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We present a simple two-step method by which one-dimensional spectra of horizon-
tal velocity and buoyancy measured along a ship track can be decomposed into a wave
component consisting of inertia–gravity waves and a vortex component consisting of a
horizontal flow in geostrophic balance. The method requires certain assumptions for the
data regarding stationarity, homogeneity, and horizontal isotropy. In the first step an
exact Helmholtz decomposition of the horizontal velocity spectra into rotational and
divergent components is performed and in the second step an energy equipartition prop-
erty of hydrostatic inertia–gravity waves is exploited that allows diagnosing the wave
energy spectrum solely from the observed horizontal velocities. The observed buoyancy
spectrum can then be used to compute the residual vortex energy spectrum. Further
wave–vortex decompositions of the observed fields are possible if additional information
about the frequency content of the waves is available. We illustrate the method on two
recent oceanic data sets from the North Pacific and the Gulf Stream. Notably, both steps
in our new method might be of broader use in the theoretical and observational study of
atmosphere and ocean fluid dynamics.

1. Introduction

The decomposition of a complex flow into various constituents that are distinguished
by their intrinsic physical and mathematical properties is a powerful conceptual tool,
which is particularly useful in the flows typical for the atmosphere and ocean, where
small-scale dispersive waves, quasi-two-dimensional large-scale vortical flows along strat-
ification surfaces, and pockets of three-dimensional turbulence all intermingle in a non-
linear jigsaw puzzle. The most elementary of such flow decomposition methods is based
on the linearized fluid equations relative to a state of rest, which for a rotating and
stratified three-dimensional fluid system such as the Boussinesq model leads to the fa-
miliar decomposition into a horizontal flow in geostrophic and hydrostatic balance on
the one hand and into unbalanced inertia–gravity waves on the other. However, even this
most basic decomposition method in principle requires knowledge of all the flow variables
throughout the entire three-dimensional domain, a task that is as straightforward in a
numerical model as it is hopeless in observational practice.

† Author to whom correspondence should be addressed.
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Indeed, many observations in the atmosphere and ocean are confined to a fixed loca-
tion, or to a sequence of locations along a horizontal transect following an airplane flight
or a ship track, say. In this latter situation it is possible to compute one-dimensional
spectra along the ship track of flow variables such as the horizontal velocities or the
buoyancy. By assuming stationarity and homogeneity as needed, this allows the estima-
tion of one-dimensional covariance functions or, equivalently, of one-dimensional power
spectra. Of course, such ship track data is highly aliased in the sense that the power
spectra at the one-dimensional wavenumber k > 0 along the ship track, say, are affected
by the multi-dimensional dynamics associated with all wavenumber vectors with magni-
tude greater or equal to k. The situation improves if one can assume horizontal isotropy
at least, in which case one can exploit the link between one-dimensional and isotropic
two-dimensional spectra. In particular, one can then exploit the well-known differences
between the power spectra of along-track and across-track velocity components (e.g.
Batchelor 1953; Charney 1971) to gain some insight into the dynamics of the underlying
flow, such as its decomposition into waves and other constituents.

These issues are of pressing concern especially in oceanography, where observations are
sparse and our understanding of the relevant dynamical processes is poor. For example,
the oceanic motions are very energetic in the submesoscale horizontal range between
O(100) km, the scale of the Rossby radius of deformation, and O(1) km, the smallest
scale at which rotation strongly affects dynamics. These motions play an important role
in the overall ocean circulation, because they connect the large scales where the ocean is
energized by atmospheric forcing to the small scales at which energy is dissipated (Ferrari
& Wunsch 2010). Despite the explosion of theoretical studies of submesoscale dynamics
in the last decade, the dearth of observations on this range of scales has slowed progress.

A major question is to partition the relative contributions of geostrophic eddies or
inertia–gravity waves at the submesoscales, because they have different impact on dy-
namics and tracer transport (e.g. Callies & Ferrari 2013, hereafter CF13). A turbulent
field of geostrophic eddies tends to transfer energy to larger scales and mix tracers along
density surfaces. Internal wave interactions, instead, transfer energy to smaller vertical-
scale waves, which break and mix tracers across density surfaces. In situ mooring ob-
servations are useful to separate sub-inertial and super-inertial motions, but the lack
of spatial information prevents any conclusive statement about whether the sub-inertial
motions are submesoscale geostrophic eddies or larger-scale motions and whether the
super-inertial motions are inertia–gravity waves or other forms of stratified turbulence.
Two dimensional sections (along ship tracks and depth) of velocity and density provide
snapshots of the superposition of all submesoscale motions with no temporal information
to separate the relative contributions. Maps of potential vorticity (PV) could be used
to distinguish the two classes of motion, because geostrophic eddies are associated with
PV anomalies whilst inertia–gravity waves have no PV signature. But PV requires three
dimensional sections and it is extremely difficult to measure accurately (e.g. Müller et al.
1988).

CF13 used the fact that the ratio of the power spectra of along and across ship track
velocities can be used to determine whether a velocity field is horizontally nondivergent,
a necessary condition for flows to be in geostrophic balance. In this sense the geostrophic
flow left a clear fingerprint in the observed horizontal velocities that could be tracked
down. However, the horizontal velocity field due to inertia–gravity waves has both ro-
tational and divergent components, so its fingerprint in the observed fields is not so
immediately apparent.

In this work, we present a two-step method that allows extracting the fingerprint of
inertia–gravity waves from ship track spectra. First, we show that measurements of the
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two horizontal velocity components along ship tracks are sufficient to partition the flow
uniquely into rotational (i.e. horizontally nondivergent) and divergent (i.e. horizontally
irrotational) components, provided one can assume that the two fields are horizontally
homogeneous and isotropic at the measured scales, and that their rotational and divergent
components are uncorrelated in a statistical sense. This Helmholtz decomposition of the
one-dimensional velocity spectra is purely kinematic in nature and is achieved by solving
two simple ODEs in spectral space, an easy numerical task. We have not been able to find
a direct prior reference in the literature for this kind of exact Helmholtz decomposition
method for one-dimensional spectra, although related theoretical investigations do exist
as in Lindborg (2007).

Specifically, in that paper it was shown how the one-dimensional covariances of vertical
vorticity vx−uy and of horizontal divergence ux+vy can be expressed in terms of the one-
dimensional horizontal velocity covariances by applying a certain second-order differential
operator. This information can then be converted into the corresponding power spectra
by Fourier transforms, which in principle also enables a Helmholtz decomposition of the
horizontal flow because the vertical vorticity governs the rotational component and the
horizontal divergence governs the divergent component. In practice, this depends on the
smoothness of the observed covariance functions, which need to be differentiated twice
in order to extract the flow components. This is a difficult task on noisy data and in
the practical application of the theory to air flight data in Lindborg (2007) a parametric
fit to an assumed shape of a piecewise defined covariance function is used instead. The
Fourier transforms are then approximated by transforming each piecewise part of the
covariance functions in isolation. In contrast, the decomposition technique derived in the
present paper works directly on the power spectra of the observed fields and involves only
integrals in spectral space, so no derivatives of noisy data need to be taken. This also
allows our method to be applied directly to the data, without assuming any particular
shape for the covariance functions.

Second, we show that for hydrostatic and vertically homogeneous inertia–gravity waves
the aforementioned Helmholtz decomposition in combination with a statement about
wave energy equipartition is sufficient to compute the one-dimensional wave energy spec-
trum. If buoyancy spectra are also available then this means that the total observed
energy spectrum can be exactly decomposed into its inertia–gravity wave component
and its residual vortical component in geostrophic balance. We also show that one can
derive additional relationships between the power spectra if one has some information
about the frequency content of the wave field (for example that it is narrow band, or
that it follows a simple model spectrum). In this case it is possible to decompose not just
the total observed energy spectrum but also the individual observed field spectra into
their balanced and unbalanced components. This allows a complete decomposition of
the one-dimensional spectra into their wave and vortex components, which is of obvious
dynamical significance.

In section 2, we introduce the Helmholtz decomposition method for separating the
rotational and divergent components of a two-dimensional velocity field from one dimen-
sional spectra. Then we show how to determine what part of the spectrum is composed
of inertia–gravity waves. Throughout, we consider only a very simple fluid set-up, which
is a three-dimensional Boussinesq model with constant Coriolis parameter f and buoy-
ancy frequency N . In section 3, the method is applied to ship based measurements of
the upper ocean velocity field from two field experiments, one in the eastern subtropical
North Pacific and one in the western North Atlantic. Despite noisy data and restric-
tive assumptions, in both cases the separation of submesoscale geostrophic motions from
inertia–gravity waves appears to be fully successful.
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2. Helmholtz decomposition and wave diagnostics

We begin by assembling some generic facts about one-dimensional velocity spectra that
derive from a two-dimensional horizontal flow with homogeneous and isotropic statistics.
For horizontally nondivergent flows this is a subset of well-known results from homoge-
neous turbulence theory, but for inertia–gravity waves we need to accommodate horizon-
tal velocity fields that have both rotational and divergent components, which is a less
studied case.

2.1. Helmholtz decomposition of one-dimensional spectra

Let u and v be horizontal velocity components defined in the xy-plane with x aligned
with the ship track, so u is the along-track, “longitudinal” component and v is the across-
track, “transverse” component. The time t and depth z are considered fixed during the
measurement, so we may ignore these coordinates at this stage. If the flow is purely
rotational, i.e. horizontally nondivergent, then (u, v) derive from a stream function ψ(x, y)
in the standard way:

ux + vy = 0 ⇒ u = −ψy and v = +ψx. (2.1)

Let ψ be a homogeneous and isotropic zero-mean random function such that

E[ψ] = 0 and Cψ(x, y) = E[ψ(x0, y0)ψ(x0 + x, y0 + y)] = F (r) (2.2)

where r =
√
x2 + y2 and E denotes taking the expected value. The function F (r) is the

covariance of the stream function, which is a function of horizontal distance r ≥ 0 in
the two-dimensional plane and encapsulates all the statistical knowledge that is available
for the random velocity field. The power spectrum Ĉψ(k, l) is the Fourier transform of
Cψ(x, y), i.e.

Ĉψ(k, l) =

∞∫
−∞

∞∫
−∞

Cψ(x, y)e−i(kx+ly) dxdy = 2π

∫ ∞
0

J0(khr)F (r) rdr = F̂ (kh) (2.3)

where kh =
√
k2 + l2. The corresponding velocity spectra follow from (2.1) as

Ĉu(k, l) = l2 Ĉψ(k, l) = l2 F̂ (kh) and Ĉv(k, l) = k2 Ĉψ(k, l) = k2 F̂ (kh). (2.4)

These are clearly not isotropic even though Ĉψ is. For completeness, the cross-spectrum

Ĉuv(k, l) = −kl Ĉψ(k, l) = −kl F̂ (kh). (2.5)

Now, along the ship track y = 0 and r = x, so the relevant one-dimensional covari-
ance functions are given by Cψ(x, 0) = F (x), for example. For the power spectra this
corresponds to integrating over the transverse wavenumber l:

Ĉψ(k) =
1

2π

∞∫
−∞

Ĉψ(k, l) dl =
1

2π

∞∫
−∞

F̂ (kh) dl. (2.6)

This integrand is even in l and, at fixed k, we have ldl = khdkh, which allows rewriting
(2.6) as

Ĉψ(k) =
1

π

∫ ∞
|k|

F̂ (kh)√
k2h − k2

khdkh. (2.7)
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The same steps lead to the one-dimensional velocity spectra

ψ only: Ĉu(k) =
1

π

∫ ∞
|k|

F̂ (kh)
√
k2h − k2 khdkh (2.8)

Ĉv(k) =
k2

π

∫ ∞
|k|

F̂ (kh)√
k2h − k2

khdkh, (2.9)

where “ψ only” is added as a reminder that these expressions hold only for horizontally
nondivergent flows that can be expressed through a stream function ψ. The corresponding
cross-spectrum Ĉuv(k) = 0, because the relevant symbol kl in (2.5) is odd in l and hence
integrates to zero. This will always be the case, so we won’t consider the cross-spectrum
any further. By inspection, and using Leibniz’s rule, we obtain the celebrated formula

ψ only: Ĉv(k) = −k d
dk
Ĉu(k) (2.10)

for the horizontally nondivergent case (e.g. Charney 1971). For power-law velocity spectra
of the form k−n this yields

ψ only: Ĉv(k) = nĈu(k), (2.11)

which, for n > 1, means that along a ship track the transverse spectrum dominates the
longitudinal spectrum for two-dimensional incompressible flows. This is the fingerprint
that was exploited in CF13.

Conversely, we may consider a purely divergent flow, i.e. one that is two-dimensionally
irrotational such that (2.1) is replaced by

vx − uy = 0 ⇒ u = φx and v = φy (2.12)

in terms of a homogeneous and isotropic zero-mean random potential φ(x, y) defined by

E[φ] = 0 and Cφ(x, y) = E[φ(x0, y0)φ(x0 + x, y0 + y)] = G(r), (2.13)

where G(r) is the covariance of φ. Clearly, apart from the sign change, this simply reverses
the roles of u and v in (2.1), so all the spectra can be worked out just as before. For the
two-dimensional spectra this yields

Ĉu(k, l) = k2 Ĝ(kh) and Ĉv(k, l) = l2 Ĝ(kh) (2.14)

and the one-dimensional ship track spectra are

φ only: Ĉu(k) =
k2

π

∫ ∞
|k|

Ĝ(kh)√
k2h − k2

khdkh (2.15)

Ĉv(k) =
1

π

∫ ∞
|k|

Ĝ(kh)
√
k2h − k2 khdkh, (2.16)

where “φ only” is added as a reminder that these expressions hold only for irrotational
flows that can be expressed through a velocity potential φ. The relationship (2.10) is
replaced by

φ only: Ĉu(k) = −k d
dk
Ĉv(k) (2.17)

and hence now the longitudinal spectrum dominates for power laws with n > 1:

φ only: Ĉu(k) = nĈv(k). (2.18)

Note that by definition both F̂ and Ĝ are real and non-negative functions of kh.
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Now, a general two-dimensional flow has a Helmholtz decomposition into rotational
and divergent components of the form

u = −ψy + φx and v = ψx + φy, (2.19)

which implies the two-dimensional Poisson equations

ψxx + ψyy = vx − uy and φxx + φyy = ux + vy. (2.20)

This determines both ψ and φ up to a harmonic function, but with doubly periodic
boundary conditions such a harmonic function could only be a physically meaningless
constant, so ψ and φ are in fact uniquely determined by (2.20). Progress with the statis-
tical theory is then possible if ψ(x, y) and φ(x, y) are uncorrelated in the sense that

E[ψ(x0, y0)φ(x0 + x, y0 + y)] = 0 (2.21)

holds for all (x, y). Under this assumption the velocity covariances due to ψ and φ simply
add up, which yields the one-dimensional ship track spectra

Ĉu(k) =
1

π

∫ ∞
|k|

[
F̂ (kh)

√
k2h − k2 +

k2Ĝ(kh)√
k2h − k2

]
khdkh (2.22)

Ĉv(k) =
1

π

∫ ∞
|k|

[
k2F̂ (kh)√
k2h − k2

+ Ĝ(kh)
√
k2h − k2

]
khdkh. (2.23)

These expressions can be substantially simplified if one introduces the auxiliary functions
Dψ(k) and Dφ(k) defined by

Dψ(k) =
1

2π

∞∫
−∞

l2Ĉψ(k, l) dl =
1

π

∫ ∞
|k|

F̂ (kh)
√
k2h − k2 khdkh (2.24)

Dφ(k) =
1

2π

∞∫
−∞

l2Ĉφ(k, l) dl =
1

π

∫ ∞
|k|

Ĝ(kh)
√
k2h − k2 khdkh, (2.25)

The functions Dψ and Dφ are the spectra of ψy and φy, respectively, and they allow
rewriting (2.22-2.23) in the succinct form

Ĉu(k) = Dψ(k)− k d
dk
Dφ(k) and Ĉv(k) = Dφ(k)− k d

dk
Dψ(k). (2.26)

This is the main result of this section, which neatly incorporates both (2.10) and (2.17)
as special cases. The functions Dψ and Dφ can be viewed as analogous to ψ and φ in
the Helmholtz decomposition of the ship track velocity spectra. Correspondingly, the
horizontal kinetic energy spectrum can be viewed as the sum of a rotational and a
divergent part:

1

2

[
Ĉu(k) + Ĉv(k)

]
=

1

2

[
Dψ(k)− k d

dk
Dψ(k)

]
+

1

2

[
Dφ(k)− k d

dk
Dφ(k)

]
. (2.27)

2.2. Numerical method for Helmholtz decomposition

The spectral functions Dψ(k) and Dφ(k) are not directly observable from the ship track
data, but (2.26) suggests a simple and robust method for computing them from the
directly observed Ĉu and Ĉv. First, the functions Dψ and Dφ are symmetric in k so we
only need to find their values for k ≥ 0. Second, in the limit k →∞ we have the robust



Wave–vortex decomposition of one-dimensional ship track data 7

decay boundary conditions

Dψ(+∞) = Dφ(+∞) = 0 (2.28)

and this allows us to compute Dψ and Dφ for k ≥ 0 by integrating the two ODEs in
(2.26) backwards in k, starting from zero values at k = +∞. This is particularly easy in
the logarithmic wavenumber

s = ln k such that
d

ds
= k

d

dk
. (2.29)

The ODEs in (2.26) can be integrated numerically, but there is also a closed-form solution

Dψ(s) =

∫ ∞
s

[
Ĉu(s̄) sinh(s− s̄) + Ĉv(s̄) cosh(s− s̄)

]
ds̄ (2.30)

Dφ(s) =

∫ ∞
s

[
Ĉu(s̄) cosh(s− s̄) + Ĉv(s̄) sinh(s− s̄)

]
ds̄. (2.31)

In this formulation, the functions Dψ and Dφ at wavenumber k only depend on the
velocity spectra at wavenumbers larger than k, which is consistent with the aliasing
apparent in their definition in (2.24). Notably, the sinh(s− s̄) terms in (2.30) and (2.31)
are negative, which can lead to unphysical negative values in Dψ or Dφ. This may occur
when either Dψ or Dφ become very small, say comparable to the instrumental noise
threshold or to the errors imposed by the limitations of the assumptions of isotropy and
homogeneity in the data (cf. § 3.2 below).

2.3. Inertia–gravity waves and the wave energy spectrum

We now consider the linear Boussinesq equations with constant f and N in a domain with
doubly periodic horizontal boundary conditions. The horizontal velocity field induced by
linear inertia–gravity waves then has both a stream function and a velocity potential
component, which are related as follows. The vertical vorticity satisfies the linear equation

(vx − uy)t = fwz = −f(ux + vy) ⇒ ψt + fφ = 0. (2.32)

Equation (2.32) shows that ψ and φ are in quadrature in time, which we will take to
imply that for a stationary and horizontally isotropic field of random waves ψ and φ are
uncorrelated at any fixed time t, and therefore the key assumption (2.21) indeed holds
for linear inertia–gravity waves. The reasoning behind this is described in appendix 5.1.

It is of course possible to define further spectral relationships based on the linear
equations, for example (2.32) implies the frequency-dependent relationship

ĈψW (k, l, ω) =
f2

ω2
ĈφW (k, l, ω) (2.33)

between the three-dimensional wave spectra of ψ and φ, which are defined in the usual
way as functions of the horizontal wavenumbers and the wave frequency. (Here and
in the following we denote wave-related functions by the subscript W .) However, such
relationships include the wave frequency ω as a parameter, which depends on (k, l) but
also on the vertical wavenumber or some other information about the vertical structure
of the waves. This is of limited use for general ship track observations, where the vertical
structure is typically not known and therefore (2.33) cannot be reduced to a unique
statement for two-dimensional or one-dimensional spectra. We note in passing that the
situation would be very different in a two-dimensional fluid system such as the shallow-
water equations, where the dispersion relation determines ω2 as a function of (k, l). In
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this case (2.33) would indeed hold for the two-dimensional spectra, with ω2 determined
from the dispersion relation.

We will therefore pursue a different course of action under the assumption that the
waves are hydrostatic, implying that the vertical velocity is negligible in the wave energy
budget. Somewhat surprisingly, this assumption will allow us to deduce the exact one-
dimensional wave energy spectrum

EW (k) =
1

2

[
ĈuW (k) + ĈvW (k) + ĈbW (k)

]
(2.34)

solely from ship track observations of u and v! Here ĈbW (k) is the spectrum of b/N where
b is the linear buoyancy disturbance, which is related to the vertical velocity w by

bt +N2w = 0. (2.35)

Hence 1
2 Ĉ

b
W is the potential energy spectrum. The computation of EW (k) in (2.34) hinges

on the following statement about the energy equipartition for linear hydrostatic inertia–
gravity waves that are stationary in time as well as spatially homogeneous in all three
directions: the sum of the potential energy plus the rotational horizontal kinetic energy
due to ψ then equals the divergent horizontal kinetic energy due to φ. This statement is
derived in appendix 5.2 and using (2.27) it takes the form

ĈbW (k) +

[
Dψ
W (k)− k d

dk
Dψ
W (k)

]
=

[
Dφ
W (k)− k d

dk
Dφ
W (k)

]
. (2.36)

Substitution in (2.34) then immediately yields the key result

EW (k) = Dφ
W (k)− k d

dk
Dφ
W (k). (2.37)

In a nutshell, this equation asserts that a Helmholtz decomposition of the horizontal
velocity spectra along a ship track yields the exact wave energy spectrum of linear hy-
drostatic inertia–gravity waves, at least under the assumption that the waves can be
modelled as spatially homogeneous, including in the vertical. For a wave field dominated
by low-order vertical modes this latter assumption would fail, but otherwise the general-
ity of (2.37) is remarkable. We note in passing that (2.36) is the hydrostatic version of a
more general equipartition statement (5.9) that is also derived in appendix 5.2. However,
this more general statement involves the spectrum of the vertical velocity component,
which is typically not available in present-day observations.

2.4. Combination with a geostrophic flow component

If the inertia–gravity wave field is embedded in a vortical flow in geostrophic balance then
the horizontal velocity field can be viewed as the sum of an unbalanced wave part and of
a balanced ‘vortex’ part. We allow for this by extending the Helmholtz decomposition to

ψ = ψW + ψV and φ = φW , (2.38)

where the subscript V denotes the vortex part. The vortex part is horizontally non-
divergent and therefore φ has no vortex part.

It is reasonable on physical grounds to assume that ψV is statistically independent of
ψW and φW , in which case the covariances due to ψV simply add to the wave covariances
we have already considered, i.e.,

Ĉu(k) = ĈuW (k) + ĈuV (k) and Ĉv(k) = ĈvW (k) + ĈvV (k). (2.39)
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The corresponding Helmholtz decomposition leads to

Dψ(k) = Dψ
W (k) +Dψ

V (k) and Dφ(k) = Dφ
W (k) (2.40)

such that

ĈuW (k) = Dψ
W (k)− k d

dk
Dφ
W (k), ĈvW (k) = −k d

dk
Dψ
W (k) +Dφ

W (k) (2.41)

ĈuV (k) = Dψ
V (k), ĈvV (k) = −k d

dk
Dψ
V (k). (2.42)

Crucially, Dφ
W = Dφ can be computed from the observed velocity spectra exactly as

before, i.e., the function Dφ
W computed from the velocity observations is unaffected by

the geostrophic flow component. The same is hence true for the hydrostatic wave energy
spectrum EW computed in (2.37). In other words, allowing for the presence of a geo-
strophic stream function does not affect the method of computation of the wave energy
spectrum at all, because the crucial potential part of the Helmholtz decomposition of the
spectra is not affected by the geostrophic flow.

At this point EW , Dφ = Dφ
W and the sum Dψ = Dψ

W + Dψ
V are known, but not

Dψ
W and Dψ

V individually. So the vortical energy spectrum as well as the individual
wave and vortex velocity spectra in (2.41–2.42) are still unknown. Either additional
assumptions or additional observations are needed to progress further. We consider two
options: either observing b/N along the ship track, or assuming additional information
about the frequency content of the wave field.

2.5. Observed buoyancy spectrum

If b/N is observed along the ship track then we know the potential energy spectrum 1
2 Ĉ

b

and hence also the total energy spectrum

E(k) = EW (k) + EV (k) =
1

2

[
Ĉu(k) + Ĉv(k) + Ĉb(k)

]
. (2.43)

Now, because EW can be computed from (2.37), the vortical energy spectrum

EV (k) =
1

2

[
ĈuV (k) + ĈvV (k) + ĈbV (k)

]
= E(k)− EW (k) (2.44)

simply follows by subtraction, so we now know both EW and the residual EV . This
provides an exact energy decomposition into wave and vortex parts based solely on
observing (u, v, b/N) along a ship track, which is of obvious physical importance.

On the other hand, it is still not possible to compute the spectra of the individual
wave and vortex fields from the available data. For example, Ĉb is known but not its
constituents ĈbW and ĈbV . At least one further auxiliary assumption would be needed to
overcome this. For example, in Charney’s conception of energy equipartition in three-
dimensional quasi-geostrophic turbulence with isotropic statistics (after rescaling the
vertical coordinate by f/N) (Charney 1971), the vortical buoyancy spectrum is approxi-
mately equal to the longitudinal velocity spectrum, which in the present notation would
imply

ĈbV (k) = ĈuV (k) = Dψ
V (k). (2.45)

Combining this with (2.44) and (2.42) yields

EV (k) = Dψ
V (k)− k

2

d

dk
Dψ
V (k), (2.46)

which is an ODE for Dψ
V in terms of the known EV . This is again easily solved for Dψ

V (k)
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by starting with a zero value at k = +∞ and solving backwards in k for all k ≥ 0.
Thereafter Dψ

W = Dψ −Dψ
V is known as well and hence all fields have been completely

decomposed into their wave and vortex constituents. This is an attractive theoretical
result, but it must be clearly noted that the underlying heuristic assumption (2.45) based
on isotropy in rescaled coordinates may in practice hold only for the smallest scales of
the geostrophic flow, if it holds at all. We will not use this approach in this paper.

2.6. Frequency models for the wave spectrum

Substantial progress can be made if one assumes a more detailed model for the frequency
content of the wave spectrum. For example, if the wave field is narrow-banded in fre-
quency then it makes sense to assign a single typical value to the parameter f2/ω2 that
appears in relationships such as (2.33). If we denote this constant value by f2/ω2

0 then
(2.33) implies the spectral relationships

ĈψW (k, l) =
f2

ω2
0

ĈφW (k, l) and Dψ
W (k) =

f2

ω2
0

Dφ(k). (2.47)

With Dψ
W and Dψ

V = Dψ −Dψ
W now in hand we can evaluate all the terms in (2.41) and

(2.42). Moreover, ĈbW follows from the known EW as

ĈbW (k) = 2EW (k)− ĈuW (k)− ĈvW (k). (2.48)

This narrow-band approach for the wave spectrum might be relevant for inertia–gravity
wave fields dominated by specific tidal components such as the M2 tide, but such internal
tides also tend to be quite anisotropic.

A more flexible modelling approach extends the second equation in (2.47) to a function
ω∗(k), say, which is defined by

Dψ
W (k) =

f2

ω2
∗(k)

Dφ(k). (2.49)

Clearly, if ω∗(k) is somehow known then one can again compute Dψ
W from the observed

Dφ and hence again obtain the complete decomposition of the spectra into their wave
and vortex constituents in (2.41–2.42). For ease of reference, in terms of Dψ and Dφ

these relations become

ĈuW (k) =
f2

ω2
∗(k)

Dφ(k)− k d
dk
Dφ(k), ĈvW (k) = −k d

dk

[
f2

ω2
∗(k)

Dφ(k)

]
+Dφ(k) (2.50)

ĈuV (k) = Dψ(k)− f2

ω2
∗(k)

Dφ(k), ĈvV (k) = −k d
dk

[
Dψ(k)− f2

ω2
∗(k)

Dφ(k)

]
. (2.51)

Again, ĈbW can then be computed from (2.48), which provides a “sight unseen” prediction
for the buoyancy spectrum.

Of course, this only works if the function ω∗(k) is known by some method, for example
by using a model spectrum for the wave field to evaluate the definition of ω∗(k) that

follows from the exact three-dimensional spectral relationship between ĈψW and ĈφW in
(2.33), namely

f2

ω2
∗(k)

=
Dψ
W (k)

Dφ(k)
=

∫ ∫
f2

ω2 l
2Ĉφ(k, l, ω) dldω∫ ∫

l2Ĉφ(k, l, ω) dldω
. (2.52)

For example, in the next section we will use the standard Garrett–Munk (GM) spectrum
(e.g. Munk 1981) for ocean inertia–gravity waves as a basis for modelling the function
ω∗(k). Notably, ω∗(k) as defined by (2.52) is insensitive to the overall amplitude of the
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wave spectrum. Alternatively, if the observed spectra are dominated by waves in some
wavenumber band (i.e., Dψ ≈ Dψ

W there), then it is possible to estimate ω∗(k) in that

wavenumber band directly from its definition (2.49), with Dψ
W approximated by Dψ. This

can provide a useful check on the validity of any assumed model spectrum, as we shall
see in § 3.1 below.

2.7. Summary of the Helmholtz decomposition method

We can summarize the theoretical results as follows. Observations of the longitudinal
and transverse velocity spectra Ĉu and Ĉv allow a unique Helmholtz decomposition in
terms of the functions Dφ and Dψ. Moreover, the function Dφ then implies the energy
spectrum EW for hydrostatic inertia–gravity waves, and this implication is unaffected by
the presence of a geostrophic vortex flow component, provided only that this component
is uncorrelated with the wave component. Additional observations of Ĉb allow compu-
tation of the vortex energy spectrum EV as well, which can then be compared with the
wave energy spectrum EW . Finally, by making additional assumptions either about the
structure of the balanced flow or about the frequency content of the wave field, it becomes
possible to decompose all measured fields into their wave and vortex components.

3. Application to oceanic data sets

We now illustrate how these methods can be used to decompose observed ship-track
spectra in the upper thermocline of the eastern subtropical North Pacific and of the
Gulf Stream region. These spectra, spanning the mesoscale (about 200–500 km) and
submesoscale (about 5–200 km) ranges, are the same as those analyzed in CF13, to
which we refer the reader for a more in-depth discussion of the data sets as well as of
mesoscale and submesoscale dynamics.

In the eastern subtropical North Pacific, both velocity and buoyancy measurements
are available, which allows an exact decomposition of the energy spectra into a balanced
vortex part and an inertia–gravity wave part. Moreover, by approximating the function
ω∗(k) using the GM model spectrum, we can decompose all the observed fields into their
balanced and wave parts. In the Gulf Stream region, on the other hand, only velocity data
are available, but by assuming a GM model for ω∗(k) a decomposition of the observed
fields can be achieved there, too.

The eastern subtropical North Pacific has weak mesoscale eddy activity and CF13
argued that much of the submesoscale range is dominated by inertia–gravity waves. In
the Gulf Stream region, on the other hand, where the mesoscale eddy field is strong, the
submesoscale is dominated by balanced motions down to a scale of about 20 km, where
a transition to inertia–gravity waves occurs. The decompositions performed here confirm
these results.

3.1. Eastern subtropical North Pacific

Velocity and buoyancy data were collected in successive occupations of the 140◦W merid-
ian between 25◦ and 35◦N in January and February 1997 (cf. Ferrari & Rudnick 2000,
CF13). We use shipboard acoustic Doppler current profiler (ADCP) data from four tran-
sects at 200 m depth (8 m depth bin), which is below the base of the mixed layer.
Buoyancy data are obtained from a transect of a CTD-equipped SeaSoar programmed
to stay at constant depth 200 m. An average stratification of N = 8.7× 10−3 s−1 is
obtained from a transect with the SeaSoar following a sawtooth profile. We interpolate
both velocity and buoyancy data onto a 3 km regular grid, which is about the spacing of
the raw velocity data averaged over 12 min bins, and rotate the velocities into a frame of
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reference aligned with the ship track. Spectra are obtained by dividing all transects into
three segments with 50% overlap, applying a Hann window to each segment, computing
the discrete Fourier transform, and averaging over all transforms and over 10 wavenumber
bins per decade.

The resulting Ĉu, Ĉv, and Ĉb show relatively low mesoscale energies and are relatively
flat in the submesoscale range (Fig. 1a). Using equations (2.30–2.31), we perform the
Helmholtz decomposition into rotational and divergent components (Fig. 1b). The ro-
tational component dominates at scales larger than 200 km, below which the divergent
component dominates. From the velocity spectra Ĉu and Ĉv, we can diagnose the total
energy due to inertia–gravity waves EW using (2.37). The diagnosed EW matches the
observed total energy E remarkably well below 100 km (Fig. 1c). This indicates that the
observed signal is consistent with an isotropic, hydrostatic inertia–gravity wave field in
this range. At scales larger than 100 km there is a substantial balanced component.

We can exploit the fact that the range below 100 km is dominated by inertia–gravity
waves to estimate the frequency content of the wave field expressed by ω∗. The ratio
Dψ/Dφ ≈ f2/ω2

∗ roughly follows the GM curve between 20 and 100 km (Fig. 1d). At
larger scales the ratio becomes larger than unity, which is incompatible with inertia–
gravity waves, for which ω2 ≥ f2 holds robustly. At smaller scales, the diagnosed ratio
is much larger than the GM value, but in this range the effects of both the interpolation
onto a regular grid and the cutoff at the Nyquist wavenumber contaminate the estimate.
At 100 km, the diagnosed ratio drops below the GM curve and has a value close to that
of a monochromatic M2 tidal wave (f2/ω2

0 = 0.27 at 30◦N), which may be interpreted as
evidence for a significant tidal signal at this scale. Nevertheless using the GM curve to
perform the decomposition (2.48,2.50,2.51), we find that the balanced components ĈuV ,

ĈvV , and ĈbV match the observed spectra Ĉu, Ĉv, and Ĉb at scales larger than 200 km

(Fig. 1e) and that the inertia–gravity waves components ĈuW , ĈvW , and ĈbW match the

observed spectra Ĉu, Ĉv, and Ĉb at scales smaller than 100 km (Fig. 1f).

In summary, kinetic and potential energy spectra are dominated by balanced eddies at
scales of 200 km and larger. This is consistent with CF13’s finding that at these scales,
the in situ Ĉv also matches that obtained from applying geostrophic balance to along-
track altimetric measurements of sea surface height. At scales smaller than 100 km, the
energy spectra are dominated by inertia–gravity waves. The inertia–gravity wave field
may have a substantial tidal component.

3.2. Gulf Stream region

Velocity data in the Gulf Stream region were collected using a 150 kHz shipboard ADCP
on repeat transects from New York Harbor to Bermuda between 1994 and 2004 (cf. Wang
et al. 2010, CF13). We use data at 150-m depth, which is below the base of the mixed
layer in most of the year. We select transects that are at least 1000 km long and have at
least 400 data points, resulting in a total of 306 transects. We interpolate onto a 2.5 km
regular grid, which is about the spacing of the raw data averaged over 5 min bins, and
rotate the velocities into a frame of reference aligned with the ship track. Spectra are
obtained by the same procedure as described for the Pacific data set.

The resulting Ĉu and Ĉv show large mesoscale energies and fall off steeply in the
submesoscale range (Fig. 2a). The spectra exhibit a conspicuous flattening at a scale of
about 20 km. Using equations (2.30–2.31), we perform the Helmholtz decomposition into
rotational and divergent components (Fig. 1b). In contrast to the eastern Pacific case,
the rotational part Dψ here vastly dominates over a wide range of scales: only at 20 km
does the divergent component Dφ become comparable to the rotational component Dψ.
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Notably, at large scales the true Dφ becomes close to zero, but our computed Dφ actually
becomes negative, which is of course unphysical. This is the numerical robustness issue
discussed at the end of 2.2.

Since no buoyancy data are available, the only way to decompose into a balanced
part and an inertia–gravity wave part is to make an assumption about the frequency
content of the waves. We choose the GM curve to perform the decomposition, since
the GM empirical spectrum is largely based on observations collected nearby the North
Atlantic region considered here. The diagnosed balanced components ĈuV and ĈvV show

good agreement with the observed spectra Ĉu and Ĉv in the range 50–200 km (Fig. 2c).
At larger scales, the reconstruction overestimates the longitudinal component Ĉu. This
is likely the effect of anisotropy in the flow: the Gulf Stream, running mostly transverse
to the ship track, has scales of a few hundred kilometers and renders the geostrophic
flow field highly anisotropic (cf. Wortham et al. 2014), violating the isotropy assumption
made throughout the development of the theory. At the small-scale end, the balanced
components ĈuV and ĈvV start deviating from the observed spectra Ĉu and Ĉv at 20–

50 km. This scale is coincident with the scale at which the observed spectra Ĉu and Ĉv

start flattening out. The balanced components ĈuV and ĈvV show no sign of a transition

and keep falling off steeply. The diagnosed inertia–gravity wave components ĈuW and ĈvW
start contributing substantially at this scale (Fig. 2d), indicating that the flattening of
the spectra Ĉu and Ĉv is due to a transition to a range dominated by inertia–gravity
waves.

In summary, the decomposition into a balanced part and an inertia–gravity wave part
shows that in the Gulf Stream region, in contrast to the eastern Pacific case, much of
the submesoscale range is dominated by balanced flows. The transition in the slope of
the observed spectra at about 20 km is due to inertia–gravity waves.

4. Concluding comments

Our proposed method is very easy to implement and gave robust results when applied
to real oceanic data sets, in the sense that no processing of the noisy raw data was
needed in order to extract a self-consistent picture of the partitioning into rotational and
divergent motions and into waves and vortices. Of course, there are several restrictions
inherent in the derivation of our method, which one needs to bear in mind. The assump-
tions of stationarity, homogeneity, and horizontal isotropy will have obvious limitations
in any practical situation. Another obvious restriction that is hindering in practice is
that we needed to assume that the wave field was homogeneous in the vertical in order
to exploit the energy equipartition result (2.36) for the wave diagnostic. Strictly speak-
ing, this step disallows considering standing normal modes in the vertical, which is a
relevant case for large-scale ocean inertia–gravity waves such as low-mode internal tides.
Another useful extension would be to allow for a depth-dependent buoyancy frequency
N , which again would break the vertical homogeneity assumption and also would require
the consideration of suitable vertical modes.

Slightly less obvious will be the impact of nonlinear effects, as our method relied on
geostrophic balance and linear waves dynamics. For example, the assumption of uncor-
related ψ and φ, which underlies both steps in our method, presumably would fail for
vortex motions with a noticeable divergent component (the so-called ‘ageostrophic’ veloc-
ities of quasi-geostrophic theory). Submesoscale balanced flows tend to develop a large
divergence close to the ocean surface through frontogenesis (CF13). It is not obvious
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what this would entail for the correlations between the rotational and divergent parts of
the balanced velocity field.

Similarly, nonlinear effects would also modify the linear argument for the uncorrelated
ψ and φ for the wave field. That argument can be viewed as a statement of zero linear
PV, or of stretching of background vorticity, in the sense of vx − uy = −fbz/N2. In
nonlinear theory one could imagine that nonlinear terms in the definition of PV become
important, and that the stretching of background vorticity might reasonably contain a
contribution from the vorticity of the geostrophic flow. A model equation for the wave
vorticity to study in a weakly nonlinear regime might be

(∂2xx + ∂2yy)∂tψW =
[
f + (∂2xx + ∂2yy)ψV

]
(∂2xx + ∂2yy)φW . (4.1)

Compared to (2.32) this includes a nonlinear coupling term between ψV and the wave-
related ψW and φW . Of course, in a strongly nonlinear regime one would also encounter
stratified turbulence, a broad subject heading describing three-dimensionally turbulent
flows that are significantly modified by, and interact with, the stable stratification (e.g.
Smith & Waleffe 2002; Waite & Bartello 2004; Riley & Lindborg 2008). It is an open
question whether such stratified turbulence, perhaps also modified by background ro-
tation, would leave a detectable fingerprint in the one-dimensional spectra that would
allow distinguishing it from the spectrum due to nearly linear waves, for example.

Finally, our method should naturally be applicable to the substantial body of commer-
cial air flight track data that has been collected near the tropopause in the atmosphere,
where attention has been focused for some time on disentangling the dynamical pro-
cesses that underlie the conspicuous transitions between spectral slopes that have been
observed in the so-called Gage–Nastrom spectrum (e.g. Nastrom & Gage 1985; Lindborg
1999; Tulloch & Smith 2006). We are hoping to report on the results of this application
in the near future.

OB thanks Miranda Holmes–Cerfon for interesting discussions and gratefully acknowl-
edges financial support under grants CMG-1024180, DMS-1312159, and DMS-1009213 of
the United States National Science Foundation. JC and RF thank Glenn Flierl for offer-
ing useful feedbacks during the preparation of the manuscript and acknowledge financial
support under grants N-00014-09-1-0458 and GMG-1024198.

5. Appendix

5.1. Horizontally uncorrelated wave stream function and potential

We seek to demonstrate that

(2.21) : E[ψ(x0, y0, z0, t0)φ(x0 + x, y0 + y, z0, t0)] = 0

holds if the expectation is taken over a stationary, homogeneous, and horizontally isotropic
wave spectrum, and if ψ and φ are wave fields related by a time derivative, as in the
relation ψt = −fφ that holds for inertia–gravity waves. Here we rewrote (2.21) in a form
that highlights that the covariance is taken at different horizontal positions but equal
vertical position z0 and time t0. By stationarity, the statement (2.21) is trivially true in
the case of x = y = 0, but not otherwise.

We will illustrate this issue using a slightly simpler model, namely the rotating shallow-
water in one spatial dimension x, say, in which horizontal isotropy is replaced by left–right
symmetry. The standard variables are (h, u, v) and the linear equations are

ut − fv + ghx = 0, vt + fu = 0, and ht +Hux = 0, (5.1)
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where g is gravity and H is the basic layer depth. Note that u and v are in quadrature
because of the time derivative linking the two fields in (5.1), just as φ and ψ were in the
inertia–gravity wave case. The fields depend on x and t and we assume stationarity and
homogeneity. We then like to find out whether

E[u(x0, t0)v(x0 + x, t0)] = 0 (5.2)

holds for left–right symmetric waves. Now, it is easy to construct a homogeneous and
stationary spectrum for which (5.2) fails. Specifically, consider this spectrum of plane-
wave solutions corresponding to right-going waves only:

u = β cos(k[x− ct]−α), v =
f

ck
β sin(k[x− ct]−α), and h =

H

c
β cos(k[x− ct]−α).

(5.3)
Here k > 0 is a wavenumber, c = ω/k > 0 is the phase speed corresponding to the positive
root of the dispersion relation ω2 = f2 + gHk2, α ∈ [0, 2π] is a uniformly distributed
random phase shift and β is a random zero-mean amplitude that is independent of α and
has variance σ2, say. It follows that

E[u(x0, t0)v(x0 + x, t0)] =
f

ck
σ2 sin kx, (5.4)

where it was crucial to take the expectation over the random phase shift α. Obviously,
for this random wave field (5.2) failed. However, if we impose left–right symmetry on
the random wave field then we must augment (5.3) by a second wave with identical and
uncorrelated statistics, but going in the opposite direction. This corresponds to setting
c = −ω/k < 0 and obviously uses the other branch of the dispersion relation. This leads
to a second term in (5.4) with equal-and-opposite sign, which cancels the first term, and
therefore (5.2) is indeed satisfied.

The conclusion is that for wave systems with equal-and-opposite frequency branches
in the dispersion relation a horizontally isotropic stationary random wave field has the
property that (2.21) is guaranteed to hold if the two fields ψ and φ are related by a simple
time derivative and hence in quadrature. This is the case for the rotating Boussinesq
equations as well as for the rotating shallow-water equations and therefore holds quite
generally for gravity waves.

5.2. Energy equipartition statement (2.36) for plane inertia–gravity waves

We derive

(2.36) : ĈbW (k) +

[
Dψ
W (k)− k d

dk
Dψ
W (k)

]
=

[
Dφ
W (k)− k d

dk
Dφ
W (k)

]
for a spectrum of stationary, homogeneous, horizontally isotropic, and hydrostatic plane
inertia–gravity waves. We delay making the hydrostatic assumption until the end, so we
start by assuming that the wavenumber vector (k, l,m) and the intrinsic frequency ω are
related by the full dispersion relation of the Boussinesq system with constant f and N :

(k2h +m2)ω2 = m2f2 + k2hN
2. (5.5)

Next we derive the following equipartition statement for three-dimensional spectra:

ĈbW (k, l,m) + k2hĈ
ψ
W (k, l,m) = k2hĈ

φ
W (k, l,m) + ĈwW (k, l,m). (5.6)

For a plane wave with frequency ω the linear buoyancy equation bt +N2w = 0 and the
continuity equation wz = −(ux + vy) imply

ω2ĈbW = N2ĈwW and m2ĈwW = k4hĈ
φ
W . (5.7)
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Combining (5.7) with ω2ĈψW = f2ĈφW from (2.33) and substituting in (5.6) yields(
1− ω2

N2
+
m2

k2h

f2 − ω2

N2

)
ĈbW (k, l,m) = 0. (5.8)

This holds by (5.5) and therefore establishes (5.6). The sought-after (2.36) then follows
after integrating over l and m and dropping the ĈwW term because of the hydrostatic
approximation. Conversely, the non-hydrostatic version of (2.36) would be

ĈbW (k) +

[
Dψ
W (k)− k d

dk
Dψ
W (k)

]
=

[
Dφ
W (k)− k d

dk
Dφ
W (k)

]
+ ĈwW (k). (5.9)

This calculation does depend on the assumption of plane waves, e.g., if standing vertical
modes were considered instead then the result would not hold, because the wave spectrum
is then not homogeneous in the vertical. Mathematically, this is because the second
equation in (5.7) does not hold for standing waves. Physically, this occurs because at
nodal horizontal planes, where b = w = 0 at all times, there is no potential energy at all
and equipartition fails even for non-rotating waves.
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Ĉv

Ĉb
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Figure 1. Observations from the eastern subtropical North Pacific: (a) observed transverse

and longitudinal kinetic energy and potential energy spectra Ĉu, Ĉv, and Ĉb, (b) decomposi-
tion into rotational and divergent components Dψ and Dφ from (2.30–2.31) and (2.27); here
Kψ = 1

2
(Dψ − kdDψ/dk) and Kφ = 1

2
(Dφ − kdDφ/dk), (c) total observed energy E and total

inertia–gravity wave energy EW from (2.37), (d) ratio Dψ/Dφ compared to ω∗ from Garrett—
Munk (GM) spectrum and M2 value for reference, (e) diagnosis of the balanced components of

the observed spectra ĈuV , ĈvV , and ĈbV , (f) diagnosis of the inertia–gravity wave component of

the observed spectra ĈuW , ĈvW , and ĈbW . In panel (a) a line corresponding a k−2 power law has
also been added for reference.
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Ĉv
W

Ĉu
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Figure 2. Observations from the Gulf Stream region: (a) observed transverse and longitu-

dinal kinetic energy spectra Ĉu and Ĉv, (b) decomposition into rotational and divergent
components Dψ and Dφ from (2.30–2.31) and (2.27); here Kψ = 1

2
(Dψ − kdDψ/dk) and

Kφ = 1
2
(Dφ − kdDφ/dk), (c) diagnosis of the balanced components of the observed spectra

ĈuV and ĈvV , (d) diagnosis of the inertia–gravity wave component of the observed spectra ĈuW
and ĈvW . In panel (a) a line corresponding a k−3 power law has also been added for reference.


