded solutions,
ii) ey(t)→ 0 as t→∞, and iii) ez(t)→ 0 as t→∞.



V. APPLICATIONS TO VFA
This section applies the adaptive controller with gain

scheduling on a simple nonlinear VFA model. The model
features three rigid wings hinged side-by-side (see [1]),
which are allowed to rotate about the longitudinal axis (i.e.
dihedral angle η). The platform features basic flexible wing
effects and can be viewed as building blocks of large VFA.
A 6-state nonlinear model has been developed in [1, Eq.s
(45) and (46)] including aircraft’s pitch mode and dihedral
dynamics. Define α as the angle of attack, θ as pitch angle
and q as pitch rate. The nonlinear model can be rewritten in
the form of (3) with ε = η and β =

[
V α q

]T
as


d3(η) sαcη 0 0

0 m 0 0
0 0 mV 0

0 0 0 c1 + c2s
2η




η̈

V̇
α̇
q̇



+


kc − m∗s

3
cηsηη̇ m∗s

2
cηcαα̇ 0 m∗s

2
cηcα

0 0 0 g
0 0 0 0

2c2cηsηq 3c2cηsαα̇ 0 3c2cηsα




η̇
V
α
q



+


kk 0 0 0
0 0 0 −g
0 0 0 0
0 0 0 0




η´
V dt´
αdt
θ

 +


cηsη cηcα

0 0
0 0

cηsη cηsα

 [ δe
δa

]
, (36)

where s(·) = sin(·), c(·) = cos(·) and δe and δa are properly
scaled. Parameter c1 and c2 are inertia constants that depends
on aircraft physical properties. d3 is the rotation inertia about
longitudinal axis and therefore a function of η. Measurements
are vehicle vertical acceleration Az , η and q. Other states,
α and η̇, are unmeasurable and are unavailable for control.
The goal is to use center elevators δe and outer ailerons δa
to track Az command and regulate η.

The nonlinear model is linearized at 25 trim points defined
by V0 = 30 ft/sec, α0 = 0 deg, θ0 = 0 deg, q = 0 deg/sec,
η0 ∈ [9, 11]◦ with a step of 0.5, and η̇0 ∈ [−0.2, 0.2] deg/sec
with a step of 0.1. Example numerical values of the linearized
model is shown in Eq.(37) for η = 9◦ and η̇ = 0 deg/sec. It
is verified that the linearized model for η = 9◦ and η̇ = 0.2
deg/sec can be approximated as (8) using

Θ
∗
p =

[
0.006 −4.52 0 0.005 0.041 1.47
0.001 1.83 0 −0.002 −0.035 −0.59

]
, Λ

∗
=

[
0.91 0.53
0.52 0.79

]

with a norm error of 2.6% ‖Ap‖ and 1.8% ‖Bp‖, respec-
tively. The pitch mode of the VFA when η ≥ 10◦ is unstable.
For realistic simulation, (37) includes two first-order actuator
dynamics with nominal time constant of 1 sec. ue are elevator
commands and ua are aileron commands to the actuators.

For control design, first we designed control parameters
for each trim. For example, L and S2 using (26) and (23)
with a1

1 = 0.2, a0
1 = 1, ε = 100, Λmax = 2 and Ψmax = 30

for the linearized model (37) is:

L =



−34.23 64.10 49.35
−11.54 55.96 2.23
−5.46 31.86 −2.82
60.32 −11.47 −33.51

−49.09 286.3 −25.20
−0.118 20.27 −2.26
30.12 −716 21.78
45.32 138.9 −72.34
−4.88 28.50 −2.51
−50.70 −45.95 218


, S2 =

[
−0.817 0 −0.585
0.585 0 −0.811

]
. (38)

Then we schedule the control parameters using real-time η
measurements. For the baseline controller without adaptation
terms, i.e. ΨΛ(t) ≡ 0 and Ψm(t) ≡ 0, the resulting con-
troller is an observer-based gain scheduling linear controller
(referred as the baseline controller) and the CRM acts as an
observer. Performing frequency domain analysis [10, Chapter
5], as shown in the Figure 3 for η = 9◦, indicates that the
baseline controller has adequate stability margins and small
output sensitivity; the gain margin is [−15.7, 27.1]dB and
the phase margin is ±57.1◦.

The time domain simulation results with the nonlinear
VFA model are shown in Figure 1. Two actuator models were
simulated, one with a time constant of 1.5 second, and the
other 4 second. Two adaptive controllers were tested: one is
relative degree one as developed in Ref. [14], which pretends
the actuator dynamics is not present; the other is the relative
degree two shown in Section IV based on a nominal actuator
model as in (37). The baseline controller was also tested.
With fast actuators, both adaptive controllers were able to
achieve tracking goals while the baseline controller failed to
do so, as shown in Figure 1a. When actuator dynamics was
slow as shown in Figure 1, only relative degree two adaptive
controller can achieve stable command tracking after 3 step
commands. The parameter trajectories of the relative degree
two adaptive controller are shown in Figure 2.
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(a) Actuators with a time constant of 1.5 sec
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(b) Actuators with a time constant of 4 sec

Fig. 1: The tracking of η and Az using the relative degree
two adaptive controller, compared with the relative degree
one adaptive controller and the baseline controller
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Fig. 2: The parameter trajectories of the relative degree two
adaptive controller in the simulation shown in Figure 1b





V
α̇

θ̇
q̇
η̇
η̈

δ̇e
δ̇a
ẇη
ẇAz


=



−0.279 3.476 −32.2 −0.015 0.514 0.525 −2.57 −6.47 0 0
−0.070 −4.104 0 1.013 0.193 0.100 −0.795 −0.079 0 0

0 0 0 1 0 0 0 0 0 0
0 −54.04 0 0.255 1.845 21.41 5.991 −6.363 0 0
0 0 0 0 0 1 0 0 0 0

0.002 0.044 0 0.819 −0.075 −6.518 0.195 −0.034 0 0
0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 −1 0 0
0 0 0 1 0 0 0 0 0 0
0 −123.12 0 0 0 0 −23.84 −2.376 0 0


︸ ︷︷ ︸

A



V
α
θ
q
η
η̇
δe
δa
wη
wAz


︸ ︷︷ ︸

x

+



0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 1
0 0
0 0


︸ ︷︷ ︸

B2

[
ue
ua

]
︸ ︷︷ ︸

u

+



0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

−1 0
0 −1


︸ ︷︷ ︸

Bz

[
zq
zAz

]
︸ ︷︷ ︸
zcmd

y =

 q
wη
wAz

 =

 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


︸ ︷︷ ︸

C

x

(37)

Suppose we freeze the adaptive parameters ΨΛ(t) and
Ψm(t) at the end of the simulation, the resulting “snapshot”
closed-loop systems consist of a uncertain LTI plant and
a linear observer-based controllers. The frequency response
of the snapshot system shows that the adaptation improves
the robustness of the system, as shown in Figure 3. At
the beginning of the simulation, the uncertain closed-loop
system only has a gain margin of [−4.0, 4.6]dB and the
phase margin of ±23.8◦. After adaptation, the gain margin
recovers to [−7.9, 12.6]dB and phase margin to ±41.6◦.
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Fig. 3: The frequency domain analysis of the snapshot
closed-loop system shows that adaptation mitigates the ef-
fects of model uncertainties on system’s robustness

VI. CONCLUSIONS

To accommodate parametric uncertainties in a class of
multi-input-multi-output plants motivated by very flexible
aircraft, this paper develops a new adaptive output feed-
back controller that includes a baseline controller based on
observers and parameter adaptation based on a closed-loop
reference model. In particular, the new control design allows
the underlying plant model to have more outputs than inputs,
and have first-order actuator dynamics and a large class
of uncertainties. Control parameters are designed such that
this controller can guarantee global stability and asymptotic
tracking, The overall design is validated using simulations on
a nonlinear VFA model navigating through multiple trims.
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APPENDIX

A. Linearization of VFA Model

Define (·)/[·]0 = ∂(·)
∂[·] |[·]0 as partial differen-

tial variables. Linearizing (3) around a trim point[
ε̈0 ε̇0 ε0 β̇0 β0 λ0 u0

]T
yields


 I 0 0

0 (MFF )ε0 (MFB)ε0
0 (MBF )ε0 (MBB)ε0


︸ ︷︷ ︸

Q1

+

 0 0 0
0 ∆MFF ∆MFB
0 ∆MBF ∆MBB


︸ ︷︷ ︸

∆Q1


 ε̇

ε̈

β̇



=




0 I 0

−(KFF )ε0
+ (JThε)ε0

Faero
/ε0

−Ce (JThε)ε0
Faero
/β0

0 0 −CRB + (JThb)ε0
Faero
/β0


︸ ︷︷ ︸

Q2

+

 0 0 0
∆KFF ∆CFF ∆CFB
∆KBF ∆CBF ∆CBB


︸ ︷︷ ︸

∆Q2


 ε

ε̇
β


︸ ︷︷ ︸
xp

+

 0
BF/u0
BB/u0


︸ ︷︷ ︸

Q3

up (39)

where
∆MFF = −(JThε)ε0

Faero
/ε̈0

∆MBF = −(JThb)ε0
Faero
/ε̈0

∆BF/λ0
= (JThε)ε0

Faero
/λ0

∆MFB = −(JThε)ε0F
aero
/β̇0

∆MBB = −(JThb)ε0
Faero
/β̇0

∆BB/λ0
= (JThb)ε0

Faero
/λ0

∆KFF = MFF/ε0
ε̈0 +MFB/ε0

β̇0

∆KBF = MBF/ε0
ε̈0 +MBB/ε0

β̇0

∆CFF = −(CFF )x0 − CFF/ε̇0
ε̇0 − CFB/ε̇0

β0 + (JThε)ε0F
aero
/ε̇0

∆CBF = −(CBF )x0 − CBF/ε̇0
ε̇0 − CBB/ε̇0

β0 + (JThb)ε0F
aero
/ε̇0

∆CFB = −(CFB)x0
− CFF/β0

ε̇0 − CFB/β0
β0

∆CBB = −(CBB)x0
− CBF/β0

ε̇0 − CBB/β0
β0

(40)

BF/u0
= (JThε)ε0F

aero
/u0

and BB/u0
= (JThb)ε0F

aero
/u0

. Without
loss of generality, we scale each input so that F aero/u0

= I . In

realistic application, only
[
ε0 β0 u0

]T
can be measured

accurately and therefore variables that depend on them can be
gain scheduled.

[
ε̇0 ε̈0 β̇0 λ0

]T
cannot be measured

accurately and therefore variables that depends on them are
generally unknown. As a result, Q1, Q2 and Q3 are known
but ∆Q1 and ∆Q2 are unknown. Examination on (40) using
(4) reveals that

∆Q1 =


0

JThε
JThb

0


ε0

[
0 Faero

/ε̈0
Faero
/β̇0

0
]

︸ ︷︷ ︸
Θ∗T
q1

= Q3Θ
∗T
q1

(41)

and

∆Q2 =

 0

JThε
JThb


ε0

[
Me

(
∂Jhε
∂ε

ε̈ +
∂Jhb
∂ε

β

)
Me

(
J̇hε +

∂J̇hε
∂ε̇

ε̇ +
∂J̇hb
∂ε̇

β

)

Me

(
J̇hb +

∂J̇hε
∂β

ε̇ +
∂J̇hb
∂β

β

)]
x0︸ ︷︷ ︸

Θ∗T
q2

= Q3Θ
∗T
q2

(42)

which leads to a plant model with modeled uncertainties as(
Q1 +Q3Θ∗Tq1

)
ẋp =

(
Q2 +Q3Θ∗Tq2

)
xp +Q3up. (43)

Assume that Q1, (Q1 +Q3Θ∗Tq1 ) and (I + Θ∗Tq2 Q
−1
1 Q3) are

invertible around the equilibrium. Taking inverse on both
sides, and noting

(Q1 + Q3Θ
∗T
q1

)
−1

= Q
−1
1 − Q

−1
1 Q3(I + Θ

∗T
q1
Q

−1
1 Q3)

−1
Θ

∗T
q1︸ ︷︷ ︸

Θ∗T
q1

Q
−1
1 (44)

yields
ẋp =

(
Q

−1
1 − Q

−1
1 Q3Θ

∗T
q1
Q

−1
1

) (
Q2 + Q3Θ

∗T
q2

)
xp (45)

+
(
Q

−1
1 − Q

−1
1 Q3Θ

∗T
q1
Q

−1
1

)
Q3up

=
[
Q

−1
1 Q2 + Q

−1
1 Q3

(
Θ

∗T
q2

− Θ
∗T
q1
Q

−1
1 Q2 − Θ

∗T
q1
Q

−1
1 Q3Θ

∗T
q2

)]
xp (46)

+ Q
−1
1 Q3

(
I − Θ

∗T
q1
Q

−1
1 Q3

)
up

=


Ap + Bp

(
Θ

∗T
q2

− Θ
∗T
q1
Ap − Θ

∗T
q1
BpΘ

∗T
q2

)
︸ ︷︷ ︸

Λ∗Θ∗T
p


xp + Bp

(
I − Θ

∗T
q1
Bp

)
︸ ︷︷ ︸

Λ∗

up

(47)

with Ap = Q−1
1 Q2, Bp = Q−1

1 Q3.

B. Proof of Theorem 1

Proof. We propose a Lyapunov function candidate

V = eTmxP
∗emx

+ Tr
[
Ψ̃T

ΛΓ−1
ψλ

Λ∗Ψ̃Λ

]
+ Tr

[
Ψ̃T
mΓ−1

ψm
Ψ̃m

]
(48)

where P ∗ = TTinP
∗
inTin is the matrix that guarantees the

SPR properties of {A∗L∗ , B
1∗
2 , SC}, satisfying

P ∗A∗L∗ +A∗L∗P ∗ = −Q∗ < 0 (49)

P ∗B
1∗
2 = CTST , (50)

where Q
∗

= Q∗ + C̄TR−1
in C̄ > 0 with Q∗ = TTinQ

∗
inTin.

Partition on both sides of (50) yields

P ∗
[
B1∗

2 B1

]
= CT

[
ST2 ST1

]
. (51)

By appealing to (33)(34)(35)(49)(51), the derivative of V has
the following bound

V̇ = eTmx
[
A∗TL∗P ∗ + P ∗A∗L∗

]
emx

− 2eTmx[P ∗B1∗
2 − CTST2 ]Λ∗Ψ̃T

Λχ

− 2eTmx[P ∗B1∗
2 − CTST2 ]Ψ̃T

meys

= −eTmxQ
∗
eux ≤ 0. (52)

Then emx(t), Ψ̃Λ(t) and Ψ̃m(t) are bounded as t → ∞,
which proves i). Applying Barbalat’s Lemma shows that
emx(t)→ 0 as t→∞, which proves ii). From (34) and (22),
the fact emx(t)→ 0 implies that ey(t)→ 0, eys(t)→ 0 and
eys(t)→ 0 as t→∞, which in turn implies that xm, as well
as xm and ubl, is bounded. Further, define epz(t) = z−zcmd
and

emz(t) = zm− zcmd+B2,I

(
a1

1s+ a0
1

) (
ΨT
m(t)eys

)
+LIey,

(53)
where B2,I and LI are rows of B2 and L corresponding
to the integral errors, respectively. From (9), it is noted that´
epz(t)dt is an element of x and

´
emz(t)dt is an element

of xm. As a result, emx(t) → 0 as t → ∞, together of the
definition of emx(t) as in (32), impliesˆ

ez(t)dt→ −B2,I

ˆ [(
a1

1s+ a0
1

) (
ΨT
m(t)eys

)]
dt

+B2,IΛ
∗
2a

1
1Ψ̃T

Λχ−B2,Ia
1
1(Ψ̃T

m(t)eys). (54)

Therefore,
´
ez(t)dt is bounded as t→∞. Further, ėz(t) is

bounded as t→∞. Applying Barbalat’s Lemma shows that
ez(t)→ 0 as t→∞, which proves iii).


