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Reactive point processes (RPPs) are a new statistical model de-
signed for predicting discrete events in time based on past history.
RPPs were developed to handle an important problem within the do-
main of electrical grid reliability: short-term prediction of electrical
grid failures (“manhole events”), including outages, fires, explosions
and smoking manholes, which can cause threats to public safety and
reliability of electrical service in cities. RPPs incorporate self-exciting,
self-regulating and saturating components. The self-excitement oc-
curs as a result of a past event, which causes a temporary rise in
vulner ability to future events. The self-regulation occurs as a re-
sult of an external inspection which temporarily lowers vulnerability
to future events. RPPs can saturate when too many events or in-
spections occur close together, which ensures that the probability of
an event stays within a realistic range. Two of the operational chal-
lenges for power companies are (i) making continuous-time failure
predictions, and (ii) cost/benefit analysis for decision making and
proactive maintenance. RPPs are naturally suited for handling both
of these challenges. We use the model to predict power-grid failures in
Manhattan over a short-term horizon, and to provide a cost/benefit
analysis of different proactive maintenance programs.

1. Introduction. We present a new statistical model for predicting dis-
crete events over time, called Reactive Point Processes (RPPs). RPPs are
a natural fit for many different domains, and their development was moti-
vated by the problem of predicting serious events (fires, explosions, power
failures) in the underground electrical grid of New York City (NYC). In New
York City and in other major urban centers, power-grid reliability is a major
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source of concern, as demand for electrical power is expected to soon exceed
the amount we are able to deliver with our current infrastructure [DOE
(2008), Rhodes (2013), NYBC (2010)]. Many American electrical grids are
massive and have been built gradually since the time of Thomas Edison in
the 1880s. For instance, in Manhattan alone, there are over 21,216 miles
of underground cable, which is almost enough cable to wrap once around
the earth. Manhattan’s power distribution system is the oldest in the world,
and NYC’s power utility company, Con Edison, has cable databases that
started in the 1880s. Within the last decade, in order to handle increasing
demands on NYC’s power-grid and increasing threats to public safety, Con
Edison has developed and deployed various proactive programs and policies
[So (2004)]. In Manhattan, there are approximately 53,000 access points
to the underground electrical grid, which are called electrical service struc-
tures or manholes. Problems in the underground distribution network are
manifested as problems within manholes, such as underground burnouts or
serious events. A multi-year, ongoing collaboration to predict these events in
advance was started in 2007 [Rudin et al. (2010, 2012, 2014)], where diverse
historical data were used to predict manhole events over a long-term hori-
zon, as the data were not originally processed enough to predict events in
the short term. Being able to predict manhole events accurately in the short
term could immediately lead to reduced risks to public safety and increased
reliability of electrical service. The data from this collaboration have suf-
ficiently matured due to iterations of the knowledge discovery process and
maturation of the Con Edison inspections program, and, in this paper, we
show that it is indeed possible to predict manhole events to some extent
within the short term.

The fact that RPPs are a generative model allows them to be used for
cost-benefit analysis, and thus for policy decisions. In particular, since we
can use RPPs to simulate power failures into the future, we can also simulate
various inspection policies that the power company might implement. This
way we can create a robust simulation setup for evaluating the relative costs
of different inspection policies for NYC. This type of cost-benefit analysis can
quantify the cost of the inspections program as it relates to the forecasted
number of manhole events.

RPPs capture several important properties of power failures on the grid:

• There is an instantaneous rise in vulnerability to future serious events
immediately following an occurrence of a past serious event, and the vul-
nerability gradually fades back to the baseline level. This is a type of
self-exciting property.

• There is an instantaneous decrease in vulnerability due to an inspection,
repair or other action taken. The effect of this inspection fades gradually
over time. This is a self-regulating property.
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• The cumulative effect of events or inspections can saturate, ensuring that
vulnerability levels never stray too far beyond their baseline level. This
captures diminishing returns of many events or inspections in a row.

• The baseline level can be altered if there is at least one past event.
• Vulnerability between similar entities should be similar. RPPs can be

incorporated into a Bayesian framework that shares information across
observably similar entities.

RPPs extend self-exciting point processes (SEPPs), which have only the
self-exciting property mentioned above. Self-exciting processes date back
at least to the 1960s [Bartlett (1963), Kerstan (1964)]. The applicability of
self-exciting point processes for modeling and analyzing time-series data has
stimulated interest in diverse disciplines, including seismology [Ogata (1988,
1998)], criminology [Porter and White (2012), Mohler et al. (2011), Eges-
dal et al. (2010), Lewis et al. (2010), Louie, Masaki and Allenby (2010)],
finance [Chehrazi and Weber (2011), Aı̈t-Sahalia, Cacho-Diaz and Laeven
(2010), Bacry et al. (2013), Filimonov and Sornette (2012), Embrechts, Lin-
iger and Lin (2011), Hardiman, Bercot and Bouchaud (2013)], computa-
tional neuroscience [Johnson (1996), Krumin, Reutsky and Shoham (2010)],
genome sequencing [Reynaud-Bouret and Schbath (2010)] and social net-
works [Crane and Sornette (2008), Mitchell and Cates (2010), Simma and
Jordan (2010), Masuda et al. (2012), Du et al. (2013)]. These models appear
in so many different domains because they are a natural fit for time-series
data where one would like to predict discrete events in time, and where the
occurrence of a past event gives a temporary boost to the probability of
an event in the future. A recent work on Bayesian modeling for dependent
point processes is that of Guttorp and Thorarinsdottir (2012). Paralleling
the development of frequentist literature, many Bayesian approaches are mo-
tivated by data on natural events. Peruggia and Santner (1996), for example,
develop a Bayesian framework for the Epidemic-Type-Aftershock-Sequences
(ETAS) model. Nonparametric Bayesian approaches for modeling data from
nonhomogeneous point pattern data have also been developed [see Taddy
and Kottas (2012), e.g.]. Blundell, Beck and Heller (2012) present a non-
parametric Bayesian approach that uses Hawkes models for relational data.
An expanded related work section appears in the supplementary material
[Ertekin, Rudin and McCormick (2015)].

The self-regulating property can be thought of as the effect of an in-
spection. Inspections are made according to a predetermined policy of an
external source, which may be deterministic or random. In the application
that self-exciting point processes are the most well known for, namely, earth-
quake modeling, it is not possible to take an action to preemptively reduce
the risk of an earthquake; however, in other applications it is clearly possi-
ble to do so. In our power failure application, power companies can perform



4 Ş. ERTEKIN, C. RUDIN AND T. H. MCCORMICK

preemptive inspections and repairs in order to decrease electrical grid vul-
nerability. In neuroscience, it is possible to take an action to temporarily
reduce the firing rate of a neuron. There are many actions that police can
take to temporarily reduce crime in an area (e.g., temporary increased pa-
trolling or monitoring). In medical applications, doses of medicine can be
preemptively applied to reduce the probability of a cardiac arrest or other
event. Alternatively, for instance, the self-regulation can come as a result of
the patient’s lab tests or visits to a physician.

Another way that RPPs expand upon SEPPs is that they allow devi-
ations from the baseline vulnerability level to saturate. Even if there are
repeated events or inspections in a short period of time, the vulnerability
level still stays within a realistic range. In the original self-exciting point
process model, it is possible for the self-excitation to escalate to the point
where the probability of an event gets very close to one, which is generally
unrealistic. In RPPs, the saturation function prevents this from happening.
Also, if many inspections are done in a row, the vulnerability level does not
drop to zero, and there are diminishing returns for the later ones because of
the saturation function.

Outline of paper. We motivate RPPs using the power-grid application in
Section 2. We first introduce the general form of the RPP model in Section 3.
We discuss a Bayesian framework for fitting RPPs in Section 4. The Bayesian
formulation, which we implement using Approximate Bayesian Computa-
tion (ABC), allows us to share information across observably similar entities
(manholes in our case). For both methods we fit the model to NYC data and
performed simulation studies. Section 5 contains a prediction experiment,
demonstrating the RPPs’ ability to predict future events in NYC. Once the
RPP model is fit to data from the past, it can be used for simulation. In
particular, we can simulate various inspection policies for the Manhattan
grid and examine the costs associated with each of them in order to choose
the best inspection policy. Section 6 shows this type of simulation using the
RPP, illustrating how it is able to help choose between different inspection
policies, and thus assist with broader policy decisions for the NYC inspec-
tions program. The paper’s supplementary material [Ertekin, Rudin and
McCormick (2015)] includes a related work section, conditional frequency
estimator (CF estimator) for the RPP, experiments with a maximum like-
lihood approach, a description of the inspection policy used in Section 6
and simulation studies for validating the fitting techniques for the models
in the paper. It also includes a description and link for a publicly available
simulated data set that we generated, based on statistical properties of the
Manhattan data set.

A short version of this paper appeared in the late-breaking developments
track of AAAI-13 [Ertekin, Rudin and McCormick (2013)].
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FDNY/250 REPORTS F/O 45536 E.51 ST & BEEKMAN PL...MANHOLE FIRE

MALDONADO REPORTS F/O 45536 E.51 ST FOUND SB-9960012 SMOKING

HEAVY...ACTIVE...SOLID...ROUND...NO STRAY VOLTAGE...29-L...

SNOW...FLUSH REQUESTED...ORDERED #100103.

12/22/09 08:10 MALDONADO REPORTS 3 2WAY-2WAY CRABS COPPERED

CUT OUT & REPLACED SAME. ALSO STATES 5 WIRE CROSSING COMES U

P DEAD WILL INVESTIGATE IN SB-9960013.

FLUSH # 100116 ORDERED FOR SAME

12/22/09 14:00 REMARKS BELOW WERE ADDED BY 62355

12/22/09 01:45 MASON REPORTS F/O 4553 E.51ST CLEARED ALL

B/O-S IN SB9960013 ALSO FOUND A MAIN MISSING FROM THE WEST IN

12/22/09 14:08 REMARKS BELOW WERE ADDED BY 62355

SB9960011 F/O 1440 BEEKMAN................................JMC

Fig. 1. Part of the ECS remarks from a manhole fire ticket in 2009. The ticket implies
that the manhole was actively smoking upon the worker’s arrival. The worker located a
crab connector that had melted (“coppered”) and a cable that was not carrying current
(“dead”). Addresses and manhole numbers were changed for the purpose of anonymity.

2. Description of data. The data used for the project includes records
from the Emergency Control Systems (ECS) trouble ticket system of Con
Edison, which includes records of responses to past events (total 213,504
records for 53,525 manholes from 1995 until 2010). Part of the trouble ticket
for a manhole fire is in Figure 1.

Events can include serious problems such as manhole fires or explosions, or
nonserious events such as wire burnouts. These tickets are heavily processed
into a structured table, where each record indicates the time, manhole type
(“service box” or “manhole,” and we refer to both types as manholes collo-
quially), the unique identifier of the manhole and details about the event.
The trouble tickets are classified automatically as to whether they represent
events (the kind we would like to predict and prevent) or not (in which case
the ticket is irrelevant and removed). The processing of tickets is based on a
study where Con Edison engineers manually labeled tickets, and is discussed
further by Passonneau et al. (2011).

We have more or less complete event data from 1999 until the present, and
incomplete event data between 1995 and 1999. A plot of the total number
of events per year (using our definition of what constitutes an event) is
provided in Figure 2(a).

We also have manhole location and cable record information, which con-
tains information about the underground electrical infrastructure. These two
large tables are joined together to determine which cables enter into which
manholes. The inferential join between the two tables required substantial
processing in order to correctly match cables with manholes. Main cables

are cables that connect two manholes, as opposed to service or streetlight

cables which connect to buildings or streetlights. In our studies on long-term
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(a) (b)

(c)

Fig. 2. A plot of the number of yearly events, a histogram of the number of Main Phase
(PH) cables, and a histogram of the age of oldest cable set in a manhole.

prediction of power failures, we have found that the number of main phase
cables in a manhole is a relatively useful indicator of whether a manhole is
likely to have an event. Figure 2(b) contains a histogram of the number of
main phase cables in a manhole.

The electrical grid was built gradually over the last ∼130 years, and,
as a result, manholes often contain cables with a range of different ages.
Figure 2(c) contains a histogram of the age of the oldest main cables in each
manhole, as recorded in the database. Cable age is also used as a feature
for our RPP model. Cable ages range from less than a year old to over 100
years old; Con Edison started keeping records back in the 1880s during the
time of Thomas Edison. We remark that it is not necessarily true that the
oldest cables are the ones most in need of replacement. Many cables have
been functioning for a century and are still functioning reliably.

We also have data from Con Edison’s new inspections program. Inspec-
tions can be scheduled in advance, according to a schedule determined by
a state mandate. This mandate currently requires an inspection for each
structure at least once every 5 years. Con Edison also performs “ad hoc”
inspections. These occur when a worker is inside a manhole for another pur-
pose (e.g., to connect a new service cable) and chooses to fill in an inspection
form. The inspections are broken down into 5 distinct types, depending on
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whether repairs are urgent (Level I) or whether the inspector suggests ma-
jor infrastructure repairs (Level IV) that are placed on a waiting list to be
completed. Sometimes when continued work is being performed on a single
manhole, this manhole will have many inspections performed within a rel-
atively small amount of time—hence our need for “diminishing returns” on
the influence of an inspection that motivates the saturation function of the
RPP model.

Some questions of interest to power companies are as follows:

(i) Can we predict failures continuously in time, and can we model how
quickly the influence of past events and inspections fade over time?

(ii) Can we develop a cost/benefit analysis for proactive maintenance
policies?

RPPs will help with both of these questions.

3. The reactive point process model. We begin with a simpler version
of RPPs where there is only one time-series corresponding to a single en-
tity (manhole). Our data consist of a series of NE events with event times
t1, t2, . . . , tNE

and a series of given inspection times denoted by t̄1, t̄2, . . . , t̄NI
.

The inspection times are assumed to be under the control of the exper-
imenter. RPPs model events as being generated from a nonhomogeneous
Poisson process with intensity λ(t) where

λ(t) = λ0

[

1 + g1

(

∑

∀te<t

g2(t− te)

)

− g3

(

∑

∀t̄i<t

g4(t− t̄i)

)

+C11[NE≥1]

]

,(1)

where te are event times and t̄i are inspection times. The vulnerability level
permanently goes up by C1 if there is at least one past event, where C1 is a
constant that can be fitted. The C11[NE≥1] term is present to deal with “zero
inflation,” where the case of zero events needs to be handled separately than
one or more past events. Functions g2 and g4 are the self-excitation and self-
regulation functions, which have initially large amplitudes and decay over
time. Self-exciting point processes have only g2, and not the other functions,
which are novel to RPPs. Functions g1 and g3 are the saturation functions,
which start out as the identity function and then flatten farther from the
origin. If the total sum of the excitation terms is large, g1 will prevent the
vulnerability level from increasing too much. Similarly, g4 controls the total
possible amount of self-regulation and encodes “diminishing returns” for
having several inspections in a row.

The RPP model arose based on exploratory work performed using a condi-
tional frequency (CF) estimator of the data. To construct the CF estimator,
we computed the empirical probability of another event occurring on a day t
given that an event occurred at t= 0. To obtain these probabilities, we first
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(a) Empirical probabilities and fitted values (b) Empirical probabilities and fitted values

for the self-excitation function g2 for the saturation function g1

Fig. 3. Fitted functions for empirical probabilities for the Manhattan data set. These
figures display results for the conditional frequency estimator used to derive the form of
the RPP model. The left figure shows the empirical probability of another event given a
previous event a given number of days in the past. The decreasing empirical probability with
time motivates our self-excitation function. The right plot shows the increase in propensity
for another event given the total cumulative probability from past events. The curvature
indicates that additional events have diminishing returns on the likelihood of another event,
motivating the saturation component of the RPP.

align the sequences of time so that t= 0 represents the time when an event
happened. We now have a series of “trails” that give the probability of an-
other event, conditional on the last event that occurred for a given manhole.
We used only trails that were far apart in time so we could look at the effect
of each event without considering short-term influences of other previous
events. What we see from Figure 3(a) is that the conditional probability
for experiencing a second event soon after the first event is high and de-
cays with t. This decay represents self-exciting behavior. To see evidence of
self-excitation from the raw data, we present plots of event times for several
manholes in Figure 4. We see a clear grouping of events which is consis-
tent with self-exciting behavior. These observations lead us to include the
g2 term in (1). The behavior we observe could not be easily explained using
a simple random effects model; an attempt to do this is within Section 4 of
the supplementary material [Ertekin, Rudin and McCormick (2015)].

Next, we evaluate whether subsequent events continue to increase propen-
sity for another event or whether the risk in the most troubled manholes
“saturates” and multiple manhole events in a row have diminishing-returns
on the conditional probabilities. Figure 3(b) shows the saturation effect. The
y-axis of this plot contains raw empirical probabilities of another event. The
x-axis are sums of effects from previous recent events (sums of g2 values).
If Figure 3(b) were linear, we would not see diminishing returns. That is,
a linear trend in Figure 3(b) would indicate that each subsequent event in-
creases the likelihood of another event by the same amount. Instead, we see
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Fig. 4. Time of events in distinct manholes in the Manhattan data that demonstrate the
self-excitating behavior. The x-axis is the number of days elapsed since the day of first
record in the data set and the markers indicate the actual time of events.

a distinct curve, indicating that the additional increase in risk decreases as
the number of events rises. To further aid in developing a functional form
of the model, we fit smooth curves to the data displayed in Figure 3(a) and
(b). The process for fitting these smooth curves, as well as simulation exper-
iments for validation, is described in detail in the supplementary material
[Ertekin, Rudin and McCormick (2015)]. The fitted values for the smooth
curves are

g2(t) =
11.62

1 + e0.039t
,

g1(t) = 16.98×

(

1− log(1 + e−0.15t)×
1

log 2

)

.

These estimates inspired the parameterizations we provided in equation (2).
We also estimated the baseline hazard rate λ0 and baseline change C1 for
Manhattan as λ0 = 2.4225× 10−4 and C1 = 0.0512.

Because the inspection program is relatively new, we were not able to
trace out the full functions g4 and g3; however, we strongly hypothesize
that the inspections have an effect that wears off over time based on a
matched pairs study [see, e.g., Passonneau et al. (2011)], where we showed
that for manholes that had been inspected at least twice, the second manhole
inspection does not lead to the same reduction in vulnerability as the first
manhole inspection does. In what follows, we will show how the parameters
of g1, g2, g3 and g4 can be made to specialize to each individual manhole
adaptively.

Inspired by the CF estimator, we use the family of functions below for
fitting power-grid data, where a1, b1, a3, b3, β and γ are parameters that
can be either modeled or fitted:

g1(ω) = a1 ×

(

1−
1

log 2
log(1 + e−b1ω)

)

, g2(t) =
1

1+ eβt
,
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(2)

g3(ω) = a3 ×

(

1−
1

log 2
log(1 + eb3ω)

)

, g4(t) =
−1

1 + eγt
.

The factors of log 2 ensure that the vulnerability level is not negative.
We need some notation in order to encode the possibility of multiple

manholes. In the case that there are multiple entities, there are P time-
series, each corresponding to a unique entity p. For medical applications,
each p is a patient, and for the electrical grid reliability application, p is a
manhole. Our data consist of events {t(p)e}p,e, inspections {t̄(p)i}p,i and,
additionally, we may have covariate information Mp,j about every entity p,
with covariates indexed by j. Covariates for the medical application might
include a patient’s gender, age at the initial time, race, etc. For the manhole
events application, covariates include the number of main phase cables in
the manhole (number of current carrying cables between two manholes),
the total number of cable sets (total number of bundles of cables) including
main, service and streetlight cables, and the age of the oldest cable set within
the manhole. All covariates were normalized to be between −0.5 and 0.5.

Within the Bayesian framework, we can naturally incorporate the covari-
ates to model functions λp for each p adaptively. Consider β in the expression
for the self-excitation function g2 above. The β terms depend on individual-
level covariates. In notation,

g
(p)
2 (t) =

1

1+ eβ
(p)t

, g
(p)
4 (t) =

−1

1 + eγ
(p)t

.(3)

The β(p)’s are assumed to be generated via a hierarchical model of the form

β = log(1 + e−Mυ) where υ ∼N(0, σ2
υ)

are the regression coefficients and M is the matrix of observed covariates.
The γ(p)’s are modeled hierarchically in the same manner,

γ = log(1 + e−Mω) with ω ∼N(0, σ2
ω).

This permits slower or faster decay of the self-exciting and self-regulating
components based on the characteristics of the individual. For the electrical
reliability application, we have noticed that manholes with more cables and
older cables tend to have faster decay of the self-exciting terms, for instance.

Demonstrating the need for the saturation function in the RPP model.

In the previous section we used exploratory tools on the Manhattan data
to demonstrate diminishing returns in risk for multiple subsequent events.
In what follows, we link the exploratory work in the last section with our
modeling framework, demonstrating how the standard linear self-exciting
process can produce unrealistic results under ordinary conditions.
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First we show that the self-excitation term can cause the rate of events
λ(t) to increase without bound. To show this, we considered a baseline vul-
nerability of λ0 = 0.01, setting C1 = 0.1, used g2(t) =

1
1+e0.005t

, and omitted

the other components of the model (no inspections, no saturation g1). The
self-excitation eventually causes the rate of events to escalate unrealistically
as shown in Figure 5 (upper left). The embedded subfigure is a zoomed-in
version of the first 1500 time steps.

When we include the saturation function g1, the excitation is controlled,
and the probability of an event no longer increases to unreasonable levels.
We used g1(ω) = 1 − 1

log 2 log(1 + e−ω), so that the vulnerability λ(t) can

reach to a maximum value of 0.021. The result is in Figure 5 (upper right).
Now we show the effect of the saturation function g3 in the presence

of repeated inspections. If no manhole events occur and the manhole is
repeatedly inspected, then using the linear SEPP model, its vulnerability
levels can become arbitrarily close to 0. This is not difficult to show, and we
do this in Figure 5 (lower left). Here we used λ0 = 0.2, g4(t) =

−0.25
1+e0.002t

, and
omitted g3. We ran the same experiment but with saturation, specifically,

(a) Model with self-excitation function g2 (b) Model with self-excitation function g2

(without saturation function g1 and inspections) and saturation function g1 (no inspections)

and a zoomed view of the first 1500 days

(c) Model with self-regulation function g4 (d) Model with self-regulation function g4

(without saturation function g3 and events) and saturation function g3 (no events)

Fig. 5. The effect of the saturation functions g1 and g3. The dots on the time axis in
subfigures (a) and (b) indicate the times of events, and the dots in subfigures (c) and (d)
indicate the times of inspections. The figures on the right include saturation, and the figures
on the left do not include saturation. Without saturation, the self-excitation function in
(a) grows unbounded, whereas the self-regulation function in (c) drops to an unrealistic
level of zero. The effects of the saturation functions in Figures (b) and (d) keep g2 and g4
within realistic bounds.
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with g3(ω) = 1− 1
log 2 log(1+ eω). The results in Figure 5 (lower right) show

that the saturation function never lets the vulnerability drop unrealistically
far below the baseline level.

4. Fitting RPP statistical models. In this section we describe our Bayesian
framework for inference using RPP models. The RPP intensity in equa-
tion (1) provides structure to capture self-excitation, self-regulation and
saturation. First, in Section 4.1 we describe the likelihood for the RPP sta-
tistical model. We then describe prior distributions and our computational
strategy for sampling from the posterior in Section 4.2. Section 4.3 then
details the values we use in making predictions. Along with the results pre-
sented here, we extensively evaluated our inference strategy using a series
of simulation experiments, where the goal is to recover parameters of simu-
lated data for which there is ground truth. We further applied the method
of maximum likelihood to the Manhattan power-grid data. Details of these
additional experiments are in the supplementary material [Ertekin, Rudin
and McCormick (2015)].

4.1. RPP likelihood. This section describes the likelihood for the RPP
statistical model. Using the intensity function described in Section 3, the
RPP likelihood is derived using the likelihood formula for a nonhomogeneous
Poisson process over the time interval [0, Tmax]:

logL({t
(p)
1 , . . . , t

(p)

N
(p)
E

}p;υ, a1,M)

(4)

=

P
∑

p=1

[N
(p)
E

∑

e=1

log(λp(t
(p)
e ))−

∫ Tmax

0
λp(u)du

]

,

where υ are coefficients for covariates represented by the matrix M. The
covariates are the number of main phase cables in the manhole (number of
current carrying cables between two manholes), the total number of cable
sets (total number of bundles of cables) including main, service and street-
light cables, and the age of the oldest cable set within the manhole. All
covariates were normalized to be between −0.5 and 0.5.

4.2. Bayesian RPP. Developing a Bayesian framework facilitates shar-
ing of information between observably similar manholes, thus making more
efficient use of available covariate information. The RPP model encodes
much of our prior information into the shape of the rate function given in
equation (1). As discussed in Section 3, we opted for a simple, parsimonious
model that imposes mild regularization and information sharing without
adding substantial additional information; specifically, we use diffuse Gaus-
sian priors on the log scale for each regression coefficient.
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We fit the model using Approximate Bayesian Computation [Diggle and
Gratton (1984)]. The principle of Approximate Bayesian Computation (ABC)
is to randomly choose proposed parameter values, use those values to gen-
erate data, and then compare the generated data to the observed data. If
the difference is sufficiently small, then we accept the proposed parameters
as draws from the approximate posterior. To do ABC, we need two things:
(i) to be able to simulate from the model and (ii) a summary statistic. To
compare the generated and observed data, the summary statistic from the

observed data, S({t
(p)
1 , . . . , t

(p)

N
(p)
E

}p), is compared to that of the data simu-

lated from the proposed parameter values, S({t
(p),sim
1 , . . . , t

(p),sim

N
(p),sim
E

}p). If the

values are similar, it indicates that the proposed parameter values may yield
a useful model for the data.

A critical difference between updating a parameter value in an ABC iter-
ation versus, for example, a Metropolis–Hastings step is that ABC requires
simulating from the likelihood, whereas Metropolis–Hastings requires evalu-
ating the likelihood. In our context, we are able to both evaluate and simulate
from the likelihood with approximately the same computational complex-
ity. ABC has some advantages, namely, that we have meaningful summary
statistics, discussed below. Further, in our case it is not particularly com-
putationally challenging, as we already extensively simulate from the model
as a means of evaluating hypothetical inspection policies. We evaluated the
adequacy of this method extensively in simulation studies presented in the
supplementary material [Ertekin, Rudin and McCormick (2015)].

A key conceptual aspect of ABC is that one can choose the summary
statistic to best match the problem. The sufficient statistic for the RPP is
the vector of event times, and thus gives no data reduction—so we choose
other statistics. One important insight in constructing our summary statistic
is that changing the parameters in the RPP model alters the distribution of
times between events. The histogram of time differences for a homogenous
Poisson Process, for example, has an exponential decay. The self-exciting
process, on the other hand, has a distribution resembling a lognormal be-
cause of the positive association between intensities after an event occurs.
Altering the parameters of the RPP model changes the intensity of self-
excitation and self-regulation, thus altering the distribution of times between
events. We construct our first statistic, therefore, by examining the KL di-
vergence between the distribution of times between events in the data and
the distribution between event times in the simulated data. We do this for
each of our proposed parameters. Examining the distribution of times be-
tween events, though not the true sufficient statistic, captures a concise and
low-dimensional summary of a key feature of the process. This statistic does
not, however, capture the overall prevalence of events in the process. Since
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we focus only on the distribution of times between events, various processes
with different overall intensity could produce distributions with similar KL
divergence to the data distribution. We therefore introduce a second statis-
tic that counts the total number of events. We contend that together these
statistics represent both the spacing and the overall scale (or frequency) of
events. Thus, the two summary measures we use are as follows:

1. DNE: The difference in the number of events in the simulated and
observed data.

2. KL: The Kullback–Leibler divergence between two histograms, one
from the observed data and one from the real data. These are histograms of
time differences between events.

For the NYC data, we visualized three-dimensional parameter values,
both for DNE (in Figure 6) and KL (in Figure 7) metrics. In both figures,
smaller values (dark blue) are better. As seen, the regions where KL and
DNE are optimized are very similar.

Denoting the probability distribution of the actual data as P and the
probability distribution of the simulated data as Qυ, KL Divergence is com-
puted as

KL(P‖Qυ) =
∑

bin

ln

(

P (bin)

Qυ(bin)

)

P (bin).

As mentioned previously in this section, the Bayesian portion of our model
is relatively parsimonious but does impose mild regularization and encour-
ages stability. We require a distribution π over parameter values. If covariates
are not used, π is a distribution over β (and γ if inspections are present).
If covariates are used, π is a distribution over υ and ω. One option for π
is a uniform distribution across a grid of reasonable values. Another op-
tion, which was used in our experiments, is to simulate from diffuse Gaus-
sian/weakly informative priors on the log scale [e.g., draw log(νj)∼N(0,5)].

Fig. 6. DNE for Manhattan data set. Each axis corresponds to the coefficient for one of
the covariates. The magnitude of DNE is indicated by the color.
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Fig. 7. KL for Manhattan data set. Each axis corresponds to the coefficient for one of
the covariates. The magnitude of KL is indicated by the color.

We assumed that C1 and a1 can be treated as tuning constants to be esti-
mated using the CF estimator method, though it is possible to define priors
on these quantities as well if desired.

There is an increasingly large literature in both the theory and imple-
mentation of ABC [see, e.g., Fearnhead and Prangle (2012), Beaumont et al.
(2009), Drovandi, Pettitt and Faddy (2011)] that could be used to produce
estimates of the full posterior. In the supplementary material [Ertekin, Rudin
and McCormick (2015)], we present an importance sampling algorithm as
one possible approach. In our work, however, the goal is to estimate the
posterior mode, which we then use for prediction. To verify our ABC proce-
dure, we used simulated ground truth data with known β and γ values, and
attempted to recover these values with the ABC method, for both the DNE
and KL metrics. We performed extensive simulation studies to evaluate this
method and full results are given in the supplementary material [Ertekin,
Rudin and McCormick (2015)].

In the next section we discuss how we estimate the posterior mode by
using a manifold approximation to the region of high posterior density. We
begin by generating a set of proposed parameter values using the prior distri-
butions. Consistent with ABC, we simulate data from each set of candidate
values and compare the simulated data to our observed data using the KL
and DNE statistics described above. (From here, we could, e.g., define a ker-
nel and accept draws with a given probability as in importance sampling.
Instead, our goal is estimating the posterior mode to find parameters for the
policy decision, as we describe next.)

4.3. Choosing parameter values for the policy decision. For the policy
simulation in Section 6 we wish to choose one set of parameter values to
inform our decision. In order to choose a single best value of the parameters,
we fit a polynomial manifold to the intersection of the bottom 10% of KL
values and the bottom 10% of DNE values. Defining υ1, υ2 and υ3 as the
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Fig. 8. Fitted manifold of υ values with smallest KL divergence and smallest DNE.

coefficients for number of main phase cables, age of oldest main cable set
and total number of sets features, the formula for the manifold is

υ3 =−9.6− 0.98υ1 − 0.13υ2 − 1.1× 10−3(υ1)
2 − 3.6× 10−3υ1υ2

+4.67× 10−2(υ2)
2,

which is determined by a least squares fit to the data. The fitted manifold
is shown in Figure 8 along with the data.

We then optimized for the point on the manifold closest to the origin. This
implicitly adds regularization, as it chooses the parameter values closest to
the origin. This point is υ1 =−4.6554, υ2 =−0.5716, and υ3 =−4.8028.

Note that cable age (corresponding to the second coefficient) is not the
most important feature defining the manifold. As previous studies have
shown [Rudin et al. (2010)], even though there are very old cables in the
city, the age of cables within a manhole is not alone the best predictor of
vulnerability. Now we also know that it is not the best predictor of the rate
of decay of vulnerability back to baseline levels. This supports Con Edison’s
goal to prioritize the most vulnerable components of the power-grid, rather
than simply replacing the oldest components. The features that mainly de-
termine decay of the self-excitation function g2 are the number of main phase
cables and the number of cable sets. As either or both of these numbers in-
crease, decay rate β increases, meaning that manholes with more cables tend
to return to baseline levels faster than manholes with fewer cables.

5. Predicting events on the NYC power-grid. Our first experiment aims
to evaluate whether the CF estimator or the feature-based strategy intro-
duced above is better in terms of identifying the most vulnerable manholes.
To do this, we selected 5000 manholes (rank 1001–6000 from the project’s
current long-term prediction model). These manholes have similar vulnera-
bility levels, which allows us to isolate the self-exciting effect without mod-
eling the baseline level. Using both the feature-based β (ABC, with KL
metric) and constant β (CF estimator method) strategies, the models were
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Fig. 9. Ranking differences between feature-based and constant (nonfeature-based) β

strategies.

trained on data through 2009, and then we estimated the vulnerabilities of
the manholes on December 31st, 2009. These vulnerabilities were used as
the initial vulnerabilities for an evaluation on the 2010 event data. 2010 is
a relevant year because the first inspection cycle ended in 2009. All man-
holes had been inspected at least once, and many were inspected toward
the end of 2009, which stabilizes the inspection effects. For each of the 53K
manholes and at each of the 365 days of 2010, when we observed a serious
event in a manhole p, we evaluated the rank of that manhole with respect to
both the feature-based and nonfeature-based models, where rank represents
the number of manholes that were given higher vulnerabilities than man-
hole p. As our goal is to compare the relative rankings provided by the two
strategies, we consider only events where the vulnerabilities assigned by both
strategies are different than the baseline vulnerability. Figure 9 displays the
ranks of the manholes on the day of their serious event. A smaller rank indi-
cates being higher up the list, thus lower is better. Overall, we find that the
feature-based β strategy performs better than the nonfeature-based strategy
over all of the rank comparisons in 2010 (p-value 0.09, sign test). Our results
mainly illustrate that using different decay rates on past events for different
types of manholes leads to better predictions. Recall from Section 4.3 that
larger manholes tend to recover faster from previous events. The approach
without the features ignores the differences between manholes, and uses the
same decay rate, whereas the feature-based RPP takes these decay rates
into account in making predictions.

In the second experiment, we compared the feature-based β strategy to
the Cox proportional–hazard model, which is commonly used in survival
analysis to assess the probability of failure in mechanical systems. We em-
ployed this model to assess the likelihood of a manhole having a serious event
on a particular day. For each manhole, we used the same three static co-
variates as in the feature-based β model, and developed four time-dependent
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features. The time-varying features for day t are (1) the number of times the
manhole was a trouble hole (source of the problem) for a serious event until
t, (2) the number of times the manhole was a trouble hole for a serious event
in the last year, (3) the number of times the manhole was a trouble hole for
a precursor event (less serious event) until t, and (4) the number of times
the manhole was a trouble hole for a precursor event in the last year. The
feature-based β model currently does not differentiate serious and precursor
events, though it is a direct extension to do this if desired. The model was
trained using the coxph function in the R survival package using data prior
to 2009, and then predictions were made on the test set of 5000 manholes
in the 2010 data set. These predictions were transformed into ranked lists
of manholes for each day. We then compared the ranks achieved by the Cox
model with the ranks of manholes at the time of events. The difference of
aggregate ranks was in favor of the feature-based β approach (p-value 7e–06,
sign test), indicating that the feature-based β strategy provides a substantial
advantage in its ability to prioritize vulnerable manholes.

The Cox model we compared with represents a “long-term” model simi-
lar to what we were using previously for manhole event prediction on Con
Edison data [Rudin et al. (2010)]. The Cox model considers different infor-
mation, namely, counts of past events. These counts are time-varying, but
the past events do not smoothly wear off in time as they do for the RPP.
The fact that the RPP model is competitive with the Cox model indicates
that the effects of past manhole events do wear off with time (in agreement
with Figure 3 where we traced the decay directly using data). The saturating
elements of the model ensure that the model is physically plausible, since we
showed in Section 3 that the results could be unphysical (with rates going
to 0 or above 1) without the saturation.

6. Making broader policy decisions using RPPs. Because the RPPmodel
is a generative model, it can be used to simulate the future, and thus as-
sist with broader policy decisions regarding how often inspections should be
performed. This can be used to justify allocation of spending. Con Edison’s
existing inspection policy is a combination of targeted periodic inspections
and ad hoc inspections. The targeted inspections are planned in advance,
whereas the ad hoc inspections are unscheduled. An ad hoc inspection could
be performed while a utility worker is in the process of, for instance, in-
stalling a new service cable to a building or repairing an outage. Either
source of inspection can result in an urgent repair (Type I), an important
but not urgent repair (Type II), a suggested structural repair (Types III
and IV), or no repair, or any combination of repairs. Urgent repairs need
to be completed before the inspector leaves the manhole, whereas Type IV
repairs are placed on a waiting list. According to the current inspections pol-
icy, each manhole undergoes a targeted inspection every 5 years. The choice
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of inspection policy to simulate can be determined very flexibly, and any
inspection policy and hypothesized effect of inspections can be examined
through simulation.

As a demonstration, we conducted a simulation over a 20 year future
time horizon that permits a cost-benefit analysis of the inspection program,
when targeted inspections are performed at a given frequency. To do this
simulation, we require the following:

• A characterization of manhole vulnerability. For Manhattan, this is learned
from the past using the ABC RPP feature-based β training strategy for
the saturation function g1 and the self-excitation function g2 discussed
above. Saturation and self-regulation functions g3 and g4 for the inspec-
tion program cannot yet be learned due to the newness of the inspection
program and are discussed below.

• An inspection policy. The policy can include targeted, ad hoc or history-
based inspections. We chose to evaluate “bright line” inspection policies,
where each manhole is inspected once in each Y year period, where Y is
varied (discussed below). We also included an ad hoc inspection policy
that visits 3 manholes per day on average.

Effect of inspections: The effect of inspections on the overall vulnerability
of manholes were designed in consultation with domain experts. The choices
are somewhat conservative, so as to give a lower bound for costs. The effect
of an urgent repair (Type I) is different from the effect of less urgent repairs
(Types II, III and IV). For all inspection types, after 1 year beyond the
time of the inspection, the effect of the inspection decays to, on average,
85% of its initial effect, in agreement with a short-term empirical study on
inspections. (There is some uncertainty in this initial effect, and the initial
drop in vulnerability is chosen from a normal distribution so that after one
year the effect decays to a mean of 85%.) For Type I inspections, the effect
of the inspection decays to baseline levels after approximately 3000 days,
and for Types II, III and IV, which are more extensive repairs, the effect
fully decays after 7000 days. In particular, we use the following g4 functions:

gType I
4 (t) =−83.7989× (r× 5× 10−4 + 3.5× 10−3)×

1

1 + e0.0018t
,(5)

gTypes II,III,IV
4 (t) =−49.014× (r× 5× 10−4 +7× 10−3)×

1

1 + e0.00068t
,(6)

where r is randomly sampled from a standard normal distribution. For all
inspection types, we used the following g3 saturation function:

g3(t) = 0.4×

(

1− log(1 + e−3.75t)×
1

log 2

)

,
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(a) g4 for Type I inspections (b) g4 for Types II, III, IV

(c) g3 = 0.4(1− log(1 + e3.75x) 1
log 2

)

Fig. 10. Saturation and self-regulation functions g3 and g4 for simulation.

which ensures that subsequent inspections do not lower the vulnerability to
more than 60% of the baseline vulnerability. Sampled g4 functions for Type
I and Types II, II, IV, along with g3 are shown in Figure 10.

One targeted inspection per manhole was distributed randomly across Y
years for the bright line Y -year inspection policies, and 3× 365 = 1095 ad
hoc inspections for each year were uniformly distributed, which corresponds
to 3 ad hoc inspections per day for the whole power grid on average. During
the simulation, when we arrived at a time step with an inspection, the
inspection outcome was Type I with 25% probability, or one of Types II, III
or IV, with 25% probability. In the rest of the cases (50% probability), the
inspection was clean, and the manhole’s vulnerability was not affected by
the inspection. If the inspection resulted in a repair, we sampled r randomly
and randomly chose the inspection outcome (Type I or Types II, III, IV).
This percentage breakdown was observed approximately for a recent year of
inspections in NYC.

To initialize manhole vulnerabilities for a bright line policy of Y years, we
simulated the previous Y -year inspection cycle and started the simulation
with the vulnerabilities obtained at the end of this full cycle.

Simulation results: We simulated events and inspections for 53.5K man-
holes for bright line policies ranging from Y = 1 year to Y = 20 years. Natu-
rally, a longer inspection cycle corresponds to fewer daily inspections, which
translates into an increase in overall vulnerabilities and an increase in the
number of events. This is quantified in Figure 11, which shows the projected
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Fig. 11. Number of events and inspections based on bright line policy. Number of years
Y for the bright line policy is on the horizontal axis in both figures. The left figure shows
the number of inspections, the right figure shows the number of events.

number of inspections and events for each Y year bright line policy. If we
change from a 6 year bright line inspection policy to a 4 year policy, we esti-
mate a reduction of approximately 100 events per year. The relative costs of
inspections and events can thus be considered in order to justify a particular
choice of Y for the bright line policy.

Let us say, for instance, that each inspection costs CI and each event
costs CE . The simulation results allow us to denote the forecasted expected
number of events over a period of time T as a function of the inspection
frequency Y , which we denote by NE(Y,T ). The value of NE(Y,T ) comes
directly from the simulation, as plotted in Figure 11. Let us make a decision
for Y for P total manholes, over a period T . To do this, we would choose a
Y that minimizes the total cost

CE ×NE(Y,T ) +CI ×P × T/Y.

This line of reasoning provides a quantitative mechanism for decision making
and can be used to justify a particular choice of inspection policy.

7. Conclusion. Keeping our electrical infrastructure safe and reliable is
of critical concern, as power outages affect almost all aspects of our society,
including hospitals, financial centers, data centers, transportation and su-
permarkets. If we are able to combine historical data with the best available
statistical tools, it will be possible to impact our ability to maintain an ever
aging and growing power grid. In this work, we presented a methodology for
modeling power-grid failures that is based on natural assumptions: (i) that
power failures have a self-exciting property, which was hypothesized by Con
Edison engineers, (ii) that the power company’s actions are able to regulate
vulnerability levels, (iii) that the effects on the vulnerability level of past
events or repairs can saturate, and (iv) that vulnerability estimates should
be similar between similar entities. We have been able to show directly (using
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the CF estimator for the RPP) that the self-exciting and saturation assump-
tions hold. We demonstrated through experiments on past power-grid data
from NYC, and through simulations, that the RPP model is able to capture
the relevant dynamics well enough to predict power failures better than the
current approaches in use.

The modeling assumptions that underlie RPPs can be directly ported to
other problems. RPPs are a natural fit for problems in healthcare, where
medical conditions cause self-excitation and treatments provide regulation.
Through the Bayesian framework we introduced, RPPs extend to a broad
range of problems where predictive power can be pooled among multiple
related entities, whether manholes or medical patients.

The results presented in this work show for the first time that manhole
events can be predicted in the short term, which was previously thought not
to be possible. Knowing how one might do this permits us to take preventive
action to keep vulnerability levels low, and can help make broader policy
decisions for power-grid maintenance through simulation of many uncertain
futures, simulated over any desired policy.

SUPPLEMENTARY MATERIAL

Supplementary material for “Reactive point processes: A new approach

to predicting power failures in underground electrical systems”

(DOI: 10.1214/14-AOAS789SUPP; .pdf). The supplementary material in-
cludes an expanded related work section, conditional frequency estimator
(CF estimator) for the RPP, experiments with a maximum likelihood ap-
proach, a description of the inspection policy used in Section 6, an analysis
of Manhattan data using random effects model and simulation studies for
validating the fitting techniques for the models in the paper. It also includes
a description and link for a publicly available simulated data set that we
generated, based on statistical properties of the Manhattan data set.
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