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Abstract

We study the approximation of the least core value and the least core of supermodular cost cooperative
games. We provide a framework for approximation based on oracles that approximately determine
maximally violated constraints. This framework yields a 3-approximation algorithm for computing the
least core value of supermodular cost cooperative games, and a polynomial-time algorithm for computing
a cost allocation in the 2-approximate least core of these games. This approximation framework extends
naturally to submodular profit cooperative games. For scheduling games, a special class of supermodular
cost cooperative games, we give a fully polynomial-time approximation scheme for computing the least
core value. For matroid profit games, a special class of submodular profit cooperative games, we give
exact polynomial-time algorithms for computing the least core value as well as a least core cost allocation.
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1 Introduction

Consider a situation in which a set of agents has the option of sharing the cost of their joint actions. For
example, a group of retailers, instead of individually managing each of their own storage facilities, may decide
to jointly participate in a centralized inventory management scheme with a common storage facility, and
share the cost of optimally running this facility. In these situations, the agents may or may not be motivated
to cooperate, depending on the structure of their costs. Cooperative game theory offers a mathematical
framework to study the cooperative behavior between multiple agents. A (transferable utility) cooperative
game is a pair .N; v/ where N D f1; : : : ; ng represents a set of agents, and v W 2N ! R is a set function
where for each S � N , v.S/ represents the cost to agents in S if they cooperate. By convention, v.;/ D 0.
A subset S � N of agents is referred to as a coalition.

Cooperative game theory has been used to study cost sharing for a myriad of application areas of
operations research. For example, one increasingly popular stream of research has focused on the application
of cooperative game theory to various problems in inventory management [e.g. 18, 24, 54, 6, 21]. Another
body of literature has used cooperative game theory to investigate the cost sharing issues in various scheduling-
related problems [e.g. 7, 30, 34, 45]. Other applications of cooperative game theory to OR-related areas
include assignment games [50], linear production games [38], minimum-cost spanning tree games [2, 22],
network flow games [27, 28], traveling salesman games [39], and facility location games [20].

1.1 The least core and the least core value

Cooperative game theory focuses on how to distribute costs that are collectively incurred by a group of
cooperating agents in a “desirable” way. For example, one might want to allocate costs in a way that is “fair” or
“stable.” Such cost allocation rules are called solution concepts. Different notions of desirable cost allocation
properties lead to different solution concepts. One of the most prominent solution concepts in cooperative
game theory is the core [19]. Suppose x 2 RN is a cost allocation vector: for all i 2 N , xi represents the
cost allocated to agent i . (For notational convenience, for any vector x we define x.S/ D

P
i2S xi for any

S � N .) The core of a cooperative game .N; v/ is the set of all cost allocations x such that

x.N / D v.N /; (1.1a)

x.S/ � v.S/ for all S � N: (1.1b)

The condition (1.1a) requires that a cost allocation in the core is efficient: the total cost allocated to all agents,
x.N /, is equal to the cost to all agents when they cooperate, v.N /. The conditions (1.1b) guarantee that a
cost allocation in the core is “subgroup rational” or stable: no subset of agents, or coalition, would be better
off by abandoning the rest of the agents and acting on its own. In other words, the core of a cooperative game
is the set of all efficient and stable cost allocations. The existence of an efficient and stable cost allocation—in
other words, a non-empty core—can be seen as a rudimentary indication that cooperation is attainable.

For many cooperative games, the core may be empty. Another solution concept, initially proposed by
Shapley and Shubik [49] and later named by Maschler et al. [32] is called the least core. The least core of a
cooperative game .N; v/ is the set of cost allocations x that are optimal solutions to the linear program

´� D minimize ´

subject to x.N / D v.N /;

x.S/ � v.S/C ´ for all S � N; S ¤ ;; N:

(LC)

The optimal value ´� of (LC) is the least core value of the game .N; v/. The linear program (LC) can be
equivalently written as

´� D min
xWx.N/Dv.N/

max
S�N
S¤;;N

e.x; S/;
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where e.x; S/ D x.S/ � v.S/ for all S � N . Note that the least core is always well-defined and non-empty,
regardless of whether the core is empty or non-empty1.

The least core and the least core value of a cooperative game have several interesting economic inter-
pretations. The quantity e.x; S/ is the dissatisfaction2 of a coalition S under a cost allocation x: it is the
extra cost that S pays when costs are allocated according to x. A cost allocation in the least core therefore
minimizes the maximum dissatisfaction of any coalition. In this sense, the least core contains those cost
allocations that are “least objectionable.” If the core of a cooperative game is non-empty, the dissatisfaction
of any coalition under a cost allocation in the core is nonpositive, and the absolute value of a coalition’s
dissatisfaction represents its gain under such a cost allocation. In this case, the least core is a refinement of
the core: the least core contains all efficient and stable cost allocations that maximize the minimum gain
of any coalition. If the core of a cooperative game is empty, the least core value ´� can be viewed as the
minimum penalty we need to charge a coalition for acting independently that encourages cooperation by
ensuring the existence of an efficient and stable cost allocation. Alternatively, the least core value can be seen
as the minimum cost of coalition formation for which exercising the “subgroup rationality” implied by (1.1b)
is considered not worth the trouble.

The least core is closely related to some other solution concepts from cooperative game theory. For
example, Maschler et al. [32] studied the relationship between the least core and the nucleolus [44]. Given a
cost allocation x 2 RN , the excess vector �.x/ is defined as the 2n�2 dimensional vector whose components
are e.x; S/ for all S � N such that S ¤ ;; N , in nonincreasing order. The nucleolus is the cost allocation
that lexicographically minimizes the excess vector �.x/. Maschler et al. [32] showed that for a cooperative
game .N; v/, the nucleolus can be computed by solving jN j linear programs of the form (LC). On a different
note, Einy et al. [12] showed that the least core is always contained in the Mas-Colell bargaining set [31].
The Mas-Colell bargaining set of a cooperative game, like the classical bargaining set [1], is the set of all cost
allocations that are stable with respect to a particular system of objections and counterobjections.

1.2 Supermodular cost cooperative games

Perhaps the most important and remarkable cooperative games are those with submodular costs3. A set
function v W 2N ! R is submodular if

v.S [ fj g/ � v.S/ � v.S [ fj; kg/ � v.S [ fkg/

for all j; k 2 N such that j ¤ k and all S � N n fj; kg. In words, submodularity captures the notion of
decreasing marginal costs. Submodular cost cooperative games enjoy a wealth of interesting and desirable
properties, including that the core of these games is always non-empty [48]. Intuitively, cooperation amongst
agents who face submodular costs is likely: as the size of a coalition grows, the marginal cost associated with
adding a particular agent decreases, increasing the appeal of cooperation.

In this paper, we consider the opposite situation—when agents face supermodular, or increasing marginal
costs. A set function v W 2N ! R is supermodular if

v.S [ fj g/ � v.S/ � v.S [ fj; kg/ � v.S [ fkg/ (1.2)

for all j; k 2 N such that j ¤ k and all S � N n fj; kg. In other words, v is supermodular if �v
is submodular. We study supermodular cost cooperative games: cooperative games .N; v/ where v is

1The linear program (LC) is clearly feasible. Adding the inequalities xi � v.fig/C ´ for all i 2 N and using the equality
x.N / D v.N /, we have that ´� � 1

jN j
.v.N / �

P
i2N v.fig//. So as long as costs are finite, the optimal value of (LC) is finite and

the least core value is well-defined.
2This quantity is sometimes referred to as the excess of a coalition in the cooperative game theory literature.
3In the literature, the profit counterparts of these games—in which v is supermodular (see next paragraph) and represents the

profit to coalitions—are known as convex games.
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nonnegative and supermodular. Supermodularity often naturally arises in situations in which the costs are
closely tied to congestion effects. It has been shown that several types of facility location, scheduling, and
network design problems have supermodular costs [37, 45]. Using the same reasoning as before, our intuition
tells us that cooperation amongst rational agents who face supermodular costs is unlikely: now the marginal
cost associated with adding a particular agent increases as the size of a coalition grows, diminishing the
appeal of cooperation. It is straightforward to see that for supermodular cost cooperative games, the core is
empty (as long as costs are not modular4).

Even though cooperation may not be desirable from the perspectives of the individual agents, as in
supermodular cost cooperative games, encouraging or enforcing cooperation may still be desirable, especially
to an external party. For instance, this can occur when the failure to cooperate gives rise to negative
externalities. Consider the following example. A set of agents needs to process its jobs on a machine that
generates an excessive amount of pollution. The agents have the opportunity to share the cost of processing
their jobs on an existing single machine, but the cost of processing their jobs is such that it is cheaper for
each agent to open their own machine, and as a result, generate more pollution. A governing authority may
be interested in reducing such negative externalities. One approach would be to incorporate the cost of the
pollution externalities directly into the processing costs; however, these externality costs may be hard to
precisely define. Instead, one might ask, “How much do we need to charge for opening an additional machine
in order to encourage all the agents to share a single machine?” For a cooperative game where cooperation is
not desirable from the individual agents’ standpoints—such as a supermodular cost cooperative game, in
which the cost to a coalition is typically more than the sum of the individual agents’ costs due to congestion
effects—the analogous question is, “How much do we need to penalize a coalition for acting independently
in order to encourage all the agents to cooperate?” As mentioned earlier, this notion is captured in the least
core value of a cooperative game.

1.3 Computational complexity of cooperative game solution concepts

Initiated by Meggido [33] and carried forward by Deng and Papadimitriou [9], computational complexity
has been proposed as another measure for evaluating cooperative game solution concepts. Examining the
computational complexity of various solution concepts allows us to determine whether they are reasonable
within the context of bounded rationality [see 51, for an extensive discussion]—the hypothesis that economic
agents, in reality, have limited reasoning ability and computational power for decision-making. A solution
concept with high computational complexity—one that is NP-hard to compute, for instance—may be
considered unsatisfactory in a world with boundedly rational agents.

The computational complexity of computing a cost allocation in the least core has been studied previously
in several contexts. Faigle et al. [15] showed that computing a cost allocation in the least core of minimum-
cost spanning tree games is NP-hard. Kern and Paulusma [29] presented a polynomial description of the linear
program (LC) for cardinality matching games. Faigle et al. [14] showed that by using the ellipsoid method, a
so-called pre-kernel element in the least core of a cooperative game can be computed in polynomial time
if the maximum dissatisfaction can be computed in polynomial time for any given efficient cost allocation.
Deng [8] observed that polynomial-time algorithms for submodular function minimization can be used to
compute the least core and least core value of submodular cost cooperative games in polynomial time.

Schulz and Uhan [45] studied the computational complexity of the least core value and least core of
supermodular cost cooperative games. They showed that the problem of computing the least core value of
these games is strongly NP-hard, and in fact, is inapproximable within a factor of 17=16 � " for any " > 0
unless P D NP. In addition, they studied scheduling games, a subclass of supermodular cost cooperative

4A set function is modular if it is both submodular and supermodular.
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games. For these games, they showed that the Shapley value5, which is polynomial-time computable in this
case, is also in the least core. They also showed that computing the least core value of scheduling games is
still NP-hard.

1.4 Contributions of this work

Although computing the least core value of supermodular cost cooperative games is NP-hard, it may be the
case that acceptable approximations are computable in polynomial time. In this work, we propose approxima-
tions of the least core value and accompanying approximate least core cost allocations of supermodular cost
cooperative games that are computable in polynomial time. In Section 2, we design approximation algorithms
for computing the least core value of supermodular cost cooperative games, using oracles that determine
coalitions whose dissatisfaction is approximately maximum. We also show how to compute accompanying
approximate least core cost allocations. In Section 3, we apply our framework to computing the least core
value of scheduling games, for which we give a fully polynomial time approximation scheme. Finally, in
Section 4, we consider matroid profit games: a class of cooperative games with submodular profits. Using the
framework established in Section 2 with the appropriate natural modifications, we show that the least core
value and a cost allocation in the least core of these games can be computed in polynomial time.

2 Approximating the least core value and the least core

Before we begin, note that an arbitrary supermodular function v may not be compactly encoded. Therefore,
for the remainder of this section we assume that we have a polynomial-time value-giving oracle for v. In
addition, for the remainder of the paper, we assume that there are at least two agents (n � 2).

In this section, our objectives are two-fold. First, we aim to approximate the least core value—the
optimal value of (LC)—of supermodular cost cooperative games in polynomial time. Second, we seek to
approximate a cost allocation in the least core—an optimal solution to (LC)—of these games in polynomial
time. What do we mean by an approximate least core cost allocation? Suppose ´� is the least core value of a
cooperative game .N; v/. For any � � 1, we define the �-approximate least core of .N; v/ as the set of all
cost allocations x such that

x.N / D v.N /;

x.S/ � v.S/C �´� for all S � N;S ¤ ;; N;

or equivalently,
x.N / D v.N /; max

S�N
S¤;;N

e.x; S/ � �´�:

Recall that a cost allocation in the least core of .N; v/ can be seen as the “least objectionable” in the sense
that it is an efficient cost allocation that minimizes the maximum dissatisfaction of any coalition. A cost
allocation in the �-approximate least core of .N; v/ approximates being “least objectionable” by ensuring
that the maximum dissatisfaction of a coalition is at most a factor � away from the least core value ´�—the
minimum possible maximum dissatisfaction of a coalition under any efficient cost allocation.

5The Shapley value [47] of a cooperative game .N; v/ is the cost allocation � 2 RN , where

�i D
P
S�Nnfig

jS jŠ.jN j�jS j�1/Š
jN jŠ

�
v.S [ fig/ � v.S/

�
for all agents i 2 N:

In words, the Shapley value of each agent i reflects agent i ’s average marginal contribution to the coalition N . The Shapley value is
a classic, well-studied solution concept in cooperative game theory; for example, see [42].
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Note that one algorithm may not necessarily accomplish these objectives in tandem: for example, a
polynomial-time algorithm for computing a cost allocation in the �-approximate least core of a cooperative
game is not necessarily also a �-approximation algorithm6 for computing the least core value of the same
game. In fact, the computational complexity of these two objectives may be different: as we mentioned in
the introduction, computing a cost allocation in the least core of scheduling games can be accomplished in
polynomial time, while computing the least core value of these games is NP-hard [45].

2.1 Approximation by fixing a cost allocation

As a first attempt at approximation, we fix a cost allocation x such that x.N / D v.N /, and then try to
determine the minimum value of ´ such that .x; ´/ is feasible in the least core linear program (LC). For any
cooperative game .N; v/, we define the following problem:

x-maximum dissatisfaction problem for cooperative game .N; v/ (x-MD). Given cost allocation x
such that x.N / D v.N /, find a coalition S� whose dissatisfaction is maximum:

e.x; S�/ D max
S�N
S¤;;N

e.x; S/ D max
S�N
S¤;;N

˚
x.S/ � v.S/

	
:

We want to find a value ´ that is as close to e.x; S�/ as possible, but larger than e.x; S�/, since .x; ´/ is
feasible if and only if ´ � e.x; S�/. Note that an algorithm for the x-MD problem acts as a separation oracle
for the vector .x; ´/ to the linear program (LC): if ´ � e.x; S�/, then .x; ´/ is feasible in (LC); otherwise,
we have ´ < e.x; S�/, which implies that x.S�/ � v.S�/C ´ is a constraint violated by .x; ´/.

How should we fix x? We would like to ensure that the cost allocation x we choose is at least in the
vicinity of the least core of .N; v/, so that we do not prematurely weaken the resulting approximation to the
least core value. For any set function v W 2N ! R, we define the polytope

Bv D
˚
x 2 RN W x.N / D v.N /; x.S/ � v.S/ for all S � N

	
:

For an arbitrary set function v, computing an element of Bv may require an exponential number of oracle
calls, or Bv may be empty. Fortunately, when v is supermodular, the vertices of Bv are computable in
polynomial time, and even have explicit formulas [10]. It turns out that any cost allocation x in Bv is in the
2-approximate least core of .N; v/.

Theorem 2.1. Suppose .N; v/ is a supermodular cost cooperative game, and x is a cost allocation in Bv . Let
e.x; S�/ be the optimal value of the x-maximum dissatisfaction problem for .N; v/, and let ´� be the least
core value of .N; v/. Then, the cost allocation x is in the 2-approximate least core of .N; v/, or equivalently,
e.x; S�/ � 2´�.

Proof. Let .x�; ´�/ be an optimal solution to (LC). Since we have x�.S/ � v.S/C ´� and x�.N n S/ �
v.N n S/C ´� for any S � N , S ¤ ;; N , and x�.N / D v.N /, it follows that

2´� � v.N / � v.S/ � v.N n S/ for all S � N;S ¤ ;; N:

Since x 2 Bv, we can deduce that for any S � N , S ¤ ;; N ,

2´� � v.N / � v.S/ � v.N n S/ D x.S/ � v.S/C x.N n S/ � v.N n S/ � e.x; S/:

Since the above lower bound on 2´� holds for any S � N , S ¤ ;; N , it follows that 2´� � e.x; S�/.
6A �-approximation algorithm (� � 1) is an algorithm that always finds a solution whose objective value is within a factor � of

the optimal value, and whose running time is polynomial in the input size. The parameter � is known as the performance guarantee
of the algorithm.
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We use this observation, in conjunction with a �-approximation algorithm for the x-maximum dissatis-
faction problem for .N; v/, to approximate the least core value of .N; v/.

Theorem 2.2. Suppose .N; v/ is a supermodular cost cooperative game, and x is a cost allocation in Bv . If
there exists a �-approximation algorithm for the x-maximum dissatisfaction problem for .N; v/, then there
exists a 2�-approximation algorithm for computing the least core value of .N; v/.

Proof. Let NS be the output from a �-approximation algorithm for the x-maximum dissatisfaction problem
for .N; v/, and let ´ D �e.x; NS/. We show that .x; ´/ is a feasible solution to the linear program (LC), and
that ´ is within a factor of 2� of the least core value ´� of .N; v/. Since x 2 Bv , we have that x.N / D v.N /.
Since NS is output from a �-approximation algorithm for the x-maximum dissatisfaction problem for .N; v/,
it follows that

´ D �e.x; NS/ � e.x; S�/ � x.S/ � v.S/

for all S � N; S ¤ ;; N . So .x; ´/ is a feasible solution to (LC). By Theorem 2.1, it follows that
´ D �e.x; NS/ � �e.x; S�/ � 2�´�.

Note that the x-maximum dissatisfaction problem for a supermodular cost cooperative game is an instance
of submodular function maximization. In addition, for any x 2 Bv, the objective function e.x; �/ of the x-
maximum dissatisfaction problem is nonnegative. Buchbinder et al. [4] gave a deterministic 3-approximation
algorithm and a randomized 2-approximation algorithm for maximizing nonnegative submodular functions.
With Theorem 2.2, this immediately implies the following corollary.

Corollary 2.3. Suppose .N; v/ is a supermodular cost cooperative game. Then, there exists a deterministic
6-approximation algorithm and a randomized 4-approximation algorithm for computing the least core value
of .N; v/.

Given that any cost allocation in Bv is in the 2-approximate least core of a supermodular cost cooperative
game .N; v/, one might wonder if there always exists a cost allocation that is both in Bv and the least core of
.N; v/. The following example shows that this is not the case.

Example 2.4. Consider the following cooperative game .N; v/ with 5 players:

v.f1; 2; 3; 4; 5g/ D 22; v.f1; 2; 5g/ D 12; v.f1; 2g/ D 10; v.f3; 5g/ D 3;

v.f1; 2; 3; 4g/ D 15; v.f1; 3; 4g/ D 6; v.f1; 3g/ D 2; v.f4; 5g/ D 6;

v.f1; 2; 3; 5g/ D 15; v.f1; 3; 5g/ D 6; v.f1; 4g/ D 5; v.f1g/ D 1;

v.f1; 2; 4; 5g/ D 17; v.f1; 4; 5g/ D 8; v.f1; 5g/ D 3; v.f2g/ D 7;

v.f1; 3; 4; 5g/ D 13; v.f2; 3; 4g/ D 12; v.f2; 3g/ D 8; v.f3g/ D 1;

v.f2; 3; 4; 5g/ D 17; v.f2; 3; 5g/ D 10; v.f2; 4g/ D 11; v.f4g/ D 4;

v.f1; 2; 3g/ D 11; v.f2; 4; 5g/ D 13; v.f2; 5g/ D 9; v.f5g/ D 2;

v.f1; 2; 4g/ D 14; v.f3; 4; 5g/ D 10; v.f3; 4g/ D 5; v.;/ D 0:

It turns out that v is supermodular, and the least core value of .N; v/ is 19=5. However, when we add the
constraints x.S/ � v.S/ for all S � N to (LC), the optimal value of this augmented linear program is
31=8 > 19=5. Therefore, for this cooperative game .N; v/, there does not exist a cost allocation in Bv that is
also in the least core.
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2.2 Approximation without fixing a cost allocation

Suppose that, instead of fixing a cost allocation in advance, we compute a cost allocation along with an
approximation to the least core value. Let us assume that we have a �-approximation algorithm for the
x-maximum dissatisfaction problem for .N; v/, for every x such that x.N / D v.N /.7 By using the ellipsoid
method with binary search, we can establish the following theorem.

Theorem 2.5. Suppose .N; v/ is a supermodular cost cooperative game, and there exists a �-approximation
algorithm for the x-maximum dissatisfaction problem for .N; v/, for every cost allocation x such that
x.N / D v.N /. Then,

(a) there exists a �-approximation algorithm for computing the least core value of .N; v/, and
(b) there exists a polynomial-time algorithm for computing a cost allocation in the �-approximate least

core of .N; v/.

Proof sketch. For a complete proof, see Appendix A.
The idea behind the proof is as follows. Suppose that K is a polytope. The exact separation problem for

polytope K is:

Exact separation problem for polytope K. Given y 2 Qn, either (i) assert y 2 K, or (ii) find a
hyperplane that separates y from K: find c 2 Qn such that cTy > cTx for all x 2 K.

The exact non-emptiness problem for K is:

Exact non-emptiness problem for polytope K. Either (i) find a vector y 2 K or (ii) assert K is empty.

Grötschel et al. [23] showed that for a polytopeK, by using the ellipsoid method, a polynomial-time algorithm
for the exact separation problem for K implies a polynomial-time algorithm for the exact non-emptiness
problem for K.

Now suppose NK is a polytope that “approximates”K. Note that this “approximation” can be any arbitrary
polytope. The approximate separation problem for K and its approximation NK is:

Approximate separation problem for polytope K and its approximation NK. Given y 2 Qn, either
(i) assert y 2 NK, or (ii) find a hyperplane that separates y from K: find c 2 Qn such that cTy > cTx for
all x 2 K.

The approximate non-emptiness problem for K and its approximation NK is:

Approximate non-emptiness problem for polytope K and its approximation NK. Either (i) find a
vector y 2 NK or (ii) assert K is empty.

Using similar techniques to those used in [23], we can show that the ellipsoid method can be used with a
polynomial-time algorithm for the approximate separation problem to solve the approximate non-emptiness
problem in polynomial time.

7Note that since v is supermodular and v.;/ D 0, for any x such that x.N / D v.N /, we have that
P
i2N .xi � v.fig// �P

i2N xi � v.N / D 0. Therefore, there must exist i 2 N such that xi � v.fig/ � 0, and so maxS�N;S¤;;N e.x; S/ � 0. This
ensures that the notion of a �-approximation algorithm for the x-maximum dissatisfaction problem is sensible, for any given cost
allocation x such that x.N / D v.N /.
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We use this general result for the least core value problem. For the following steps in detail, see
Appendix A. Fix a supermodular cost cooperative game .N; v/, and let ´� be its least core value. For any
fixed  � 0, define the polytope

Q D fx 2 RN W x.N / D v.N /; x.S/ � v.S/C  for all S � N;S ¤ ;; N g:

It is straightforward to show that a �-approximation algorithm for the x-maximum dissatisfaction problem
for .N; v/ can be used as a polynomial-time algorithm for the approximate separation problem for Q
and its approximation Q� . Therefore, there exists a polynomial-time algorithm for the approximate non-
emptiness problem for Q and its approximation Q� . Suppose that A is such an algorithm. Since v is
nonnegative, supermodular, and v.;/ D 0, the least core value ´� of .N; v/ is in the interval Œ0; v.N /�. Since
the polytope Q is nonempty for all  � ´�, and the polytope Q is empty for all  < ´�, using A with
binary search on Œ0; v.N /� to find N such that Q N�" is empty but Q� N is non-empty gives us an algorithm
for computing a �-approximation to the least core value of .N; v/ and a cost allocation in the �-approximate
least core (the parameter " 2 Q>0 is the precision required, and log "�1 is polynomial in n and log v.N /).
The number of calls to A that is needed for this binary search is polynomial in n and log v.N /.

Using an approximate separation oracle in conjunction with the ellipsoid method to achieve approximate
optimization has been studied previously for a variety of problems [e.g. 5, 26, 25, 16]. It appears at first that
this technique can be used for any arbitrary linear program with an exponential number of constraints; however,
the proofs for these results all depend on the structure of the problem. For example, Jansen [26] considered
polytopes of the form K D fx 2 Rn W Ax � bg \ B with approximations NK D fx 2 Rn W Ax � ˛bg \ B
for some ˛ � 1, where n;m 2 Z>0, A 2 Rm�n, b 2 Rm>0, and B is an arbitrary polynomial-time-separable
polytope. In addition, it is assumed that the zero vector is in the polytope K. With this assumption, simply
multiplying a feasible point in NK by the scalar 1=˛ yields a feasible point in K; without this assumption,
it is not clear how to convert a feasible point in NK to a feasible point in K. In the proof of Theorem 2.5,
this kind of conversion is unnecessary since we are able to exploit the structure of the constraints and their
relation to the objective function in the linear program (LC): for any vector x in the approximation Q� N , the
vector .x; � N/ is a feasible solution to the linear program (LC).

With Theorem 2.5 in hand, it remains to show how to solve the x-maximum dissatisfaction problem for a
supermodular cost cooperative game .N; v/, for every cost allocation x such that x.N / D v.N /. As we noted
in Section 2.1, the x-maximum dissatisfaction problem for a supermodular cost cooperative game .N; v/ is
an instance of submodular function maximization. Unlike in Section 2.1, however, the objective functions
for the instances of the x-maximum dissatisfaction problem that need to be solved for Theorem 2.5 are
not necessarily nonnegative. As mentioned previously, Buchbinder et al. [4] designed a deterministic 3-
approximation algorithm for maximizing nonnegative submodular functions. A straightforward examination
reveals that their analysis of this algorithm holds even if the submodular function f W 2N ! R to be
maximized is not nonnegative, but only satisfies f .;/ � 0 and f .N / � 0. Since e.x;;/ D e.x;N / D 0 for
any cost allocation x such that x.N / D v.N /, we obtain the following corollary.

Corollary 2.6. Suppose .N; v/ is a supermodular cost cooperative game.
(a) there exists a deterministic 3-approximation algorithm for computing the least core value of .N; v/,

and
(b) there exists a deterministic polynomial-time algorithm for computing a cost allocation in the 3-

approximate least core of .N; v/.

By computing a cost allocation on the fly using the ellipsoid method, we are able to design an ap-
proximation algorithm for computing the least core value of a supermodular cost cooperative game whose
performance guarantee compares favorably to those of the fixed-cost-allocation-based approximation algo-
rithms discussed in Section 2.1. Interestingly, however, the comparison for the accompanying cost allocations
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of these approximation algorithms is reversed: the cost allocation computed by the ellipsoid-method-based
approximation algorithm is guaranteed to be in the 3-approximate least core, while the cost allocation used
in the fixed-cost-allocation-based approximation algorithms is guaranteed to be in the 2-approximate least
core, and can even be computed without the ellipsoid method or an algorithm for submodular function
maximization.

3 A special case from single-machine scheduling

In this section, we study the least core value of a particular supermodular cost cooperative game that arises
from scheduling situations. Consider a setting where each agent has a job that needs to be processed on a
machine, and any coalition of agents can potentially open their own machine. Suppose each agent i 2 N has
a job whose processing time is pi 2 R>0 and weight is wi 2 R�0. Jobs are independent, and are scheduled
non-preemptively on a single machine, which can process at most one job at a time. A scheduling game is a
cooperative game .N; v/ where the cost v.S/ to a coalition S is the minimum sum of weighted completion
times of jobs in S . If weight wi is interpreted as agent i ’s per-unit-time waiting cost, then v.S/ can be seen
as the minimum total waiting cost for agents in S . The least core value of scheduling games has a natural
interpretation: it is the minimum amount we need to charge any coalition for opening a new machine in order
to encourage all the agents to cooperate.

Scheduling games have been studied by several authors. For example, Maniquet [30] and Mishra and
Rangarajan [34] gave axiomatic characterizations of various cost sharing rules for these games. Mishra and
Rangarajan [34] also gave a simplified characterization of the Shapley value of scheduling games that implies
it is computable in polynomial time. Schulz and Uhan [45], using a result of Wolsey [55] and Queyranne
[40], showed that scheduling games are indeed supermodular cost cooperative games, and that computing the
least core value of these games is still NP-hard. In addition, Schulz and Uhan [45] showed that for scheduling
games, the Shapley value is a least core cost allocation.

We will apply the results of Section 2.1, in which approximation is based on fixing a cost allocation, to
finding the least core value of scheduling games. Before we begin, we restate some results from [45], which
we will use later on. To simplify the analysis, for the remainder of this section we assume without loss of
generality that

w1

p1
� � � � �

wn

pn
I

in other words, the agents’ jobs are indexed in the order that minimizes the sum of weighted completion
times [52].

Theorem 3.1 ([45]). Suppose .N; v/ is a scheduling game. Consider the cost allocation Nx defined as

Nxi D
1

2
wi

iX
jD1

pj C
1

2
pi

nX
jDi

wj for all i D 1; : : : ; n: (3.1)

(a) For any S � N ,

Nx.S/ � v.S/ D
1

2

�
v.N / � v.S/ � v.N n S/

�
:

(b) The cost allocation Nx is in the least core of .N; v/.

It is straightforward to show that Nx 2 Bv; in fact, it is a convex combination of two vertices of Bv.
So, by Theorem 2.2, a �-approximation algorithm for the Nx-maximum dissatisfaction problem implies a
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2�-approximation algorithm for computing the least core value of .N; v/. However, we can do better, since
the cost allocation Nx is in the least core, and therefore

´� D max
S�N
S¤;;N

˚
Nx.S/ � v.S/

	
D max

S�N
S¤;;N

e. Nx; S/:

As a result, we obtain the following strengthening of Theorem 2.2.

Theorem 3.2. Suppose there exists a �-approximation algorithm for the Nx-maximum dissatisfaction problem
for scheduling games. Then there exists a �-approximation algorithm for computing the least core value of
scheduling games.

By Theorem 3.1(a), we know that Nx-MD is in fact

max
S�N
S¤;;N

e. Nx; S/ D
1

2
max
S�N
S¤;;N

˚
v.N / � v.S/ � v.N n S/

	
:

Therefore, maximizing e. Nx; S/ is equivalent to minimizing the sum of weighted completion times of jobs
in N on two identical parallel machines. This two-machine problem is NP-complete [3], and has a fully
polynomial time approximation scheme (FPTAS) [43]. Although the two problems are equivalent from the
optimization perspective, it is not possible to use the FPTAS for the two-machine scheduling problem directly
as an FPTAS for the Nx-MD problem: there exists an instance in which the precision required to use the FPTAS
for the two-machine problem as an FPTAS for the Nx-MD problem results in a running time exponential in the
input size [53]. Nevertheless, as we show in the next theorem, an FPTAS for the Nx-MD problem is indeed
possible. The analysis uses standard techniques for designing approximation schemes [for example, see 46].

Theorem 3.3. There exists a fully polynomial time approximation scheme for the Nx-maximum dissatisfaction
problem for scheduling games.

Proof. For simplicity of exposition, we consider maximizing g.S/ D 2e. Nx; S/ for the remainder of this
proof. We determine the maximizer S� of g by scheduling the jobs in N on two machines: the jobs
scheduled on machine 1 will form S�, and the jobs scheduled on machine 2 will form N n S�. As usual,
we consider the jobs in order of nonincreasing weight-to-processing-time ratios (i.e. 1; : : : ; n). We can
partition the jobs into S� and N n S� sequentially using the following dynamic program. The state space E
is partitioned into n disjoint sets, E1; : : : ; En. A schedule � for jobs f1; : : : ; kg on two machines corresponds
to a state .a; b; c/ 2 Ek . The first coordinate a is the sum of processing times of all jobs scheduled by � on
machine 1. The second coordinate b is the sum of processing times of all jobs scheduled by � on machine 2.
The third coordinate c is the running objective value: v.f1; : : : ; kg/ minus the sum of weighted completion
times on two machines for � .

Suppose jobs 1; : : : ; k � 1 have already been scheduled, and job k is under consideration. If job k is
scheduled on machine 1, then the running objective value increases bywk.aCbCpk/�wk.aCpk/ D wkb. If
job k is scheduled on machine 2, then the running objective value increases bywk.aCbCpk/�wk.bCpk/ D
wka. This suggests the following exact dynamic program.

Input: scheduling game .N; v/ with weights wi , processing times pi for all i 2 N .
Output: g.S�/ D maxfg.S/ W S � N;S ¤ ;; N g.

E1 D f.p1; 0; 0/; .0; p1; 0/g

For k D 2; : : : ; n
For every vector .a; b; c/ 2 Ek�1

Put .aC pk; b; c C wkb/ and .a; b C pk; c C wka/ in Ek
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Find .a; b; c/ 2 En with maximum c value, c�

Return g.S�/ D c�

Let P D
Pn
iD1 pi and W D

Pn
iD1wi . Each state corresponds to a point in f.a; b; c/ 2 Z3 W 0 � a �

P; 0 � b � P; 0 � c � WP g. Note that for any state .a; b; c/ 2 Ek with k D 1; : : : ; n, if a is known, then
b is already determined, and vice versa. Therefore, the running time of this dynamic program is O.nWP 2/.

Let ı D .1C "=.2n//�1 for some " 2 .0; 1/. Note that ı 2 .0; 1/. In addition, define L D dlog1=ı P e
and M D dlog1=ı WP e. Consider the grid formed by the points .ı�r ; ı�s; ı�t / for all r D 1; : : : ; L,
s D 1; : : : ; L, and t D 1; : : : ;M . For each k D 1; : : : ; n, we divide the state set Ek into the boxes formed
by the grid:

f.a; b; c/ 2 R3 W ı�rC1 � a � ı�r ; ı�sC1 � b � ı�s; ı�tC1 � c � ı�tg
for all r D 1; : : : ; L; s D 1; : : : ; L; and t D 1; : : : ;M:

Observe that if .a1; b1; c1/ and .a2; b2; c2/ are in the same box, then

ıa1 � a2 �
a1

ı
; ıb1 � b2 �

b1

ı
; ıc1 � c2 �

c1

ı
: (3.2)

We simplify the state sets Ek by using a single point in each box as a representative for all vectors in the
same box. We denote these simplified state sets by Eı

k
. The following trimmed dynamic program is based on

this simplified state space.

Input: scheduling game .N; v/ with weights wi , processing times pi for all i 2 N ,
precision " 2 .0; 1/.

Output: an approximation g. NS/ to maxfg.S/ W S � N;S ¤ ;; N g.

ı D .1C "=.2n//�1

Eı1 D f.p1; 0; 0/; .0; p1; 0/g

For k D 2; : : : ; n
For every vector .a; b; c/ 2 Eı

k�1

Put corresponding representatives of .aCpk; b; cCwkb/ and .a; bCpk; cCwka/ in Eı
k

Find .a; b; c/ 2 Eın with maximum c value, Nc
Return g. NS/ D Nc

The key observation is that every element in the state space of the exact dynamic program is relatively
close to an element in the state space of the trimmed dynamic program. In particular,

For every .a; b; c/ 2 Ek , there exists a vector .a0; b0; c0/ 2 Eı
k

such that

a0 � ıka, b0 � ıkb, and c0 � ıkc.
(3.3)

We show (3.3) by induction. The base case k D 1 holds by (3.2). Assume the induction hypothesis holds for
1; : : : ; k � 1. Consider an arbitrary .a; b; c/ 2 Ek . The exact dynamic program puts .a; b; c/ 2 Ek when it
schedules job k. Therefore, .a; b; c/ D .˛Cpk; ˇ;  Cwkˇ/ or .a; b; c/ D .˛; ˇCpk;  Cwk˛/ for some
.˛; ˇ; / 2 Ek�1. Suppose .a; b; c/ D .˛ C pk; ˇ;  C wkˇ/ for some .˛; ˇ; / 2 Ek�1. By the induction
hypothesis, there exists a vector .˛0; ˇ0;  0/ 2 Eı

k�1
such that ˛0 � ık�1˛, ˇ0 � ık�1ˇ, and  0 � ık�1 .

In the kth phase, the trimmed dynamic program puts a state .a0; b0; c0/ in Eı
k

that is in the same box as
.˛0 C pk; ˇ

0;  0 C wkˇ
0/. Therefore, since ı 2 .0; 1/, there exists a vector .a0; b0; c0/ 2 Eı

k
such that

a0 � ı.˛0 C pk/ � ı
k˛ C ıpk � ı

k.˛ C pk/ D ı
ka;
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b0 � ıˇ0 � ıkˇ D ıkb;

c0 � ı. 0 C wkˇ
0/ � ık C ıkwkˇ D ı

k. C wkˇ/ D ı
kc:

The case where .a; b; c/ D .˛; ˇ C pk;  C wk˛/ for some .˛; ˇ; / 2 Ek�1 follows similarly. Therefore,
the induction step is complete, and (3.3) holds.

We now analyze the performance of the trimmed dynamic program. Let c� D g.S�/, the optimal value
of g. Note that there exists a vector .a�; b�; c�/ 2 En. By (3.3), there exists a vector .a0; b0; c0/ 2 Eın such
that c0 � ınc�. Recall that ı D .1C "=.2n//�1 for some " 2 .0; 1/. Since .1C "=.2n//n � 1C ", we have
that c0 � .1C "=.2n//�nc� � .1C "/�1c�.

As for the running time of the trimmed dynamic program, note that each Eı
k

has at most one point from
each box, or O.L2M/ points. So, the running time of this algorithm is O.nL2M/. Since log ´ � .´ � 1/=´
for any ´ � 1, we can bound L and M as follows:

L D

�
logP

log 1=ı

�
�

��
1C

2n

"

�
logP

�
; M D

�
logWP
log 1=ı

�
�

��
1C

2n

"

�
.logW C logP /

�
:

Therefore, the running time of this algorithm is polynomial in n, logW , logP , and 1=".

Combining Theorem 3.2 and Theorem 3.3, gives us the following result.

Theorem 3.4. There exists a fully polynomial time approximation scheme for computing the least core value
of scheduling games.

4 Submodular profits and a special case from matroid optimization

Up to this point, we have only considered cooperative games in which agents are assigned a cost for their
joint actions. But what about cooperative games in which agents act together to collect a reward, or profit?
Consider a cooperative game .N; v/ where v.S/ represents the profit allocated to the agents in S . For these
games, solution concepts should reflect the rationality of a profit allocation; for example, the core for a profit
cooperative game .N; v/ is defined as the set of all profit allocations x such that

x.N / D v.N /;

x.S/ � v.S/ for all S � N:

The least core for a profit cooperative game .N; v/ is defined in a similar manner: it is the set of all profit
allocations x that are optimal for the problem

´� D minimize ´

subject to x.N / D v.N /

x.S/ � v.S/ � ´ for all S � N;S ¤ ;; N:

(LC-profit)

The least core value of .N; v/ is the optimal value ´� to this linear program. Note that it still reflects the
minimum penalty we need to charge a coalition for acting independently in order to ensure the existence of
an efficient and stable profit allocation.

If v is nonnegative, submodular and v.;/ D 0, we call .N; v/ a submodular profit cooperative game. It is
straightforward to see that all the results established for supermodular cost cooperative games in Section 2
also hold true for submodular profit cooperative games, with the following natural modifications. For a
cooperative game .N; v/ with v representing profits, the dissatisfaction for any subset of agents S under a
profit allocation x is defined as e.x; S/ D v.S/ � x.S/. We define the polytope Bv as fx 2 Rn W x.N / D
v.N /; x.S/ � v.S/ for all S � N g. The x-maximum dissatisfaction problem for a cooperative game .N; v/
with v representing profits is still to find a subset S� such that e.x; S�/ D maxS�N;S¤;;N e.x; S/.
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4.1 Matroid profit games

Consider the following example of a profit cooperative game .N; v/. Each agent i 2 N has a job with unit
processing time and a deadline di 2 Z>0. In addition, each agent i 2 N has an associated profit wi 2 R�0,
which is earned if job i is completed by its deadline. The profit v.S/ to any subset of agents S is the
maximum profit attainable by scheduling jobs in S on a single machine. It turns out that if we define

I D fS � N W every job in S can be completed by its deadlineg;

then .N; I/ is a matroid [17]. For any family of sets I, define IjS D fT 2 I W T � Sg. In this cooperative
game, v.S/ is the maximum w-weight of an independent set in .S; IjS/, for any coalition S � N .

In this section, we study a generalization of the cooperative game described above, defined as follows.
Let .N; I/ be a matroid with weights wi 2 R�0 for each i 2 N . We define v.S/ as the maximum w-weight
of an independent set in .S; IjS/, for every coalition S � N . Then .N; v/ defines a cooperative game where
the profit to a coalition S is represented by v.S/. We call such games matroid profit games. Cooperative
games that arise from matroid optimization have been considered previously. Nagamochi et al. [35] studied
the computational complexity of various solution concepts for minimum base games, in which for a given
matroid .N; I/, the cost v.S/ to a coalition S is the minimum weight of a basis in .S; IjS/. In these games,
the costs to a coalition are not necessarily supermodular, and so the results of Section 2 do not apply.

Throughout this section, we assume that the matroid .N; I/ and its restrictions are given by an indepen-
dence oracle that asserts whether or not a given subset S � N belongs to I . It is well known that v as defined
here is a submodular function [for example, see 36, page 715], and so matroid profit games are submodular
profit cooperative games. It turns out that the x-maximum dissatisfaction problem for matroid profit games is
quite tractable: we show that it can be solved exactly in polynomial time for any profit allocation x such that
x.N / D v.N /.

Theorem 4.1. Suppose .N; v/ is a matroid profit game. Then for any profit allocation x such that x.N / D
v.N /, the x-maximum dissatisfaction problem for .N; v/ can be solved in polynomial time.

Proof. Fix some profit allocation x such that x.N / D v.N /, and let A D fi 2 N W xi < 0g. Consider the
following algorithm for the x-maximum dissatisfaction problem for .N; v/:

Input: matroid profit game .N; v/ with matroid .N; I/ and weights wi 2 R�0 for all i 2 N .
Output: an optimal solution NS to x-MD for .N; v/.

1. Compute a maximum Nw-weight independent set T � of .N; I/, where

Nwi D

(
wi if i 2 A
wi � xi if i 2 N n A:

2. Let NT D T � [ A.
� If NT ¤ ;; N , output NS D NT .
� Otherwise, output NS D arg maxfe.x; S/ W S 2 fT;N nT gg for some T � N; T ¤ ;; N .

First, since v is submodular, we have that e.x; S/C e.x;N n S/ D v.S/C v.N n S/ � v.N / � 0 for
all S � N such that S ¤ ;; N , and so

e.x; S/ � 0 or e.x;N n S/ � 0 or both for all S � N;S ¤ ;; N: (4.1)

In addition, we have that
e.x;;/ D e.x;N / D 0: (4.2)
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Therefore,
max
S�N
S¤;;N

e.x; S/ D max
S�N

e.x; S/„ ƒ‚ …
(i)

� 0: (4.3)

Next, since v is nondecreasing and xi < 0 for all i 2 A, any optimal solution to (i) must contain all
elements of A, and so

max
S�N

e.x; S/ D max
S�N

˚
v.S/ � x.S/

	
D max
S�N

˚
v.S/ � x.S n A/

	
„ ƒ‚ …

(ii)

�x.A/: (4.4)

We show that the independent set T � computed in Step 1 of the above algorithm is an optimal solution to (ii).
Let S� be an optimal solution to (ii), and suppose that v.S�/� x.S� nA/ > v.T �/� x.T � nA/. Note that
without loss of generality, S� is an independent set of .N; I/. Otherwise, there exists some i 2 S� that is
not in a maximum weight independent set of .S�; IjS�/. Take such i . If xi � 0, then i 2 S� n A can be
removed without decreasing the objective value of (ii); if xi < 0, then i 2 A, and removing it does not affect
the objective value of (ii). Therefore,

Nw.S�/ D w.S�/ � x.S� n A/ D v.S�/ � x.S� n A/

> v.T �/ � x.T � n A/ D w.T �/ � x.T � n A/ D Nw.T �/;

which contradicts the assumption that T � is a maximum Nw-weight independent set of .N; I/. So T � is an
optimal solution to (ii), and therefore an optimal solution to (i). By (4.1)-(4.3), it follows that the output NT of
the above algorithm is an optimal solution to x-MD for .N; v/.

Since a maximum weight independent set of a matroid can be found in polynomial time [41, 11], it
follows that the above algorithm solves the x-maximum dissatisfaction problem for a matroid profit game in
polynomial time.

By the appropriate analogue of Theorem 2.5, if .N; v/ is a submodular profit cooperative game and we
have a �-approximation algorithm for the x-maximum dissatisfaction problem for .N; v/ for any given profit
allocation x such that x.N / D v.N /, then we have a �-approximation algorithm for computing the least core
value of .N; v/. Therefore, by Theorem 4.1, we immediately obtain the following theorem.

Theorem 4.2. Suppose .N; v/ is a matroid profit game. Then there exists a polynomial-time algorithm for
(a) computing the least core value of .N; v/, and
(b) computing a profit allocation in the least core of .N; v/.

5 Conclusion

We provided a general framework for approximating the least core value of supermodular cost cooperative
games. Using this framework with the approximation algorithms for submodular function maximization
of Buchbinder et al. [4], we obtained a 3-approximation algorithm for computing the least core value of
supermodular cost cooperative games. We also showed that we can compute a cost allocation in the 2-
approximate least core of supermodular cost cooperative games in polynomial time. Finally, we applied
this general framework to two special cases. For scheduling games, we gave a fully polynomial-time
approximation scheme for computing the least core value. For matroid profit games, we showed how to
compute the least core value as well as a cost allocation in the least core in polynomial time.

There are several interesting directions for future research that extend from this work. One drawback of
the least core value as a mechanism for encouraging cooperation is that it imposes the same defection penalty
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for every coalition, regardless of its size or power. For situations in which this is not appropriate, the f-least
core of a cooperative game .N; v/ [15] offers a way to address this issue: it is the set of cost allocations x
that are optimal solutions to the linear program

´� D minimize ´

subject to x.N / D v.N /;

x.S/ � v.S/C ´f .S/ for all S � N; S ¤ ;; N

for some function f W 2N ! R. Several forms of the f-least core have been considered in the literature for
various cooperative games, including f .S/ D jS j for all S � N [49], and f .S/ D v.S/ for all S � N [13].
It would be interesting to study the f-least core for supermodular cost cooperative games, for various forms
of f , as it provides a natural way to model different penalties for defection for different coalitions. Another
interesting direction of research related to this work is to study the nucleolus of supermodular cost cooperative
games. The computational complexity of computing the nucleolus of supermodular cost cooperative games is
open. It would also be interesting to investigate whether our framework for least core approximation can be
used in a fruitful manner to approximate the nucleolus of supermodular cost cooperative games. Last, but not
least, the computational complexity of computing a cost allocation in the least core of supermodular cost
cooperative games remains open.
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A Proof of Theorem 2.5

We begin in Appendix A.1 by establishing some definitions from polyhedral theory. Then, in Appendix A.2,
we show that an approximate separation oracle for a given polytope, in conjunction with the ellipsoid method,
can be used to either find an element in an “approximation” of that polytope, or determine that the polytope
is empty. The result we show is actually more general than needed for the proof of Theorem 2.5. Finally,
in Appendix A.3, we show how to use the results from Appendix A.2 to approximately solve the least core
linear program (LC). The ideas here closely follow and generalize the analyses found in [23] and [26].

A.1 Preliminaries

To simplify the exposition, for the remainder of this appendix, we assume that v is integer-valued.
For a symmetric matrix A 2 Rn�n, we denote the spectral norm of A as

kAk D max
˚
j�j W � is an eigenvalue of A

	
D max

˚
jxTAxj W kxk D 1

	
:

For any vector a 2 Rn and positive definite matrix A, we define the ellipsoid

E.A; a/ D
˚
x 2 Rn W .x � a/TA�1.x � a/ � 1

	
:

Suppose K � Rn is a polyhedron, and ' and � are positive integers. We say that K has facet complexity
at most ' if there exists a system of inequalities with rational coefficients that has solution set K and such
that the encoding length of each inequality of the system is at most '. We say that K has vertex complexity at
most � if there exist finite sets V , E of rational vectors such that K D conv.V /C cone.E/ and such that
each of the vectors in V and E has encoding length at most �. We will use the following well-known lemma
that relates the facet complexity and the vertex complexity of a polyhedron.

Lemma A.1 (23, 6.2.4). Let K � Rn be a polyhedron.
(a) If K has facet complexity at most ', then K has vertex complexity at most 4n2'.
(b) If K has vertex complexity at most �, then K has facet complexity at most 3n2�.

A well-described polyhedron is a triple .KIn; '/ where K � Rn is a polyhedron with facet complexity
at most '. The encoding length of a well-described polyhedron .KIn; '/ is ' C n.

A.2 Approximate separation implies approximate non-emptiness

Let us assume that .KIn; '/ is a bounded, rational, well-described polyhedron in Rn. In other words,
K � Rn is a rational polytope with facet complexity at most '. Let NK be an “approximation” to K. Consider
the following problem:

Strong approximate separation problem for polytope K and its approximation NK (S-APP-SEP).
Given y 2 Qn, either (i) assert y 2 NK, or (ii) find a hyperplane that separates y from K: find c 2 Qn
such that cTy > cTx for all x 2 K and kck1 D 1.

Suppose we have an oracle for S-APP-SEP. We use this approximate separation oracle in the ellipsoid
method as follows.

Algorithm A.2 (Central-cut ellipsoid method with approximate separation oracle (APP-ELL)).

Input: " 2 Q such that " 2 .0; 1/, bounded rational polyhedron K � Rn given by an oracle for
S-APP-SEP, R 2 Q such that K � E.R2I; 0/ (where I denotes the identity matrix).
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Output: either (i) y 2 NK, or (ii) positive definite A 2 Qn�n, a 2 Qn such that K � E.A; a/
and vol.E.A; a// � ".

1. Set the following values:

N D d5nj log "j C 5n2j log 2Rje; p D 8N: (A.1)

2. Generate the sequence of ellipsoids E.A0; a0/; E.A1; a1/; : : : ; E.AN ; aN / as follows:
� Initialize the sequence:

a0 D 0; A0 D R
2I: (A.2)

� For k D 0; : : : ; N � 1, call S-APP-SEP oracle for K with input y D ak .
– If the S-APP-SEP oracle asserts ak 2 NK, return ak . Stop.
– If the S-APP-SEP oracle returns ck 2 Qn such that

kckk1 D 1; cTk ak > c
T
k x for all x 2 K; (A.3)

then compute

akC1 � ak �
1

nC 1

Akckq
cT
k
Akck

(A.4)

AkC1 �
2n2 C 3

2n2

 
Ak �

2

nC 1

Akckc
T
k
Ak

cT
k
Akck

!
(A.5)

where “�” means the computations are done with p digits after the binary point.
� If k D N , return aN and AN . Stop.

To prove the correctness of the algorithm, we need the following lemma.

Lemma A.3 ([23], 3.2.8-3.2.10). Let K � Rn be a convex set such that K � E.R2I; 0/. Let N , p be
defined as in (A.1). Suppose Ak and ak (k D 0; 1; : : : ; N / are defined as in (A.2) and (A.4)-(A.5), and ck
(k D 0; 1; : : : ; N / satisfy (A.3). Then, the following statements hold for k D 0; 1; : : : ; N :

(a) Ak is positive definite.
(b) kakk � R2k , kAkk � R22k , and kA�1

k
k � R�24k .

(c) K � E.Ak; ak/.
(d) vol.E.AkC1; akC1// � e�

1
5n vol.E.Ak; ak//.

Using the above lemma, we can show:

Theorem A.4. Algorithm A.2 (APP-ELL) is correct.

Proof. Lemma A.3 immediately implies that Ak and ak (k D 0; 1; : : : ; N / as defined in (A.2) and (A.4)-
(A.5) are well-defined and have polynomial encoding lengths.

If the algorithm stops with k < N , the algorithm terminates correctly by construction. If the algorithm
returns aN and AN , then Lemma A.3 implies that K � E.AN ; aN / and

vol.E.AN ; aN // � e�
N
5n vol.E.A0; a0// � e�

N
5n .2R/n < 2�

N
5n .2R/n � ":

So if k D N , the algorithm terminates correctly.

Before proceeding further, we need the following lemma.
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Lemma A.5 ([23], pp. 175-176). Let .KIn; '/ be a well-described polyhedron. In addition, let " D 2�48n
5' .

Suppose K � E.A; a/ where vol.E.A; a// � ". Then there exists f 2 Zn and g 2 Z>0 such that f ¤ 0

and K � fx 2 Rn W f Tx D gg. Moreover, f and g can be found in time polynomial in n, ', and the
encoding length of A�1.

Consider the following problem:

Approximate non-emptiness problem for polytope K and its approximation NK (APP-NEMPT).
Either (i) find a vector y 2 NK or (ii) assert K is empty.

We are now ready to show the main result of this appendix: we can use APP-ELL (Algorithm A.2) in
conjunction with an oracle for S-APP-SEP to solve APP-NEMPT.

Theorem A.6. Suppose there exists an algorithm that can solve S-APP-SEP in time polynomial in n and '.
Then, there exists an algorithm that can solve APP-NEMPT in time polynomial in n and '.

Proof. By assumption,K has facet complexity at most '. Therefore, by Lemma A.1,K has vertex complexity
at most 4n2'. Apply APP-ELL (Algorithm A.2) to K with R D 24n

2' and " D 2�48n
5' . If APP-ELL

returns a vector y 2 NK, then we have solved APP-NEMPT, and we can stop. Otherwise, APP-ELL returns
an ellipsoid E � Rn such that K � E and vol.E/ � ". Then, by Lemma A.5, we can find f 1 2 Zn and
g1 2 Z>0 such that f 1 ¤ 0 and K � fx 2 Rn W .f 1/Tx D g1g. Without loss of generality, assume that
f 11 ¤ 0.

Suppose that we have found k linearly independent vectors f 1; : : : ; f k 2 Zn and g1; : : : ; gk 2 Z>0
such that f i ¤ 0 for i D 1; : : : ; k and

K �
˚
x 2 Rn W .F1 F2/ x D g

	
where F1 2 Zk�k is upper triangular with non-zero diagonal entries and F2 2 Zk�.n�k/ such that

.F1 F2/ D

0B@ .f 1/T

:::

.f k/T

1CA and g D

0B@g1:::
gk

1CA :
We show how to find f kC1 2 Zn, gkC1 2 Z>0 such that f 1; : : : ; f k; f kC1 are linearly independent,
f kC1 ¤ 0, and

K �
˚
x 2 Rn W .f 1/Tx D g1; : : : ; .f k/Tx D gk; .f kC1/Tx D gkC1

	
:

Let

Kk D

�
u 2 Rn�k W 9 ´ 2 Rk such that

�
´

u

�
2 K

�
:

Therefore, w 2 Kk if and only if�
´

w

�
2 K �

˚
x 2 Rn W .F1 F2/ x D g

	
for some ´ 2 Rk , which happens if and only if 

F�11 g � F�11 F2w

w

!
2 K:
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Note that for any vertex u� of Kk , there exists ´� 2 Rk such that
�
´�

u�

�
is a vertex of K. Therefore, since K

has vertex complexity at most 4n2', Kk has vertex complexity at most 4n2'. This implies that Kk has facet
complexity at most '0 D 3n2.4n2'/. Apply APP-ELL to Kk with R D 24n

2'0 and " D 2�48n
5'0 , using the

following modified approximate separation oracle for Kk:

Input: w 2 Rn�k .
Output: either (i) assert y 2 NK, where

y D

 
F�11 g � F�11 F2w

w

!
or (ii) find Nc 2 Qn�k such that k Nck1 D 1 and NcTw > NcTu for all u 2 Kk .

1. Apply S-APP-SEP oracle for K on

y D

 
F�11 g � F�11 F2w

w

!
2. If the S-APP-SEP oracle asserts y 2 NK, then assert y 2 NK. Stop.
3. Otherwise, the S-APP-SEP oracle returns c 2 Qn such that cTy > cTx for all x 2 K. Let
c1 2 Qk and c2 2 Qn�k such that c D

�
c1

c2

�
. Therefore,

.c1/T.F�11 g�F�11 F2w/C.c
2/Tw > .c1/T.F�11 g�F�11 F2u/C.c

2/Tu for all u 2 Kk;

or equivalently,

..c2/T � .c1/TF�11 F2/w > ..c
2/T � .c1/TF�11 F2/u for all u 2 Kk :

Return

Nc D
c2 � .F�11 F2/

Tc1

kc2 � .F�11 F2/Tc1k1

as the vector representing a hyperplane that separates w and Kk . Stop.

If APP-ELL returns a vector y 2 NK, then we have solved APP-NEMPT and we are done. Otherwise,
APP-ELL returns an ellipsoid Ek � Rn�k such that Kk � Ek and vol.Ek/ � ". Therefore, by Lemma A.5
we can find Nf kC1 2 Zn�k and gkC1 2 Z>0 such that Kk � fy 2 Rn�k W Nf kC1y D gkC1g. Without
loss of generality, let Nf kC11 ¤ 0. Let f kC1 2 Zn such that .f kC1/T D .0 � � � 0 Nf kC1/T. It follows that
K � fx 2 Rn W .f kC1/Tx D gkC1g. Therefore,

K � fx 2 Rn W .f 1/Tx D g1; : : : ; .f k/Tx D gk; .f kC1/Tx D gkC1g

and f 1; : : : ; f k; f kC1 are linearly independent.
When k D n, we have that

K � fx 2 Rn W .f 1/Tx D g1; : : : ; .f n/Tx D gng:

Since f 1; : : : ; f n are linearly independent, K must be equal to the unique vector y in fx 2 Rn W .f 1/Tx D
g1; : : : ; .f n/Tx D gng, or empty. Running the S-APP-SEP oracle for K on y, we either determine that
y 2 NK or K is empty.

By Lemma A.3(b) and Lemma A.5, we can find the vectors f 1; : : : ; f n and the scalars g1; : : : ; gn in
time polynomial in n and '. In addition, the inputs " and R defined above imply that the calls to APP-ELL
above run in time polynomially bounded by n, ', and the running time of the S-APP-SEP oracle (which is
assumed to be polynomial in n and '). Since at most n calls to APP-ELL are made, the prescribed method
above solves APP-NEMPT in time polynomial in n and '.
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A.3 Approximately solving the least core optimization problem

For a cooperative game .N; v/, we define Q to be the feasible region of the linear program (LC):

Q D fx 2 RN ; ´ 2 R W x.N / D v.N /; x.S/ � v.S/C ´ for all S � N;S ¤ ;; N g:

In addition, for any fixed  � 0, let

Q D fx 2 RN W x.N / D v.N /; x.S/ � v.S/C  for all S � N;S ¤ ;; N g: (A.6)

We restate the strong approximate separation problem and approximate non-emptiness problem for polytopes
of the form Q , using Q� as its approximation:

Strong approximate separation problem for Q of cooperative game .N; v/ and its approxima-
tion Q� (S-APP-SEP-Q ). Given x 2 QN such that x.N / D v.N /, either (i) assert x 2 Q� or (ii)
find a hyperplane separating x and Q .

Approximate non-emptiness problem for Q of cooperative game .N; v/ and its approxima-
tion Q� (APP-NEMPT-Q ). Either (i) find x 2 Q� or (ii) assert Q is empty.

Since the facet complexity of Q is polynomially bounded by n and the encoding length of v.N /C  ,
Theorem A.6 implies the following theorem.

Theorem A.7. Fix  so that its encoding length is polynomially bounded by n and log v.N /. Suppose
S-APP-SEP-Q can be solved in time polynomial in n and log v.N /. Then APP-NEMPT-Q can be solved
in time polynomial in n and log v.N /.

The following lemma is a consequence of Theorem A.7 and the fact that an approximation algorithm for
the x-maximum dissatisfaction problem can be used to solve the approximate separation problem for x and
Q .

Lemma A.8. Fix  so that its encoding length is polynomially bounded by n and log v.N /. Suppose .N; v/
is a cooperative game, and there exists a �-approximation algorithm for the x-maximum dissatisfaction
problem for .N; v/, for all cost allocations x such that x.N / D v.N /. Then APP-NEMPT-Q can be solved
in time polynomial in n and log v.N /.

Proof. Fix some cost allocation x such that x.N / D v.N /. Suppose we run a �-approximation algorithm
for the x-maximum dissatisfaction problem for .N; v/, and it outputs NS . If e.x; NS/ �  , then for all
S � N;S ¤ ;; N , we have that

x.S/ � v.S/ � max
S�N
S¤;;N

e.x; S/ � �e.x; NS/ � �;

and therefore x 2 Q� . Otherwise, e.x; NS/ >  , and for all y 2 Q we have that

x. NS/ � v. NS/ >  � y. NS/ � v. NS/:

So using a �-approximation algorithm for the x-maximum dissatisfaction problem for .N; v/ allows us to
solve S-APP-SEP-Q in time polynomial in n and log v.N /, which by Theorem A.7, allows us to solve
APP-NEMPT-Q in time polynomial in n and log v.N /.

A-5



Finally, we are ready to prove Theorem 2.5. We do this by showing that using a polynomial-time
algorithm for APP-NEMPT-Q in conjunction with binary search yields an appropriate cost allocation and
approximation to the least core value of .N; v/.

Proof of Theorem 2.5. Suppose that .N; v/ is a supermodular cost cooperative game, and A is an algorithm
that solves APP-NEMPT-Q in time polynomial in n and log v.N / for every  � 0 whose encoding length
is polynomially bounded by n and log v.N /. Since we assume that a �-approximation algorithm for the
x-maximum dissatisfaction problem for .N; v/ exists for every cost allocation x such that x.N / D v.N /, by
Lemma A.8, such an algorithm A exists.

Consider the following algorithm:

Input: supermodular cost cooperative game .N; v/ with v integer-valued; algorithm A that
solves APP-NEMPT-Q for every  � 0 whose encoding length is polynomially bounded
by n and log v.N /.

Output: a feasible solution .x; ´/ to the least core linear program (LC) for .N; v/.

1. Set the following values:

m D 4.nC 1/2.2.nC 1/C dlog.v.N /C 1/e C 1/; (A.7a)

M D 2m; (A.7b)

" D .2M/�2: (A.7c)

2. Using A, find N 2 Q by binary search on Œ0; v.N /� such that Q N�" is empty, but Q� N is
non-empty. Denote the vector that A finds in Q� N by Nx.

3. Find p; q 2 Z such that

1 � q � 2M and
ˇ̌̌
N �

p

q

ˇ̌̌
<

1

2Mq
: (A.8)

Use A to solve APP-NEMPT-Qp=q . If A finds a vector in Q�p=q , denote that vector by Ox.
4. Output:

� If A finds a vector Ox 2 Q�p=q in Step 3, and p=q < N , then output .x; ´/ D . Ox; �p=q/.
� Otherwise, output .x; ´/ D . Nx; � N/.

First, we establish that the above algorithm is well-defined, by proving the following claims:
1. The binary search interval prescribed in Step 2 is valid. Consider the cost allocation x where
xi D v.N /=n for all i 2 N . Since v is nonnegative, .x; v.N // is feasible for (LC): for any S � N ,
S ¤ ;; N , we have that v.S/ C v.N / � jS jv.N /=n D x.S/. Therefore, ´� � v.N /. Since v is
supermodular and v.;/ D 0, it follows that ´� � 0. So, the least core value of .N; v/ lies in the interval
Œ0; v.N /�.

2. Every trial value of N in the binary search of Step 2 has encoding length polynomially bounded by
n and log v.N /. Since the binary search of Step 2 is on the interval Œ0; v.N /�, the numerator and
denominator of any trial value of N is nonnegative. In addition, the binary search of Step 2 undergoes
dlog v.N/

"
e C 1 iterations. This implies that the denominator of any trial value of N is at most

2dlog v.N /
"
eC1
� 22Clog v.N /

" D
4v.N /

"
:

Since the binary search is performed on the interval Œ0; v.N /�, the numerator of any trial value of N is
at most 4v.N /2=". By (A.7a)-(A.7c), the claim follows.
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3. The integers p and q computed in Step 3 have encoding lengths polynomially bounded by n and
log v.N /. By (A.8), and since M � 1 and N 2 Œ0; v.N /�, we have that

p < Nq C
1

2M
� 2Mv.N/C 1;

p > Nq �
1

2M
� �

1

2
:

Therefore, jpj < 2Mv.N/C 1. Since jqj � 2M , the claim follows by (A.7a)-(A.7c).
Next, we analyze the running time of the above algorithm. The algorithm makes a total of O.log v.N/

"
/

calls to A, which runs in time polynomial in n and log v.N / each time it is called. It follows by (A.7a)-(A.7c)
that the total running time of A throughout the algorithm is polynomial in n and log v.N /. By using the
method of continued fractions [23, pp. 134-137], finding integers p and q to satisfy (A.8) in Step 3 of the
algorithm can be done in time polynomial in n and log v.N /. Therefore, the above algorithm runs in time
polynomial in n and log v.N /.

Finally, we analyze the quality of the solution returned by the above algorithm. We start by showing that
minfp=q; Ng � ´� by considering two cases:

1. N � " < ´� < N . Consider p; q computed in Step 3 of the algorithm. Since v is integer-valued,
nonnegative, and supermodular with v.;/ D 0, ´� D r=s for some r 2 Z�0 and s 2 Z>0. Note
that since v is nonnegative, supermodular, and v.;/ D 0, the facet complexity of Q is at most
' D 2.nC1/Cdlog.v.N /C1/eC1. Therefore, the vertex complexity ofQ is at mostm D 4.nC1/2',
and so s 2 .0; 2m/ D .0;M/. Since

N �
r

s
D N � ´� < " D

1

.2M/2
�

1

2Mq
;

it follows that ˇ̌̌̌
p

q
� ´�

ˇ̌̌̌
D

ˇ̌̌̌
p

q
�
r

s

ˇ̌̌̌
<

ˇ̌̌̌
p

q
� N

ˇ̌̌̌
C

ˇ̌̌
N �

r

s

ˇ̌̌
<

1

Mq
<
1

sq
:

Therefore, ´� D p
q

. It follows that minfp=q; Ng � ´�.
2. ´� � N . Clearly, minfp=q; Ng � ´�.

With this fact in hand, we now show that the solution .x; ´/ computed in Step 4 of the above algorithm is
feasible in the linear program (LC), and that ´ � �´�. We consider the following cases:

1. p=q < N . In this case, we have that p=q � ´�. Consider the output of A in Step 3 of the algorithm:
(a) A finds Ox 2 Q�p=q . Therefore, .x; ´/ D . Ox; �p=q/ is feasible in (LC), and ´ D �p=q � �´�.
(b) A asserts that Qp=q is empty. Therefore, ´� > p=q. By the arguments above, we have that

´� � N . So, .x; ´/ D . Nx; � N/ is feasible in (LC), and ´ D � N � �´�.
2. p=q � N . In this case, we have that ´� � N . So, .x; ´/ D . Nx; � N/ is feasible in (LC), and ´ � �´�.

For submodular profit cooperative games (described in Section 4), the results of Appendix A.3 still hold,
with the natural modifications. There is one issue that needs careful consideration. When v is nonnegative
and supermodular with v.;/ D 0, v is also nondecreasing. As a result, v.N / is an upper bound on the least
core value of a supermodular cost cooperative game, and the encoding length of v.N / is an upper bound
on the encoding length of v.S/ for any S � N . However, this is no longer the case when v is nonnegative
and submodular with v.;/ D 0; in this case, we have that v.S/ �

P
i2N v.fig/ for all S � N . Therefore,P

i2N v.fig/ is an upper bound on the least core value of a submodular profit cooperative game, and the
encoding length of

P
i2N v.fig/ is an upper bound on the encoding length of v.S/ for any S � N .
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