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The feasibility of using field experiments to optimize marketing decisions remains relatively unstudied.

We investigate category pricing decisions that require estimating a large matrix of cross-product demand

elasticities and ask: how many experiments are required as the number of products in the category grows?

Our main result demonstrates that if the categories have a favorable structure then we can learn faster and

reduce the number of experiments that are required: the number of experiments required may grow just

logarithmically with the number of products. These findings potentially have important implications for

the application of field experiments. Firms may be able to obtain meaningful estimates using a practically

feasible number of experiments, even in categories with a large number of products. We also provide a

relatively simple mechanism that firms can use to evaluate whether a category has a structure that makes

it feasible to use field experiments to set prices. We illustrate how to accomplish this using either a sample

of historical data or a pilot set of experiments. We also discuss how to evaluate whether field experiments

can help optimize other marketing decisions, such as selecting which products to advertise or promote.
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History :

1. Introduction

The increased availability of demand data has been widely reported and many firms have been

investigating how best to use “Big Data” to improve their marketing decisions. One option is to

conduct analysis on historical data. However, historical data are not always available, and it can
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be difficult to determine causation from historical data. An alternative approach is to use field

experiments, which can provide an exogenous source of variation that establishes causation. Yet

conducting field experiments is often costly, and optimizing marketing decisions may require a lot

of experiments if there are many parameters to optimize and/or if the parameters can take a wide

range of values. The feasibility of using field experiments to improve marketing decisions in practice

remains relatively unstudied. We investigate this issue by considering settings in which firms must

estimate the elasticity of demand in response to price changes. We ask how many experiments are

required to estimate these elasticities as the number of products grows.

Using experiments to optimize marketing decisions may be relatively straightforward when there

are few products. Experimentally manipulating variables can allow retailers to quickly optimize

their decisions using just a handful of experiments. However, in large categories containing many

products with interdependent demands, the problem is more challenging.1 The number of parame-

ters to estimate grows quickly with the number of products, and so the number of field experiments

required may be impractically large.

We consider a large set of n products and assume that there may be complementary or substitute

relationships between them. As a result, varying the price of one product may affect the demand

of not just that item but also other products sold by the firm. As the number of products (n)

increases, the number of parameters to estimate grows at the rate of n2 (and may grow even faster

for nonlinear models). On the other hand, if each experiment reveals the demand for each item, we

learn n pieces of information from each experiment. This suggests that the number of experiments

required to learn all of the parameters will grow at least linearly with the number of products.

Our main result shows that if the problem has a favorable structure, we can learn faster and

reduce the number of experiments that are required. In particular, we will show that if the number of

complementary or substitute relationships affecting any one product is bounded, then the number of

required experiments grows instead logarithmically with the number of products. This result holds

even if the firm is not sure which of the products have complementary or substitute relationships,

as long as there is a limit on the number of cross-product relationships that each product has.

We also obtain a similar result if the joint impact of own- and cross-product effects on any single

product is bounded.

We also provide a practical method for evaluating whether a product category has a favorable

structure that makes it feasible to use field experiments to set category prices. Although the method

1 Interdependencies between products are now well-documented. For example, Anderson and Simester (2001) report
that placing “sale” signs on products can increase demand for those products by up to 60%, but can decrease sales
of other products by similar amounts. Manchanda et al. (1999) report own-price elasticities for laundry detergent
and fabric softener of −0.40 and −0.70 (respectively). The cross-price elasticities are −0.06 (the price of softener on
demand for detergent) and −0.12. For cake mix and frosting, the own-price elasticities are −0.17 and −0.21, while
the cross-price elasticities are −0.11 (frosting price on cake mix demand) and −0.15.
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is probably too technical to be used directly by most managers, the techniques should be accessible

to analysts tasked to provide advice to managers on this issue. The method does not provide an

estimate of how many experiments are required. Instead, it provides a means of estimating whether

the product category exhibits structural characteristics that make it possible to obtain accurate

results within a realistic number of experiments. The method can be implemented using either a

pilot set of experiments or historical data.

These findings potentially have important implications for the application of field experiments in

settings where there is a large number of parameters to estimate. Because the number of required

experiments may grow logarithmically rather than linearly with the number of products, firms may

be able to obtain meaningful estimates from a realistic number of experiments, even in categories

where the number of complementary or substitutable products is large.

Although we focus on pricing decisions in this paper, the range of marketing decisions on which

firms can experiment is broad. Experiments may be used to choose which products to promote, as

well as to optimize the length of product lines and to choose creative copy and media plans. We

discuss how to extend our results to make promotional decisions, and in the Conclusions section

discuss possible extensions to other types of marketing decisions.

1.1. Related Work

The feasibility of learning a large number of parameters through experimentation is relatively

unstudied, particularly in social science settings. However, the topic does relate to at least two

literatures.

First, there is the line of research on optimal experimental design. In the marketing literature,

there is work focusing on efficient experimental design for conjoint studies (see Louviere et al. 2000,

Chapter 5; and Louviere et al. 2004 for reviews of this literature). Recent contributions to this

literature have focused on adaptively designing experiments (Toubia et al. 2003) or on optimal

designs when customers’ utility functions depart from a standard compensatory specification (see

for example Hauser et al. 2010, Liu and Arora 2011). An often used measure of the efficiency

of an experimental design is the D-error: det[I(θ | X)]−1/m, where I is the information matrix,

θ are the unobserved parameters, X is the experimental design matrix, and m is the dimension

of I. The information matrix is calculated from the variance of the first-order derivatives of the

log-likelihood with respect to θ (Huber and Zwerina 1996). Optimizing this criterion with respect

to X yields locally optimized designs for any θ. Because θ is not known when designing the

experiments, Bayesian approaches can be used to minimize the D-error over the prior distribution

of the parameter values (Sandor and Wedel 2001).

When each experiment generates an explicit reward or cost, an alternative formulation of the

experimental design problem is as a multi-armed bandit problem, where the objective is to choose a
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sequence of experiments to maximize the total reward over some time horizon. In this context, each

experiment can be thought of as choosing and pulling an arm of the multi-armed bandit, and the

reward could be sales, advertising click-through rates, or some other measure. Because we learn the

reward distribution of each arm of the bandit only after pulling it, there exists a trade-off between

exploiting the best arm currently known by pulling it every time and exploring new arms in search

of something even better. In the classic bandit model, the reward distributions of each arm are

assumed to be independent, and so anything learned from pulling one arm does not reveal anything

about a different arm. As a result, when there is a large number of parameters (and therefore a

large number of arms), many pulls, or experiments, are required to learn the reward distributions

of all the arms. Recent work has proposed an alternative model in which the arms have statistically

dependent reward distributions, and therefore pulling one arm also gives information about other

arms. In this setting, the correlation between payoffs of different arms allows for faster learning,

even when the number of arms is very large (Dani et al. 2008, Mersereau et al. 2009).

This focus on the information learned from experiments is a common feature of both this litera-

ture and the research in this paper. However, we do not focus on identifying optimal experimental

designs. Instead we use random experimental designs, which ensure independence across exper-

iments and allow us to apply a series of results that rely on this independence. Because it will

generally be possible to improve upon these designs, our guarantees on the information learned

will continue to hold when optimal designs are used.

We investigate the practical value of field experiments by studying the number of experiments

required. Other studies have investigated the required size of field experiments. For example, Lewis

and Rao (2012) conducted a set of 25 field experiments involving large display advertising cam-

paigns, each one including over 500,000 unique users and totaling over $2.8M worth of impressions.

Even with such large experiments, the data generated little meaningful information about the

ROI of the campaigns, demonstrating that in settings where the effect sizes are small and the

response measures are highly stochastic, very large field experiments may be required to generate

information.

The second related literature is that on estimation and learning under assumptions of sparsity.

Beginning with variable selection in regressions, research has focused on determining which subset

of potential predictors should be included in the “best” model. This can equivalently be thought

of as selecting a subset of predictors to be zero, thereby giving rise to a sparse model. Various

approaches have been proposed, including the use of regularization, such as the “Lasso” of Tib-

shirani (1996), and the Stochastic Search Variable Selection procedure developed in George and

McCulloch (1993).
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More recently, the assumption of sparse structures has been used to show that if an unknown

vector x∈RN is sparse, then it can be recovered using measurements of the form y = Φx, even with

much fewer than N measurements. Results in the field, which is often referred to as “compressive

sensing,” generally characterize conditions on (i) the sparsity index (i.e., the number of nonzero

entries of x), (ii) the number of measurements, and (iii) the ambient dimension N , in order to

guarantee recovery of x. We refer the reader to Candès (2006) for a short survey, and to Candès

and Tao (2005), Candès et al. (2006) for a deeper treatment.

More directly relevant to our work are the results on information-theoretic limits of sparsity

recovery in Wainwright (2009). For a noisy linear observation model based on sensing matrices

drawn from the standard Gaussian ensemble, a set of both sufficient and necessary conditions

for asymptotically perfect recovery is derived. Our theoretical findings are best thought of as

an application of Wainwright (2009) results. Although this application required some theoretical

developments, these are best considered adaptations and extensions rather than fundamentally

new developments. The exception is the estimation of the sparsity parameters in Section 4 and the

investigation of how these parameters vary with the size of the problem (the number of products).

This is the first paper that we know of that addresses these issues.

Originating from and motivated by applications in signal processing, coding theory, and statistics,

compressive sensing results have also a variety of other relevant applications. Previous applications

related to marketing include Farias et al. (2013), which introduces a paradigm for choice modeling

where the problem of selecting an appropriate model of choice (either explicitly, or implicitly within

a decision making context) is itself automated and data-driven. For this purpose, the sparsest

choice model consistent with observed data is identified.

In this work, we leverage sparsity to obtain a dramatic improvement in the rate of learning. If

each product is substitutable by or complementary with a limited number of other products (and

therefore the matrix capturing the substitution and complementarity effects is sparse), we show

that the number of required experiments grows logarithmically with the number of products.

1.2. Overview

We consider pricing decisions for a firm with a large assortment of products. The firm would like to

know how price changes will affect demand. We propose a model for the demand function, which

tells us the quantities demanded under any pricing decision. In order to learn the parameters of

this function, we perform experiments by varying the prices of certain products and observing the

quantities demanded. Because each experiment is costly to run, the firm would like to learn the

parameters using as few experiments as possible.

The experiments that we contemplate include both a treatment group and a control group. The

construction of these groups will vary depending upon the nature of the firm. For a direct marketing
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firm, the groups may be constructed by randomly assigning individual customers to the two groups.

For a bricks and mortar retailer, the groups might be constructed by randomly assigning stores. In

a business to business setting, the firm might randomly assign regions, or distributors and resellers.

We assume that the results of the experiment are analyzed by aggregating the customers in each

group and comparing the mean response between the two groups. Essentially all firms are capable

of performing this aggregate analysis (as long as they can vary prices and measure the response).2

This aggregation also ensures that the error terms are Gaussian.

Our findings can also apply in settings where the firms vary prices across different time periods.

Demand in the different time periods could in principle be adjusted to account for seasonality or

day-of-week differences (before submitting the data to our model), perhaps using demand for a

sample of unrelated products or demand in different stores. We caution that we will assume that

errors are independent between experiments (though not between products in the same experi-

ment), and this independence assumption may be threatened when a common set of measures is

used to adjust for seasonality. The independence assumption is more likely to hold when random-

ization occurs separately for each experiment, and when the control group provides an accurate

control for any intervening events (such as seasonality).

We also caution that our results are not well suited to experiments where firms randomly assign

products to treatment and control groups if the demands for those products are possibly related.

For example, a firm may vary prices on half of the items in a product category and leave the other

half of the prices unchanged. Recall that the goal of the paper is to investigate how a firm can

estimate the entire matrix of cross-price elasticities and so the second half of the products cannot

function as controls. There is another reason to be concerned about this experimental design: unless

the cross-price elasticities are zero between products in the two groups, then the experimental

manipulation of prices for products in the treatment group will confound the demands for products

in the control group.

We recognize that it is possible to augment experimental data with more complex econometric

analysis (e.g., as in Manchanda et al. 1999). This raises an interesting but distinct topic: what is the

value of sophisticated analysis in evaluating experimental data? This question is beyond the scope

of the present work. Instead, our results can be interpreted as describing the “information” that

is revealed by experimental data. Conditions under which experimental data are more informative

are likely to yield better estimates both when using simple comparisons and when augmenting the

data with sophisticated econometric analysis.

2 Even though direct marketing firms can often analyze experimental results at the individual customer-level, in our
experience most firms simply aggregate the results and compare the mean response between treatment and control
groups.
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The rest of this paper is structured as follows: In Section 2, we propose a model for demand

that captures the effects of cross-product demand elasticities. In Section 3, we develop a method

for estimating the demand function and provide bounds on the number of experiments required to

achieve accurate estimates. In Section 4, we propose a method for estimating how sparse the price

elasticities are, which provides a practical way for managers to evaluate whether it is feasible to

set prices using field experiments. We also investigate how sparsity is affected by the size of the

category. In Section 5, we present simulation results that illustrate the rate at which we acquire

information, as the number of products and number of experiments vary. Finally, in Section 6, we

conclude and describe directions for extensions and future research.

2. Model

In this section, we introduce our model of demand. Throughout this paper, we consider each

experiment as a comparison between two conditions. The first condition is a control under which

the firm takes “standard” actions; in the second treatment condition, the firm varies prices. For

ease of exposition (and without loss of generality), we will assume that prices are set at a “baseline”

level in the control condition.

2.1. Modeling Own- and Cross-Price Elasticities

The response in demand to a firm’s action is difficult to predict because there are multiple effects

at play due to cross-product substitute and complementary relationships. In the following sections,

we present a model that captures these effects.

2.1.1. Individual and Pairwise Effects Changing the price of product i may have two

effects:

(i) It may change demand for the product itself.

(ii) It may also affect the demand for other products through substitution away from the focal

product or complementarity with the focal product.

For the first effect, we introduce a quantity aii to indicate the percentage change in demand

for product i if the price of product i itself is increased by 100%.3 For the second effect, we first

consider a pair of products in isolation. Intuitively, there are three possible scenarios:

1. If products i and j are substitutes, decreasing the price of j may decrease the demand for i

if customers substitute purchases of j for purchases of i.

2. If i and j are complements, decreasing the price of j may increase the demand for i as more

demand for j leads to more demand for i.

3. Varying the price of j may also have no effect on the demand for i.

3 This is not to say that in our experiments, we propose increasing prices by 100%.
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For each pair of products i and j, we introduce a quantity aij to indicate the percentage change

in demand for product i if the price of product j is increased by 100%. The quantity aij would be

positive, negative, and zero, in cases 1, 2, and 3 above, respectively.

2.1.2. Cumulative Effects We are interested in settings in which there are dozens of products

with hundreds of interactions at play. If multiple prices are varied simultaneously, how do these

changes combine and interact to produce an overall effect on demand?

To capture the cumulative effects, we propose a linear additive model of overall substitution

and complementarity effects. Specifically, to calculate the overall percentage change in demand

for product i, we take all of the products j whose prices are varied and sum together each one’s

individual effect on the demand for i.

Let ∆qi be the overall percentage change in the demand for i, and let us express the percentage

change in the price of product j from the baseline as

xj =
xtj −xbj
xbj

,

where xtj and xbj are the treatment and baseline prices, respectively, of product j. We denote the

number of products by n. Then, by our model, we can write the overall percentage change in

demand for i as

∆qi =
n∑
j=1

aijxj.

By assuming a linear model, we are implicitly assuming that the elasticities are the same at

all points on the demand curve. The model also assumes additive separability in the impact of

multiple price changes on the demand for product i. This is convenient for analytical tractability. In

Appendix EC.1, we show that it is relatively straightforward to extend our findings to a log-linear

(multiplicative) demand model. Log-linear demand models have been widely used in practice, in

both academia and the marketing analytics industry.

Although this functional form may be appropriate for small price changes, it is unlikely to be

true for large price changes. We can ensure that price changes are small by bounding the size of

the price changes in the experiments. However, we caution that this is not without cost. Greater

variation in the size of the price changes can increase the rate of learning.

In some cases a firm may want to focus on improving just a subset of prices in the category. This

could occur if some items sell relatively low volumes and optimizing these prices is not a priority

(or if the retail prices are set by the manufacturer of the brand). This may also arise if too many

experiments are required to optimize all of the prices in the category, and so the firm would just

like to focus on just those prices that it considers most important.4 We can easily accommodate

4 We thank an anonymous reviewer for this suggestion.
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this possibility by identifying the products that the firm does not want to experiment with, and

collapsing these products into a single “other” product. Sales of this “other” product is simply the

sales of the products within it. We could also construct a price index for the “other” product by

averaging the prices of the corresponding items (because the firm does not want to experiment

with these prices, the value of the corresponding xj’s will always equal zero). This allows the firm

to focus on a subset of products in the category, while continuing to take into account the impact

on sales across the entire category.

We can further simplify notation by collecting all of the pairwise effects as elements of a matrix

A, where (as suggested by the notation) the entry in the ith row and jth column, aij, gives the

percentage change in demand for product i in response to a 100% increase in the price of product

j.5 Similarly, we can collect price variation decisions into a vector x whose jth element xj is equal

to the percentage change in the price of product j from the baseline, and we can also collect the

overall percentage change in demand for each product into a vector ∆q.

The overall percentage change in each product’s demand due to price changes x is therefore

given by the product

∆q = Ax.

The elements aij of the matrix A may be positive (indicating a substitute relationship between i

and j), negative (indicating a complementary relationship), or zero (indicating no relationship).

We also assume that the matrix A is constant. It is possible that there may be time dependencies

or seasonal effects that could lead to changes in the A matrix. The model could accommodate

these possibilities as long as these dynamics are known so that we can continue to estimate a static

set of parameters. If the parameters themselves change in a manner that is not known, then the

results of an experiment performed at some time t may not provide much information about the

value of the parameters in future periods. Note that this limitation is obviously not specific to our

model.

We emphasize that the matrix A captures percentage changes in demand. To calculate actual

demand quantities, we also need a baseline level of demand for each product. Recall that we assume

there is a fixed set of firm actions, corresponding to the control condition, which achieves a certain

5 We do not impose symmetry (i.e., aij = aji) or transitivity (i.e., aij > 0, ajk > 0⇒ aik > 0) on the A matrix for two
reasons. First, there are examples where these constraints are intuitively unlikely to hold (e.g., price decreases on
cameras may increase battery sales but not vice versa, violating symmetry; price decreases on milk may increase sales
of cereal, and price decreases on cereal may increase sales of soymilk, but price decreases on milk may not increase
sales of soymilk, violating transitivity). Second, neither symmetry nor transitivity is a necessary assumption for our
analysis, and imposing these constraints would only make our results weaker and less applicable. Instead, we want the
space of “allowable” A matrices to be as large as possible. Furthermore, if the true A matrix is indeed symmetric or
transitive, then because our method gives accurate estimates, the estimated matrix would also be close to symmetric
or transitive with high probability.



Li et al.: The Value of Field Experiments
10 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

level of demand. We let this be the baseline demand and denote it by the vector qb. The overall

change in demand for a product in response to the price changes is then given by the product of

the baseline demand and the percentage change in demand.

2.2. Noiseless Model

Let qt be the vector of actual demand levels in response to a decision x, which we refer to as the

treatment demand level. We then have the following equation for our model:

qt = qb + qb ◦ (∆q) = qb ◦ (e + Ax), (1)

where ◦ denotes component-wise multiplication, and e is the vector of all 1’s. In words, price

changes x will cause some percentage change in demand through the elasticity matrix A, which

when combined with the baseline demand qb give the observed treatment demand qt. Note that

this model has the desired property that when prices are the same as the baseline prices (i.e.,

x = 0), the treatment demand is the same as the baseline demand (i.e., qt = qb) because there is

effectively no treatment.

We can also rewrite Equation (1) as

∆q =
qt−qb

qb
= Ax, (2)

where the division is performed component-wise. The left-hand-side gives the percentage change in

demand for each product, and the right-hand-side gives the model of how that change is caused by

the decision vector. This arrangement emphasizes the fact that A captures the percentage change

in demand. It also suggests a way of learning A: for each experiment, choose a decision vector x,

observe the resulting qb and qt, and calculate ∆q. This gives a system of linear equations from

which we can recover A, ideally using as few experiments as possible.

2.3. Noisy Model

In reality, the demand function is not captured perfectly by Equation (1), and the demand that we

observe will also be subject to measurement noise. Therefore, Equation (1) gives only an idealized

model. To capture the presence of error, we introduce an additive noise term w, which is a vector

of random variables (w1,w2, . . . ,wn). Our complete model is then given by

qt = qb ◦ (e + Ax + w), (3)

which can also be written as

∆q =
qt−qb

qb
= Ax + w. (4)

Equations (3) and (4) are analogous to Equations (1) and (2) with the additional noise vector w.

The observed treatment demand is modeled as a deviation from the baseline demand due to price

changes and noise.
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2.3.1. Statistics of the Noise Terms For our analysis, we make the following assumptions

on the noise terms:

Assumption 1. (Zero-mean, sub-Gaussian noise, i.i.d. across experiments.) For any experiment,

each wi has zero mean and is sub-Gaussian with parameter c for some constant c ≥ 0. Further-

more, the random vector w = (w1, . . . ,wn) is independent and identically distributed across different

experiments.

We assume that the noise terms have zero mean, and therefore that our model has no systematic

bias. We also assume that the noise terms across different experiments are independent and identi-

cally distributed. However, we do not assume that the noise terms are independent across different

products within the same experiment. In other words, each experiment gets an independent draw

of w = (w1, . . . ,wn) from a single joint distribution in which the wi’s can be dependent. Indeed, the

noise terms within the same experiment may be correlated across products (e.g., between products

within the same category). Fortunately our analysis does not require independence at this level.

Sub-Gaussian random variables are a generalization of Gaussian random variables, in the sense

that their distributions are at least as concentrated around their means as Gaussian distributions.

Definition 1. A random variable X is sub-Gaussian with parameter σ > 0 if

E[exp(λ(X −E[X]))]≤ exp(σ2λ2/2), ∀λ∈R.

A sub-Gaussian random variable X with parameter σ satisfies the following concentration bound:

P(|X −E[X]| ≥ ε)≤ 2exp

(
− ε2

2σ2

)
, ∀ε≥ 0.

As suggested by the notation, the parameter σ plays a role similar to that of the standard devi-

ation for Gaussian random variables. Examples of sub-Gaussian random variables with parameter

σ include Gaussian random variables with standard deviation σ and bounded random variables

supported on an interval of width 2σ. Therefore, by using sub-Gaussian noise terms, we encom-

pass many possible distributions. In all cases, sub-Gaussianity assures us that the noise will be

concentrated around its mean.

2.4. High-dimensional Problems

Now that we have presented our model, we reiterate the high-dimensional nature of the problem

in more specific terms. In our model, with n products, A would be an n× n square matrix, and

hence there would be n2 unknown parameters to be estimated. Even with 50 products, a reasonable

number for many product categories, there would be 2500 parameters. In order to estimate all of

these parameters accurately, we expect to need to perform many experiments.
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Table 1 Summary of notation.

Term Description

A A matrix capturing the substitution and complementarity effects – the element aij represents
the effect on the demand for product i due to a 100% increase in the price of product j

xt A vector of treatment prices
xb A vector of baseline prices
x A decision vector, whose entries are percentage changes in price from the baseline
w The random error or noise vector
qt The observed treatment demand
qb The baseline demand, which is assumed to be known from the control condition

Â An estimate of the true matrix A
n The number of products
s The number of experiments

Unfortunately, each experiment is costly to the firm in terms of not only time and resources

needed to run it, but also opportunity costs. Therefore, our goal is to estimate the parameters

accurately and to make good decisions using as few experiments as possible.

Although we are faced with a difficult problem, our main insight is that even though there are

many products, each one is likely to interact with only a small fraction of the remaining products.

In terms of our model, this means that the A matrix is likely to have many entries equal to zero.

Our main result shows that if A exhibits this sparse structure, we can greatly reduce the number

of experiments needed to learn A and to find a good decision vector x, even if the locations of the

nonzero terms are not a priori known.

2.5. Summary of Baseline Model

Before we present our results, we first review the baseline model that we will be considering. Our

demand model is given by the following equation:

∆q =
qt−qb

qb
= Ax + w.

The functional form ∆q = Ax+w is convenient for analytical tractability. However, our analysis

does not place any limitations on how ∆q is defined. Indeed, we could use different variations,

including alternatives that ensure symmetry in the measures of demand increases and decreases.

Table 1 summarizes the relevant terms of our model.

3. Estimating the Matrix A

In order to find an optimal set of firm actions, we will first estimate the substitute and com-

plementary relationships between products, which are modeled by the matrix A. In this section,

we describe a general technique for estimating A, introduce our structural assumptions, present

bounds on the number of experiments needed to learn A accurately, and discuss our results. The

theoretical results on the rate of learning that follow are motivational and illustrate that favorable
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structures in substitution and complementarity relationships can dramatically decrease the number

of experiments needed. However, the actual values of the derived bounds are not meant to be used

as the actual number of experiments to run in practice.

3.1. Random Experimental Design

Our goal is to learn A as quickly as possible and so we would like to design experiments (i.e.,

x vectors) that give as much information as possible. One approach is to design decision vectors

deterministically in order to maximize some orthogonality measure between decision vectors. How-

ever, because we do not make any assumptions about how the locations or values of the entries of

A are distributed, for any deterministic design, there will be classes of A matrices for which the

design is poor.

As an alternative, we use random experiments: the decision of how much to change the price

of a particular product for a given experiment will be a random variable. Moreover, if we make

these decisions independently across products and across experiments, we achieve approximate

orthogonality between all of our experiments. By using randomization, we are also able to take

advantage of the extensive body of probability theory and prove that we can learn every element

of A to high accuracy with high probability, for any A matrix. Next, we describe our estimation

procedure in more detail.

3.2. Unbiased Estimators, Convergence, and Concentration Bounds

For each parameter aij, we define a statistic yij that is a function of the random decision vector

and the resulting (random) observed demands. This statistic is therefore also a random variable,

and we design it so that its mean is equal to aij. In other words, we find an unbiased estimator for

each parameter.

If we perform many independent experiments and record the statistic yij for each one, the law of

large numbers tells us that the sample mean of these statistics converges to the true mean, which is

exactly the parameter aij that we are trying to estimate. This sample mean is a random variable,

and its probability distribution will become more and more concentrated around aij as we collect

more samples (i.e., perform more experiments). To get a sense of the speed of convergence, we

calculate a bound on the concentration of the distribution around aij after each additional sample.

This bound will in turn allow us to prove results on the number of experiments needed to achieve

accurate estimates with high confidence.
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3.3. Uniformly ε-accurate Estimates

Our goal is to learn the A matrix accurately to within a certain bound with high probability.

To be precise, let âij be our estimator of aij, an arbitrary element in the matrix A. We adopt a

conservative criterion, which requires

P

(
max
i,j
|âij − aij| ≥ ε

)
≤ δ,

where ε > 0 is the tolerance in our estimates and 1− δ ∈ (0,1) is our confidence. In other words,

we would like the probability that our estimates deviate substantially from their true values to

be low, no matter what the true A matrix is. Because of the maximization over all entries in

the matrix, we require that every single entry meets this criterion. Hence, we refer to this as the

uniform ε-accuracy criterion. This notion of error is known as “probably approximately correct” in

the machine learning field, which also aims to learn accurately with high probability (see Valiant

1984).

Ideally we would like both ε and δ to be small so that we have accurate estimates with high

probability, but in order to achieve smaller ε and δ, intuitively we would need to run more exper-

iments to gather more data. Our first objective is to determine, for a given number of products

n and fixed accuracy and confidence parameters ε and δ, how many experiments are needed to

achieve those levels uniformly. This answer in turn tells us how the number of experiments needed

scales with the number of products.

3.3.1. Interpretation and Discussion As has been described, uniform ε-accuracy is an

intuitive measure of accuracy. It is also a conservative measure because it requires every entry of A

to be accurate. Alternatively, we can consider other criteria, such as bounding the root-mean-square

error:

P

√√√√ 1

n2

n∑
i,j=1

(âij − aij)2 ≥ ε

≤ δ.
This is a relaxation of the uniform ε-accuracy criterion: if estimators âij satisfy uniform ε-accuracy,

then they also satisfy the RMSE criterion. Therefore, any positive results on the speed of learning

under uniform ε-accuracy also hold under weaker criteria, such as the RMSE criterion. Our results

then give a worst-case upper bound, in the sense that the number of experiments required to

achieve a weaker criterion would be no more than the number of experiments required to achieve

the stricter uniform ε-accuracy criterion.6

6 A similar point can be made about the method used to design the experiments and estimate the parameters.
Improvements on our random experimental design and our relatively simple comparisons of the treatment and control
outcomes should lead to further improvements in the amount of information learned and therefore decrease the
number of experiments required to achieve uniform ε-accuracy.
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3.4. Asymptotic Notation

In order to judge different learning models, we compare how many experiments are needed to

achieve uniform ε-accuracy. Because we are interested in the regime where the number of products

is large, we focus on how quickly the number of experiments needed increases as the number of

products increases. To capture the scale of this relationship, we use standard asymptotic notation

(see Section EC.2 of the e-companion to this paper for a detailed description).

3.5. Estimation of General A Matrices

We first consider the problem of estimating general A matrices, without any assumptions of addi-

tional structure. Following the technique outlined in Section 3.2, our precise estimation procedure

is the following:

1. Perform independent experiments. For each experiment, use a random, independent decision

vector x, where for each product, xj is distributed uniformly on [−ρ, ρ], where 0< ρ< 1. Observe

the resulting vector of changes in demand ∆q.

2. For the tth experiment and for each aij, compute the statistic

yij(t), β ·∆qi ·xj,

where β , 3/ρ2.

3. After s experiments, for each aij compute the sample mean

âij =
1

s

s∑
t=1

yij(t),

which is an unbiased estimator of aij.

The following theorem gives a bound on the accuracy of this estimation procedure after s exper-

iments.

Theorem 1. (Estimation accuracy with sub-Gaussian noise for general A matrices.) Under

Assumption 1, for any n×n matrix A and any ε≥ 0,

P

(
max
i,j
|âij − aij| ≥ ε

)
≤ 2n2 exp

{
− sε2

maxi 36 (
∑n

`=1 a
2
i` + c2/ρ2)

}
. (5)

The proof is given in Section EC.3 of the e-companion to this paper.

To ensure uniformly ε-accurate estimates with probability 1−δ, it suffices for the right-hand-side

of (5) to be less than or equal to δ. Therefore, with a simple rearrangement of terms, we find that

s experiments are sufficient if s satisfies

s≥
maxi 36 (

∑n

`=1 a
2
i` + c2/ρ2)

ε2
log

(
2n2

δ

)
.
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The above bound tells us that if there is more noise (larger c) or if we desire more accurate

estimates (smaller ε and δ), then more experiments may be required, which agrees with intuition.

However, the term
∑n

`=1 a
2
i` may be quite large and, as it is a sum of n quantities, may also scale

with n. In that case, our estimation procedure may in fact require O(n logn) experiments in order

to achieve uniform ε-accuracy, which can be prohibitively large.

3.6. Introducing Structure

The previous result allows for the possibility that with general A matrices, many experiments may

be required to estimate the underlying parameters. Fortunately, we recognize that our problem

may have an important inherent structure that allows us to learn the A matrix much faster than

we would otherwise expect.

We consider three different types of structure on the matrix A. In the following sections, we

motivate these assumptions, state the number of experiments needed to learn A in each case, and

interpret our results.

3.6.1. Bounded Pairwise Effects

Motivation: Our first assumption is based on the idea that a product can affect the demand for

itself or for any other product only by some bounded amount. In other words, varying the price

of a product cannot cause the demand for itself or any other product to grow or diminish without

limit. In terms of our model, we can state the assumption precisely as follows.

Assumption 2. (Bounded pairwise effects.) There exists a constant b such that for any n, any

n×n matrix A, and any pair (i, j), |aij| ≤ b.

This is our weakest assumption as we do not place any other restrictions on A. In particular,

we allow every product to have an effect on every other product. By not imposing any additional

assumptions, we can use this variation of the problem as a benchmark to which we can compare

our two subsequent variations. Since all elements of A may be nonzero, we refer to this as the case

of “dense” A matrices.

Result: With this additional assumption, we show that our estimation procedure as described in

Section 3.5 can learn all elements of A to uniform ε-accuracy with O(n logn) experiments.

Corollary 1. (Sufficient condition for uniformly ε-accurate estimation of dense A.) Under

Assumptions 1 and 2, for any n×n matrix A and any ε≥ 0,

P

(
max
i,j
|âij − aij| ≥ ε

)
≤ 2n2 exp

{
− sε2

36 (nb2 + c2/ρ2)

}
.

Therefore, to ensure uniformly ε-accurate estimates with probability 1−δ, it suffices for the number

of experiments to be O(n logn).
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This result also gives an upper bound on the number of experiments needed to learn the entries

of A, in the sense that with the best estimation method, the asymptotic scaling of the number of

experiments needed to achieve uniform ε-accuracy will be no worse than O(n logn). However, this

upper bound is again not practical as it suggests that in the worst case, the number of experiments

needed may scale linearly with the number of products. Because we would like to keep the number

of experiments small, we hope to achieve a sublinear rate of growth with respect to the number of

products. Fortunately, this is possible if the A matrix is “sparse,” as we discuss in the next section.

3.6.2. Sparsity

Motivation: Although a category may include many items, not all items will have relationships

with one another. For example, varying the price of a nighttime cold remedy may not affect the

demand for a daytime cold remedy.

Under our model of demand and cross-product elasticities, a pair of items having no interaction

corresponds to the respective entry being zero in the A matrix. If many pairs of items have no

relationship, then our A matrix will have many zero entries, which is referred to as a “sparse”

matrix. In terms of our model, we express the assumption of sparsity as follows.

Assumption 3. (Sparsity.) For any n, there exists an integer k such that for any n×n matrix

A and any i, |{j : aij 6= 0}| ≤ k.

For each row of A, we bound the number of entries that are nonzero to be no more than k.

Interpreting this in terms of products, for each product, we assume that there are at most k

products (including itself) that can affect its demand. Note that we do not assume any knowledge

of how these nonzero entries are distributed within the matrix. This is important as it means we

do not need to know a priori which products have a demand relationship with one another and

which do not.

Result: As long as the underlying matrix A exhibits this sparsity structure, we have the following

result on the number of experiments needed to estimate A with uniform ε-accuracy using our

estimation method.

Corollary 2. (Sufficient condition for uniformly ε-accurate estimation of sparse A.) Under

Assumptions 1, 2, and 3, for any n×n matrix A and any ε≥ 0,

P

(
max
i,j
|âij − aij| ≥ ε

)
≤ 2n2 exp

{
− sε2

36 (kb2 + c2/ρ2)

}
.

Therefore, to ensure uniformly ε-accurate estimates with probability 1−δ, it suffices for the number

of experiments to be O(k logn).
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This result shows that if the A matrix is sparse, the number of experiments needed scales on

the order of O(k logn), instead of O(n logn) as for the case of dense A matrices. Thus, the number

of experiments needed grows logarithmically (hence, sublinearly) in the number of products n and

linearly in the sparsity index k. As long as k does not increase too quickly with n, this may be

a significant improvement over O(n logn). As anticipated in the introduction, sparsity can yield

much faster learning. The gap between a theoretical requirement of O(k logn) and a theoretical

requirement of O(n logn) experiments could be dramatic for practical purposes in settings with a

large number of products, and therefore in estimation problems with a large number of parameters.

Of course this requires that k does not grow too quickly with n. We will investigate this possibility

in Section 4.

By thinking about the amount of abstract “information” contained in a sparse matrix as opposed

to in a dense matrix, we can gain some intuition as to why a sparse matrix is easier to estimate.

When trying to learn a model, if we know that the true model lies in a restricted class of possible

models, then we expect to be able to learn the true model faster than if no such restrictions were

known. Our assumptions of sparsity effectively reduce the universe of possible A matrices in this

manner. If A could be any n× n matrix, then for each row of A, there would be on the order of

n bits of unknown information (i.e., a constant number of bits for the value of each entry in the

row). On the other hand, if we knew that the row has only k nonzero entries, there would instead

be on the order of k bits of unknown information (i.e., a constant number of bits for the value of

each nonzero entry in the row). There would also be uncertainty in the location of the nonzero

entries. There are
(
n
k

)
ways of choosing k entries out of n to be the nonzero ones, and therefore

there are
(
n
k

)
possible locations of the nonzero entries within the row, which can be encoded as an

additional log2

(
n
k

)
bits of unknown information, which is approximately of order O(k logn) bits.

Based on these rough calculations, we can see that knowing that a matrix is sparse with only k

nonzero entries reduces the degrees of freedom and amount of uncertainty and therefore allows for

faster estimation.

3.6.3. Bounded Influence (Weak Sparsity)

Motivation: Assumptions 2 and 3 are both based on the intuition that the substitution and

complementarity effects between products are bounded. This was done through placing hard bounds

on the magnitude of each pairwise effect (i.e., the magnitude of each element of A) and by limiting

the number of possible relationships a product can have (i.e., the number of nonzero elements in

each row of A).

An alternative approach, in the same spirit, is instead to bound the aggregate effect on each

product’s demand due to all price variations. The intuition here is that although there may be
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many products, the demand for any individual product cannot be swayed too much, no matter

how many other products there are or which products’ prices are varied. This can be thought of

as a “weak” sparsity assumption: we do not assume that many elements of A are zero; instead we

assume that the overall sum across any row of A stays bounded. We express this assumption in

terms of our model as follows.

Assumption 4. (Bounded influence.) For any n, there exists a constant d such that for any

n×n matrix A, the following inequality is satisfied for every i:

n∑
j=1

|aij| ≤ d.

As another interpretation, Assumption 3 can be thought of as bounding the `0 “norm” of the

rows of A: ‖ai‖0 ≤ k. Assumption 4 above can be thought of as a relaxation that instead bounds

the `1 norm of the rows of A: ‖ai‖1 ≤ d.

Result: Using similar analysis, we show that the number of experiments needed to achieve uni-

form ε-accurate estimation under the assumption of bounded influence is on the order of O(d2 logn).

Corollary 3. (Sufficient condition for uniformly ε-accurate estimation under bounded influ-

ence.) Under Assumptions 1 and 4, for any n×n matrix A and any ε≥ 0,

P

(
max
i,j
|âij − aij| ≥ ε

)
≤ 2n2 exp

{
− sε2

36 (d2 + c2/ρ2)

}
.

Therefore, to ensure uniformly ε-accurate estimates with probability 1−δ, it suffices for the number

of experiments to be O(d2 logn).

The above result shows that even with a weaker sparsity condition, where we allow all parameters

to be nonzero, we are still able to achieve an order of growth that is logarithmic in the number

of products. Note that if Assumptions 2 and 3 are satisfied with constants k and b, respectively,

then Assumption 4 will also be satisfied with d , kb, and so the bounded influence assumption

can subsume the combination of bounded pairwise effects and sparsity assumptions. However,

using the more general bounded influence assumption to capture sparsity leads to a weaker result

because it does not leverage all of the structural details of the sparsity assumption. Specifically,

with d= kb, Corollary 3 would give a scaling of O(k2 logn) for learning a k-sparse A matrix (where

the dependence on b has been suppressed), which is slower than the scaling of O(k logn) given by

invoking Corollary 2.
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3.7. Standard Errors and Confidence Intervals

Besides providing a result on the speed of learning, Theorem 1 also allows us to construct confidence

intervals for the elasticity estimates by rearranging (5). Specifically, for

ε=

√
maxi 36(

∑n

`=1 a
2
i` + c2/ρ2)

s
log

(
2n2

δ

)
,

we have that P (|âij − aij| ≤ ε)≥ 1− δ. Under each structural assumption, we can also replace the

(unknown) sum
∑n

`=1 ai` with the appropriate bound.

Although this confidence interval has an analytical form given by our theory, it will be loose

because we have used upper bounds of quantities in the derivation of (5). It also depends on

parameters that we do not know, namely the aij’s and c. An alternative is to use the jackknife

or bootstrap to estimate standard errors and use these to construct confidence intervals. For each

experiment t we obtain a measurement yij(t) for a particular unknown elasticity parameter aij,

and our estimator âij is the sample mean of these yij’s. Therefore, to estimate the standard error of

our estimator after s experiments, we can resample from our s measurements of yij’s and calculate

the sample mean of this resample. By resampling many times, we obtain a distribution of sample

means, from which we can estimate the standard deviation of our sample mean estimator.

3.8. Lower Bound

The previous results provide upper bounds on the number of experiments needed for accurate esti-

mates. For example, in the case of sparsity, using our estimation method, no more than O(k logn)

experiments are needed to achieve uniform ε-accuracy. However, these results do not tell us whether

or not there exists another estimation method which requires even fewer experiments. Given our

demand model, the bounds on the allowable price variations, and the noise in the data, information

theory tells us the maximum amount of information about the aij’s that can be learned from a

single experiment. This fundamental limit in the “value” of each experiment in estimating the A

matrix then allows us to calculate a lower bound on the number of experiments required. We do

not actually need to develop a specific estimator that achieves this lower bound, but we know that

no estimator can do better than this lower bound.

For the special case of i.i.d. Gaussian noise, we now present such a lower bound on the number

of experiments needed, which shows that no matter what estimation procedure we use, there is

a minimum number of experiments needed to achieve uniform ε-accuracy. The only requirement

we impose on the estimation procedure is that it relies on experiments with bounded percentage

price changes. The bounds we impose on the percentage price changes can be justified by practical

considerations: the natural lower bound on price changes comes from the fact that prices cannot be

negative, while the upper bound on the percentage changes captures that the manager of a store

is likely to be opposed to dramatic price increases for the purposes of experimentation.
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Theorem 2. (Necessary condition for uniform ε-accurate estimation under sparsity with Gaus-

sian noise.) For λ> 0, let

An,k(λ),

{
A∈Rn×n : |{j : aij 6= 0}|= k,∀i= 1, . . . , n; min

i,j:aij 6=0
|aij| ≥ λ

}
be the class of n×n A matrices whose rows are k-sparse and whose nonzero entries are at least λ in

magnitude. Let the noise terms be i.i.d. N (0, c2) for some c > 0. Suppose that for some ε∈ (0, λ/2)

and δ ∈ (0,1/2), we have an estimator that

(a) experiments with percentage price changes x∈ [−1, ρ̃], for some ρ̃≥ 1 (i.e., the price of each

product cannot fall below 0 and cannot increase by more than 100ρ̃%), and

(b) for any A matrix in An,k(λ) achieves uniformly ε-accurate estimates with probability 1− δ.

Then, the number of experiments used by the estimator must be at least

s≥ k log(n/k)− 2

log(1 + k2λ2ρ̃2/c2)
.

The proof is given in Section EC.4 of the e-companion to this paper.

As the number of products grows, the asymptotically dominant scaling terms are

s≥Ω

(
k log(n/k)

logk

)
.

Since logk is small compared to k and logn, we have an essentially matching lower bound to the

O(k logn) upper bound given in Corollary 2, which shows that our estimation procedure achieves

close to the best possible asymptotic performance.

3.9. Discussion

The previous results demonstrate the power of sparsity in multiple flavors. Without any assump-

tions on the structure of the problem, the number of experiments needed may grow linearly with

the number of products. For our target regime of large numbers of products, this leads to a solution

that appears to be practically infeasible. However, by recognizing the inherent properties of the

problem, we show that even with randomly designed experiments we are able to learn A using

a number of experiments that scales only logarithmically with the number of products. With a

large number of products, the difference between linear and logarithmic is tremendous: for n= 100,

log(100) ≈ 4.6. This gives hope that we can indeed learn the A matrix in a practically feasible

number of experiments.

While our findings help reveal how many experiments are required, it is also helpful to ask

how many experiments are feasible. When firms are using field experiments to set policy (rather

than academics using them to test theories) we have found they are often willing to run a rather

large number of experiments. The answer will clearly depend upon the nature of the firm’s actions
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and the particular setting. Varying advertising or pricing decisions in online or direct marketing

settings can often be implemented at low cost, making it feasible to implement hundreds or even

thousands of experiments. For example, Capital One reportedly implements tens of thousands of

randomized field experiments each year. In traditional retail formats, the cost of making in-store

changes is generally higher, and randomization must often occur at the store level rather than the

individual customer level (introducing an additional source of measurement error). However, even

in traditional retail settings, firms with multiple locations can implement a large number of exper-

iments in different samples of stores to test pricing, product placement, and other merchandising

decisions. For example, one of the authors has worked with a large bricks and mortar retailer who

was quickly able to run 200 between-store pricing experiments to decide how to price private label

items when national brands are promoted. Documented examples of high-volume experimentation

in traditional retail settings include Bank of America varying actions between bank branches and

Harrah’s varying a wide range of practices across its casinos. In other settings, implementing field

experiments is more challenging. For example, when deciding how to manage a distribution net-

work, a firm may be limited to only a handful of experiments every few years, as these experiments

will tend to disrupt existing relationships and require extended periods to observe the outcome.

3.10. Other Marketing Decisions

Besides setting prices, firms make many other types of marketing decisions, including which prod-

ucts to advertise or promote. Although our model and analysis have focused on pricing decisions,

the model can easily be adapted to advertising or promotion decisions. As with setting prices,

promoting a product will (for most products) increase its demand. The substitution and com-

plementarity effects between products will also carry over to promotion decisions. Therefore, we

can again use a matrix A to represent the own- and cross-product elasticities and a vector ∆q

to represent the percentage change in demand for each product. However, some modifications are

required to extend the model to promotion applications.

If we interpret the decision to advertise or promote a product as a binary decision, then the

decision variables become

x̃j =

{
1, if j is promoted,
0, if j is not promoted.

For ease of exposition (and without loss of generality), we will assume that there are no promotions

in the control condition. We can then model the percentage change in demand in response to the

promotion decisions as

∆q =
qt−qb

qb
= Ax̃ + w.

In this model, we capture in the A matrix own- and cross-product promotion responses. This model

retains the same form as in (4), where x̃ takes the place of x.
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Given that the model under promotion decisions has the same form as the model under pricing

decisions, we can apply a modified form of our estimation procedure to obtain similar results.

Specifically, instead of making continuous pricing decisions, we instead make 0/1 Bernoulli decisions

for each x̃i in the promotion setting. This is essentially the same setup and we can again find

estimators for each aij such that Theorem 1 holds (with slightly different constants). Therefore, we

would still be able to achieve uniformly ε-accurate estimation with O(k logn) experiments under

sparsity and O(d2 logn) experiments under bounded influence.

4. Estimating Sparsity

In order for a retailer to evaluate whether it is feasible to make pricing decisions using field experi-

ments, the retailer needs an estimate of the sparsity parameter (k or d). In this section, we describe

two approaches for estimating these parameters: 1) from a “pilot” set of experiments and 2) from

historical data. Under both approaches, we use what is essentially a model selection approach.

We divide the data into calibration and validation sub-samples. We then repeatedly estimate the

A matrix using the calibration sub-sample for different values of the sparsity parameter, and we

choose the sparsity parameter for which the estimated A matrix has the best fit with the validation

sub-sample.

Different variants of this general approach are available, including different measures of

“goodness-of-fit” of the validation sub-sample. We can also use different approaches to cross-

validate, including m-fold cross validation where we randomly split the data into m buckets and

rotate which of the buckets we treat as the validation sample. In the discussion below, we describe

the two approaches more formally and present results of both simulations and empirical analysis

to illustrate their performance.

In addition to describing how to estimate k and d, our analysis in this section also has a second

purpose. Although we have shown that sparsity and weak sparsity ensure that the number of

experiments required to obtain accurate estimates grows at a logarithmic rate with n, we must

also consider how the sparsity parameters (k and d) grow with n. If k and d grow quickly with n,

then the O(k logn) and O(d2 logn) growth rates will again mean that it may be infeasible to use

experiments to set prices in large categories.

4.1. Methodology

Let ai be the (unknown) 1×n row vector of elasticities for the ith product. Suppose we have s data

points: ∆qi is a 1× s vector of changes in demand for the ith product, and X is an n× s matrix

of pricing decisions. For some value τ , we solve the following optimization problem (the “Lasso”;
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see Tibshirani 1996), which looks for the ai that best fits the data but is still constrained to be

“sparse”:
minai ‖∆qi−a′iX‖22

s.t. ‖ai‖1 ≤ τ.

Alternatively, we can express the problem as the following:

min
ai
‖∆qi−a′iX‖22 +λ‖ai‖1. (6)

Here, τ and λ are tuning parameters that control the level of sparsity of the resulting solution.

For each choice of the tuning parameters, we obtain one solution, âi, to the optimization problem.

To assess the quality of each solution, we cross-validate it using the given data and select the one

that gives the lowest cross-validation error as the best solution. From this best solution, we recover

its “sparsity” and propose that measure as an estimate of the true level of sparsity. As we obtain

additional data, we can repeat this procedure to update our estimates of the sparsity parameters.

Although this methodology focuses on a single product/row i, the same procedure can be per-

formed on each row independently, with the same set of data, to obtain estimates of k or d for each

row. This procedure then gives us even finer-grained estimates, not just a single k or d bound for

the entire A matrix. Our model calls for a k or d that bounds the sparsity of the entire matrix.

Therefore, to arrive at estimates of the overall sparsity parameters for the entire matrix, we take

the maximum over the individual row estimates. Note that this approach is valid for either hard

sparsity (k) or bounded influence (d). We will test the methodology on both cases.

4.2. Pilot Experiments

In order to perform the procedure described in the previous subsection, we first require some data.

One possible source of data is a set of “pilot” experiments: a relatively small sequence of pricing

experiments and corresponding observed demand.

In this subsection, we simulate pilot experiments by generating synthetic experimental data. To

ensure that our simulations use realistic parameters, we initialize them using data from a large-

scale pricing experiment that was conducted for another purpose (Anderson et al. 2010). The

experiment was implemented at a large chain of stores that sells products in the grocery, health

and beauty, and general merchandise categories. Eighteen of the chain’s stores participated in the

study, in which prices were experimentally manipulated on 192 products for seventeen weeks, with

the treatments randomly rotated across the eighteen stores (see Anderson et al. 2010 for additional

details). From this study, we obtained distributions for the diagonal and off-diagonal entries of the

A matrix. The simulation is meant to illustrate our estimation methodology and is not something

that managers would do; in practice, managers would conduct actual pilot experiments to collect

data for x and ∆q. The simulation proceeds as follows:
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Figure 1 An example of the result of five-fold cross-validation. The value of λ highlighted with the large dot

gives the lowest cross-validation error. Large values of λ (to the right) heavily penalize nonzero entries, resulting

in the zero vector as the solution, which does not fit the data well. As λ is lowered, we begin to get some nonzero

entries in the solution, which provides a better fit of the data. However, as λ becomes even smaller, past the

value marked with the large dot, we obtain dense solutions that tend to overfit, resulting in a higher

cross-validation error.

1. Choose fixed values of n and d (or k) and generate the true A matrix randomly from the seed

distributions. Choose a fixed value of σ, the standard deviation of the normal error term w. These

parameters are not used in the estimation.

2. For any given s:

(a) Randomly generate x and w for s experiments and calculate ∆q.

(b) For a range of λ’s, find the optimal solutions to (6).

(c) Perform five-fold cross-validation7 on the solutions to identify the one with the lowest

cross-validation error; call this a∗i . (Figure 1 illustrates the cross-validation process.)

(d) Calculate ‖a∗i ‖1 and ‖a∗i ‖0. For the latter, we count only those entries that are above a

certain threshold (set at 0.01) in magnitude.

(e) For each s, replicate this 10 times and average the results. Propose the averaged values

of ‖a∗i ‖1 and ‖a∗i ‖0 as estimates of d and k, respectively.

3. Plot the estimates of d and k versus a range of values of s, giving a sense of how many

experiments are needed to obtain an accurate estimate of the level of sparsity.

As Figure 2 illustrates, our methodology provides reasonable estimates of k and d with relatively

few experiments, and these results hold for different values of the true underlying sparsity param-

eters. These results suggest that using pilot experiments can indeed provide initial estimates of

7 Split the data set into five buckets. Estimate ai on data from four buckets and cross-validate on the fifth. Rotate
and do this for all five buckets and calculate the average error.
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(a) Estimating k= 2 (b) Estimating k= 10 (c) Estimating k= 20

(d) Estimating d= 1 (e) Estimating d= 10 (f) Estimating d= 20

Figure 2 Plot of the estimates of k and d versus the number of experiments, s. The estimates are near the

true values even with relatively few experiments, for different choices of the true sparsity parameters.

k and d. Knowing these sparsity parameters, we then have a sense of the feasibility of using our

main methodology to estimate A. In addition to providing estimates of the sparsity parameters,

the data generated in these pilot experiments can also serve as additional data that can be used to

estimate A using our main methodology. Furthermore, if the pilot experiments involve variation in

n (e.g., by experimenting on multiple stores with different category sizes), we can also investigate

how the sparsity parameters grow with n.

4.3. Empirical Analysis

Running 80 to 100 pilot experiments is not without cost, and so ideally a firm would like to be able

to estimate k and d using its existing data. One possibility is to use historical variation in prices

to estimate these parameters. Our proposed cross-validation method can be easily adapted to do

so.

We use 195 weeks of historical data from a chain of 102 convenience stores, describing prices and

unit sales of products in the cold remedies category. The number of products sold in each store

varies, due primarily to differences in the square footage size of each store (larger stores offer wider

product ranges). We will exploit this variation to illustrate how our estimates of k and d vary with

the number of items in the category (n).
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4.3.1. Setup We begin with the 195 weeks of sales data from 102 stores, which we then group

into 48 four-week periods in order to reduce the amount of noise in the data. We focus on a specific

category (cold remedies) and perform the following procedure for each store independently:

1. If a product is not sold in a given period, no data is available for that product during that

period, which means that we do not know the retail price for that product during that period. We

fill in this price data by linearly interpolating between the prices for that product during the two

most adjacent periods for which we do have data.

2. However, we know that if no data is available, the quantity sold during that period is zero.

3. After this processing, we have a complete set of sales and price data for each product, for

each of the 48 four-week periods.

4. For each product i, we compute the average quantity sold per period and the average price,

over the 48 periods. These will serve as the baseline demand (qbi ) and price levels (xbi), respectively.

5. To further reduce noise, we consider only those products which (i) sold over a certain threshold

of units per period on average, (ii) sold at least one unit during the first four periods and last four

periods (to ensure they were not introduced or discontinued during the middle of the 195 weeks),

and (iii) had variations in prices above a certain threshold over the course of the 48 periods.

6. We collect all products that do not pass through the above filter and combine them into a

single aggregated “product”, which is included together with all other products in the analysis that

follows.

7. We calculate category-level seasonality factors for each period, which are used to deseasonalize

the raw demand quantities.

8. Using the price data and the (deseasonalized) sales data for each period, we then calculate

their percentage change from the previously established baseline levels, as indicated by our model.

9. Equipped with ∆q and x, we then use these as input to the Lasso optimization program (6):

(a) Lasso estimates vectors, so we estimate A row-by-row.

(b) For each row i, we try a sequence of λ parameters and perform five-fold cross-validation

in order to identify the value of λ that gives the lowest cross-validation error; call this estimate â∗i .

Calculate ‖â∗i ‖1 and ‖â∗i ‖0 as estimates of ki and di for row i.

(c) Because k and d are sparsity parameters for the complete A matrix, we take the maximum

over all of the rows’ ki and di to obtain the overall estimate of k and d.

(d) For robustness, we repeat this entire procedure ten times and average the results.

10. By performing this analysis for each store, we obtain 102 pairs of (n,k) and (n,d) data

points, which give us a relationship between the number of products and the sparsity parameters.

11. We fit a quadratic model and verify whether the second-order coefficient is negative and sig-

nificant, indicating that the sparsity index does not increase linearly with the number of products.
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(a) Estimating k (b) Estimating d

Figure 3 Plots of n versus estimated k and d, including the quadratic fit. Sales threshold: one unit per period

on average; standard deviation of price variations threshold: 0.08.

Coefficient Estimate Std. Error t value

Estimating k
(Intercept) 1.118 0.607 1.843
1st-order term 0.661 0.059 11.169
2nd-order term -0.007 0.001 -7.461

Estimating d
(Intercept) 15.280 11.696 1.306
1st-order term 5.068 1.142 4.438
2nd-order term -0.070 0.018 -3.959

Table 2 Summary of quadratic fit models for four-week periods with a sales threshold of one unit sold per

period on average and a minimum standard deviation of price variations of 0.08. The second-order coefficients are

negative and significant for both k and d.

4.3.2. Results Figure 3 presents the estimates of k and d across all of the stores (each point

represents the estimates for a single store). Recall that the number of items in each category varies

across the stores, which allows us to investigate the relationship between the sparsity parameters

and n. The figures also show the fitted quadratic relationships between the data points, which

allow us to evaluate whether the growth in the sparsity parameters is slower than linear. In Table

2, we report the results of these quadratic fit models.

The estimates of k reveal a relatively distinct pattern: the estimates grow with n but the growth

rate is slower than linear. In the fitted quadratic equation the quadratic term is negative and

highly significant. We can speculate on the reasons for this. It is possible that customers eliminate

products from their consideration sets that do not share certain attributes. For example, on a

specific trip customers may focus only on nighttime cold remedies or daytime cold remedies. If this

is the case, then introducing a new daytime product may not increase k (which is an upper bound

on the number of interdependent products) because it only affects demand for the subset of items
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that share that attribute (i.e., daytime remedies). It was this type of behavior that Tversky (1972)

anticipated when proposing that customers eliminate alternatives by aspects.

The estimates of k are relatively small (around fifteen) even in large categories. This suggests

that in the cold remedies category, the matrix of cross-price elasticities is sufficiently sparse to make

estimation using field experiments feasible. This demonstrates the feasibility of using historical

data to obtain initial estimates of k to evaluate when a firm can use experiments to set prices. The

data that we have used is readily available to most retailers. Notably, because we obtain estimates

of the sparsity parameters for each category in each store, it does not require that retailers have a

large number of stores (although having many stores obviously makes experimentation easier).

Notice that for many of the stores we observe only approximately ten items in the cold remedies

category. This reflects two things: both the relatively small size of these stores, and the screening

of products based on their sales volumes and the level of price variation. Because of this screening,

we estimate the findings using the items that have the highest sales volumes and the largest price

variation (the filtered items are combined into a single “other” item). To evaluate the robustness of

our findings, we have repeated the analysis for different minimum sales and price variation thresh-

olds. We also replicated the findings when grouping the data into ten-week periods. The findings

replicate the pattern of results reported in Figure 3 and Table 2. In all of these combinations, the

quadratic coefficient regressing k on n is negative and highly significant.

We also report the estimates of d. The fitted quadratic function indicates that the growth of

d with n is also sublinear.8 However, the findings reveal a much less distinct pattern. Notably

some of the estimates of d are very large (exceeding 100). Moreover, while our estimates of k are

relatively robust, the estimates of d are much less robust and are sensitive to variation in the

filtering parameters. One interpretation is that within the “Cold remedies” category, the weak

sparsity structure is not sufficient to make it feasible to use experiments to set prices. A second

interpretation is that our estimation procedure is not accurate enough to provide reliable estimates

of d.

4.4. Endogeneity

A limitation of using historical variation in control variables is that past variation is often not ran-

dom. Endogeneity in the control variables may raise concerns that the resulting elasticity estimates

will be biased (Villas-Boas and Winer 1999). These limitations may be less relevant in this setting,

8 In the case of d, sublinear growth could simply reflect customer loyalty or state dependence (see for example Dubé
et al. 2008, Erdem 1996, Keane 1997, Seetharaman et al. 1999, Anderson and Simester 2013). If even just a subset of
customers is loyal to an existing product (or brand), then the introduction of additional products will have a bounded
impact on sales of the existing products. The more customers who are loyal, the less growth we expect in d as n
grows.
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where we are unconcerned about bias in elasticity estimates and instead merely seek a preliminary

estimate of k and d. However, to investigate this issue we used two approaches.

First, we developed a model of endogeneity based on Villas-Boas and Winer (1999), used simula-

tions to generate synthetic data, and then estimated both the A matrix (the cross-price elasticities)

and the sparsity parameters. The results confirm that the elasticity estimates are biased due to

endogeneity but that the estimates of the sparsity parameters, k and d, are relatively robust even

in the presence of endogeneity. Next we returned to the historical data and used an instrumental

variables approach to account for endogeneity. In particular, we use wholesale price as an instru-

ment for retail price. After controlling for endogeneity using this instrument, we obtain estimates

of the sparsity parameters that are approximately the same as those obtained using our original

approach. We also confirm that the relationship between the sparsity parameters and n is sublinear

when using this instrumental variables approach. A detailed discussion of the analysis and findings

can be found in Li (2014).

4.5. Summary

We have described how to estimate the sparsity parameters k and d either from a pilot set of

experiments or from historical data. Through simulations, we demonstrated that our estimation

procedure can in fact accurately recover k and d using relatively few experiments. Using a sample of

historical sales data, we also obtained actual estimates of k and d from the cold remedies category.

These estimates revealed that the sparsity parameters increase with n but that the growth is

sublinear. Changing the price of an item within the cold remedies category appears to affect the

demand for no more than fifteen other items, suggesting that the A matrix of elasticities is sparse.

The findings illustrate a practical method that managers can use to evaluate whether a product

category has a favorable structure to make it feasible to set category prices using field experiments.

5. Simulations

The theoretical results presented so far have focused on the speed of learning. In this section, we

present the results of simulations that confirm the relevance of the theoretical asymptotic bounds.

5.1. Simulation Setup

To ensure that our simulations use realistic parameters, we initialize them using data from a large-

scale pricing experiment that was conducted for another purpose (Anderson et al. 2010). This is

the same setup that we used for the simulations in Section 4.2.

We also specify a collection of parameters that define the simulation: the number of products

(n), structural parameters for the A matrix (b, k, and d), the noise distribution parameter (c),

and the error criteria (ε and δ). We refer to these parameters together as the simulation definition.
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In order to compare the dense and sparse cases, we first generate a full matrix using these two

distributions for the dense case and then randomly set all but k entries in each row to zero for the

associated sparse case. Instead of selecting an arbitrary value for k, we use the empirical results

from Section 4.3.2: for any given n, we use the quadratic fit (plus some additive noise) to calculate

the associated value of k.

5.2. Estimation of A

Given an n×n matrix A generated using the distributions described above, along with a definition

of parameters, we can then use the procedure described in Section 3.5 to estimate A.

To simulate one experiment, we generate a random pricing vector x and random noise variables

wi. Using the true underlying A matrix, we then calculate the vector of percentage changes in

demand ∆q = Ax + w and the statistics yij, which are unbiased estimators of the aij’s. As we

perform more experiments, we keep a running sum of the yij’s and compute the sample mean to

obtain our estimate âij. By comparing these estimates to the true A matrix, we can calculate the

maximum absolute error across all entries: maxi,j |âij − aij|.

Since our criterion of uniform ε-accuracy requires the probability that the maximum absolute

error is less than ε to be at least 1−δ, we run 100 parallel sequences of experiments. Each sequence

is essentially an independent instance of the estimation procedure. We incrementally generate

more experiments for each sequence, compute updated estimates, and calculate maximum absolute

errors. After any number of experiments, each sequence therefore has its own set of estimates and

corresponding maximum absolute error. We say that we have achieved uniform ε-accuracy when

at least a 1− δ fraction of the sequences have maximum absolute errors that are less than or equal

to ε.

5.3. Estimation Performance

Using the preceding procedure, we can simulate the number of experiments needed to achieve uni-

form ε-accuracy for any given simulation definition. Because we are interested in how the number of

experiments needed scales with the number of products, we fix a particular definition of parameters

(except for n) and generate a sequence of matrices {An} that increase in size. For each matrix An,

we determine the number of experiments needed to achieve uniform ε-accuracy. For robustness, we

replicate the entire simulation 20 times and, for each n, calculate 95% confidence intervals for the

number of experiments needed.

In the case of sparse matrices, the resulting plot (Figure 4a) exhibits the logarithmic scaling

predicted by our theoretical results. As the number of products grows, the number of experiments

required grows much more slowly than the linear benchmark. Additional products require fewer

and fewer additional experiments to achieve accurate estimates. On the other hand, Figure 4b
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(a) Sparse A matrix (b) Comparison of sparse and dense A matrices

Figure 4 When the A matrix is sparse, the number of experiments needed to achieve uniform ε-accuracy grows

only logarithmically with the number of products. When the A matrix is dense, the number of experiments

needed to achieve uniform ε-accuracy grows at least linearly with the number of products. Comparing the cases of

sparse and dense A shows that learning is much faster in the sparse case. The bars represent 95% confidence

intervals. Parameters used for this plot: ρ= 0.5, c= 0.5, b= 5, ε= 1.5, δ= 0.1.

shows that the dense case requires many more experiments than the sparse case to achieve the

same level of estimation accuracy.9

6. Conclusion

While many firms lack the capabilities to estimate sophisticated econometric models, almost any

firm can compare the results between experimental treatment and control groups. We have inves-

tigated whether conducting these simple comparisons can help firms improve their profits even as

the complexity of the problem grows. In particular, we consider settings where actions taken to

impact the sales of one product tend to spill over and also affect sales of other products. As the

number of products n grows, the number of parameters to estimate grows as O(n2). This suggests

that the number of experiments required to estimate these parameters will quickly grow beyond

what is feasible.

However, we show that if the category exhibits a favorable structure, then firms can learn these

parameters accurately using a relatively small number of experiments. We investigate two such

structures. The first is sparsity, in which any one product can be affected by at most k products. An

important point is that we do not need to know which specific products affect that one product’s

demand, only that there is a limit to how many such products there are. Given this restriction,

9 The results for the “sparse” case in Figure 4b are identical to the results in Figure 4a (the only difference is the
change in the scale of the y-axis).
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the number of experiments required to estimate the matrix of parameters drops from O(n logn) to

O(k logn).

We also describe a second restriction that yields similar results. Rather than limiting the number

of products that can affect any one product, it may be more appropriate to restrict how much the

total percentage change in sales of one product can be affected by actions on all of the products. As

long as there is a limit to the aggregate magnitude of these interactions, then we can again achieve

relatively quick improvements in parameter estimates with a feasible number of experiments.

To investigate whether these favorable structures exist, we propose a method for estimating the

level of sparsity in a given category. We use this method to analyze actual historical sales data

and estimate the sparsity parameters for the “Cold remedies” category. The empirical results show

that sparse structures do appear to exist. In estimating the sparsity parameters, we also obtain

estimates of elasticities. Using these preliminary elasticity estimates to help design subsequent

experiments is an interesting opportunity for future research.

Our findings provide guarantees about the rate of learning from experiments. These guarantees

are obtained using randomized experiments and simple comparisons of outcomes between treatment

and control conditions. Firms may increase the rate of learning by optimizing the experimental

designs and/or using more sophisticated analyses to estimate the parameters. While our guarantees

will continue to hold under these alternative approaches, future research may investigate the extent

to which the bounds can be improved in these circumstances.

We have framed our findings by focusing on the category pricing decisions. However, the results

can be easily extended to other marketing decisions in which actions targeted at an individual

product spill over to affect other products as well. In the context of learning demand elasticities,

we have extended our findings to selecting which products to promote. Other applications could

include the allocation of sales force resources across products or the focus of future investments in

product development. It may also be possible to extend the results to settings in which marketing

actions targeted at one customer (or group of customers) also impact the decisions of other cus-

tomers. Spillovers between customers may arise when customers can observe the decisions of other

customers, or when their decisions depend on the recommendations of other customers. Extending

our results to these forms of externalities may present fertile opportunities for future research.
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