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Jet finding is a type of optimization problem, where hadrons from a high-energy collision event are
grouped into jets based on a clustering criterion. As three interesting examples, one can form a jet cluster
that (i) optimizes the overall jet four-vector, (ii) optimizes the jet axis, or (iii) aligns the jet axis with the jet
four-vector. In this paper, we show that these three approaches to jet finding, despite being philosophically
quite different, can be regarded as descendants of a mother optimization problem. For the special case of
finding a single cone jet of fixed opening angle, the three approaches are genuinely identical when defined
appropriately, and the result is a stable cone jet with the largest value of a quantity J. This relationship is
only approximate for cone jets in the rapidity-azimuth plane, as used at the Large Hadron Collider, though
the differences are mild for small radius jets.
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I. INTRODUCTION

Jet algorithms are essential tools for connecting long-
distance measurements made on hadrons to short-distance
interpretations based on perturbative quarks and gluons.
Since there is a fundamental mismatch between color-
singlet hadrons and color-carrying partons, there is no way
to define an ideal jet finding procedure. For this reason, a
variety of jet algorithms have been introduced with differ-
ent underlying philosophies and different practical advan-
tages [1,2].
In this paper, we expose a surprising connection between

three seemingly unrelated approaches to jet finding: jet
function maximization [3–5], 1-jettiness minimization
[6–9], and stable cone finding [10–12], all reviewed in
Sec. II. Philosophically, these algorithms are quite different,
so one might think that they would yield rather different
jets. Instead, all three algorithms yield (approximately)
conical jets of (approximately) fixed radius R, with a high
degree of correlation between the methods. As we will
show, this correlation is not an accident, since jet function
maximization and 1-jettiness minimization can be viewed
as descendants of a mother optimization problem, whose
solution is a stable cone jet.
This relationship is most transparent in electron-positron

collisions, where jets are typically defined in terms of
particle energies and angles. Remarkably, with appropriate
definitions, all three algorithms can be made to yield
identical cone jets. We will prove this in Sec. III by
showing how these three methods can be derived from
optimizing a common meta function. This optimization is
equivalent to finding all stable cones and then choosing the
one with the largest value of J (defined below). In Sec. IV,

we explain this relationship in more detail by performing a
two particle case study.
Turning to the Large Hadron Collider (LHC), the

intrinsic differences between the three algorithms become
apparent. In proton-proton collisions, jets are typically
defined in terms of particle transverse momenta and
rapidity-azimuth distances. As discussed in Sec. V, the
transverse momentum of a jet is not exactly the same as
the summed transverse momenta of its constituents. For
this reason, there is now a difference between optimizing a
four-vector (as in jet functions), optimizing a light-like axis
(as in 1-jettiness), and aligning the jet axis with the jet
momentum (as in stable cones). Despite these differences,
though, we show that the algorithms still give similar
results when the jet radius R is small.

II. REVIEW OF JET ALGORITHMS

To begin, we briefly review these three approaches to jet
finding, all of which are infrared and collinear (IRC) safe.
For simplicity, in this paper we only consider finding the
single hardest jet in an event, though all of these methods
can be adapted to identify multiple jets. For consistency of
notation, we always use R to refer to the adjustable jet
radius parameter in each algorithm, which can be identified
with the true jet radius only in the small R limit.

(i) Jet function maximization [3–5]. Here, the jet find-
ing strategy is to find the subset of particles in an
event that maximizes a jet function JðPμÞ, where Pμ

is the four-vector of the candidate jet.1 The original
paper [3] introduced a jet function appropriate for
electron-positron collisions:
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1The name “jet function” and the symbol J should not be
confused with earlier usage in the context of factorization and
resummation, e.g. [13–15].

PHYSICAL REVIEW D 92, 074001 (2015)

1550-7998=2015=92(7)=074001(7) 074001-1 © 2015 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78064356?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevD.92.074001
http://dx.doi.org/10.1103/PhysRevD.92.074001
http://dx.doi.org/10.1103/PhysRevD.92.074001
http://dx.doi.org/10.1103/PhysRevD.92.074001


JorigðPμÞ ¼ E −
1

R2

m2

E
; ð1Þ

where E and m are the total energy and mass of
the candidate jet, and the original paper used the
notation R2 → 1=β. Maximizing this Jorig gives
quasiconical jets with nearly fixed radius ≃R. Since
then, this algorithm has been adapted to collisions
at the LHC [5] to yield nearly conical jets in the
rapidity-azimuth plane.

(ii) 1-jettiness minimization [6–9]. This approach is
based on finding a lightlike jet axis n ¼ ð1; n̂Þ that
minimizes 1-jettiness T 1ðnÞ. For electron-positron
collisions, one possible choice of 1-jettiness measure
is (see also [9])

T 1ðnÞ ¼
X

i∈event
min

�
Ei;

2n · pi

R2

�
; ð2Þ

where pi ¼ ðEi; ~piÞ is the four-vector of particle i,
and one often sees the notation R2 → 2ρ. The
minimum inside of T 1 partitions the event into an
unclustered (or “beam”) region and a jet region, and
after minimizing over n̂, the jet region is exactly
conical (for massless particles) with radius≃R. This
approach has been generalized to N-jettiness jet
finding through the XCONE jet algorithm [16,17].

(iii) Stable cone finding [10–12]. Algorithms like
SISCONE [12] search for all conical jet regions of
radius R which are stable, meaning that the total jet
momentum is aligned with the jet axis. This algo-
rithm works equally well for opening angle as for
rapidity-azimuth distance. From the set of stable
cones, one must then choose the desired jet(s). By
construction, the hardest jet after progressive re-
moval (e.g. SISCONE-PR as described in [18]) is a
perfect cone. While “hardest” typically refers to the
jet with highest (transverse) momentum, we will find
it interesting to consider the jet with largest J. As
shown in [11], stable cone finding can be viewed as
an optimization problem, which is closely related to
1-jettiness minimization [8]. While historically there
were issues with IRC safety of specific iterative cone
algorithms (see discussion in [1,2]), those issues
can be resolved using seedless methods (like in
SISCONE) or IRC safe seeds (like in XCONE).

III. A META OPTIMIZATION PROBLEM

Since the three above approaches yield (nearly) conical
jets and all are based on optimization, it is perhaps not
surprising that, with suitable modifications, they can yield
identical jets. Here, we show this explicitly for cone jets
of fixed opening angle, as relevant for electron-positron

collisions. We discuss obstructions to generalizing this to
the LHC in the Sec. V.
Consider the following meta function which depends

both on a candidate jet Pμ ¼ ðE; ~PÞ as well as on an
auxiliary lightlike axis n ¼ ð1; n̂Þ:

MðPμ; nÞ ¼ E −
2n · P
R2

; ð3Þ

where R will soon be identified with the same parameter
in (2). Here, we work with massless final-state particles
with Ei ¼ j~pij; one can adapt this construction to massive
particles by performing measurements in, say, the p-
scheme or E-scheme where massive particles are replaced
by massless proxies (see e.g. [19,20]). We claim that
maximizing M over all possible Pμ and n simultaneously
yields a jet function maximum, a 1-jettiness minimum, and
a stable cone jet.
First, consider maximizing M with respect to n, keeping

the candidate jet Pμ fixed. Introducing a Lagrange multi-
plier λ to enforce unit norm

MðPμ; nÞ → MðPμ; nÞ þ λðn̂2 − 1Þ; ð4Þ

one can show that M is maximized by

nopt ¼
�
1;

~P

j~Pj

�
: ð5Þ

Note that n̂ lives on a smooth compact space (i.e. the
surface of a unit sphere), so there are no edge conditions to
check. Plugging this back into (3), we find

MðPμ; noptÞ ¼ E −
2ðE − j~PjÞ

R2
≡ JðPμÞ: ð6Þ

Thus, maximizing M over fPμ; ng is equivalent to maxi-
mizing the jet function J over Pμ. Since

2ðE − j~PjÞ≃m2

E
ð7Þ

for m ≪ E, this jet function is very similar to the original
definition in (1).2 Following the logic of [3], a nontrivial J

2Reference [4] introduced a generalization of (1) with an extra
parameter n,

JðnÞ ¼ En

�
1 −

n
R2

m2

E2

�
; ð8Þ

where R2=n → 1=β in the original notation. Because JðnÞ is not
linear in the jet kinematics, we know of no meta function that can
directly handle this case. That said, maximizing JðnÞ is equivalent
to maximizing

ffiffiffiffiffiffiffiffi
JðnÞn

p
, and

ffiffiffiffiffiffiffiffi
JðnÞn

p ≃ J in the m ≪ E limit.
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maximum is guaranteed to exist since there are a finite
number of Pμ partitions and a single particle has a larger J
value than the empty partition.
Next, consider maximizing M over the candidate jet Pμ,

keeping n fixed. Crucially, M is linear in the final state
particles, so we can write M as

MðPμ; nÞ ¼
X
i∈jet

Ei −
2n · pi

R2
; ð9Þ

where “jet” refers to the set of particles contributing to Pμ

(i.e.
P

i∈jetEi ¼ E,
P

i∈jet ~pi ¼ ~P). Any final-state particle
that contributes positively to M will increase M’s value, so
for the optimal jet Popt

μ , we must have

MðPopt
μ ; nÞ ¼

X
i∈event

max

�
Ei −

2n · pi

R2
; 0

�
; ð10Þ

where now the sum runs over all particles in the event.
Rearranging this formula as

E −MðPopt
μ ; nÞ ¼

X
i∈event

min

�
Ei;

2n · pi

R2

�
≡ T 1ðnÞ;

ð11Þ

we recover precisely (2). Thus, taking into account the
minus sign, maximizing M over fPμ; ng is equivalent to
minimizing 1-jettiness T 1 over n.
Finally, we can maximize M with respect to both n

and Pμ by combining these two analyses. Since M has a
maximum, there must be an optimal subset Popt

μ (perhaps
more than one in degenerate phase space configurations)
and a corresponding optimal axis nopt. Fixing Popt

μ and
minimizing T 1ðnÞ with respect to n using the same
Lagrange multiplier trick in (4), the optimal axis must be

nopt ¼
�
1;

~Popt

j~Poptj

�
: ð12Þ

Now looking at (10) with fixed nopt, the optimal subset Popt
μ

must consist of all particles with

2nopt · pi

Ei
< R2: ð13Þ

This is precisely the condition for a stable cone. To see why
it is stable, note that (12) implies that the jet axis nopt is

aligned with the jet momentum ~Popt. To see why it is a
cone, note that for massless particles with j~pij ¼ Ei,

2n · pi

Ei
¼ 2 − 2 cos θn̂;i; ð14Þ

where θn̂;i is the angle to the axis. Thus, the condition in
(13) specifies particles contained in a cone of half opening
angle Rtrue around nopt with the identification

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2 cosRtrue

p ≡ R; ð15Þ

where Rtrue ≃ R at small radii.
We have therefore demonstrated that optimizing

MðPμ; nÞ is equivalent to optimizing the following two
functions:

JðPμÞ ¼ E −
2ðE − j~PjÞ

R2
; ð16Þ

T 1ðnÞ ¼
X

i∈event
min

�
Ei;

2n · pi

R2

�
: ð17Þ

Moreover, the optimal jet Popt
μ is specified by a stable cone

centered on the axis n̂opt ∝ ~Popt. Of course, actually finding
the optimal configuration is a challenging computational
problem. In practice, one can make use of the converse
statement that among all stable cones, the one that has the
largest value of JðPμÞ is guaranteed to be the one that
optimizes MðPμ; nÞ. Therefore, one can run spherical
SISCONE-PR [12,18] to find all stable cone jets, and then
simply select the jet with the largest value of JðPμÞ.

IV. TWO PARTICLE CASE STUDY

To better understand the above analysis, it is instructive
to study the simplest case of two massless particles with
equal energies E=2, separated by opening angle θ12. For
ease of notation, we define

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2 cos

θ12
2

r
≡ R12

2
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2 cos θ12

p ≡ ~R12; ð18Þ

such that θ12 ≥ R12 ≥ ~R12, but all three agree in the small
angle limit.
In the jet function approach using (16), there are three

candidate jets to consider: particle 1 alone, particle 2 alone,
or particles 1 and 2 together. The corresponding jet function
values are

JðP1
μÞ ¼ JðP2

μÞ ¼
E
2
; ð19Þ

JðP1
μ þ P2

μÞ ¼ E

�
1 −

R2
12

4R2

�
: ð20Þ

Choosing the maximum J value, the condition for the two
particles to be clustered into a single jet is
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J maximum∶ R12 <
ffiffiffi
2

p
R: ð21Þ

In the 1-jettiness approach, it is straightforward to prove
that the axis that minimizes T 1ðnÞ must lie along the line
between particles 1 and 2, such that

θn̂;1 þ θn̂;2 ¼ θ12: ð22Þ

Furthermore, one can show that local minima of T 1ðnÞ can
only appear at three possible points:

θn̂;1 ¼ 0; θn̂;2 ¼ 0; θn̂;1 ¼ θn̂;2 ¼
θ12
2

; ð23Þ

corresponding to the three candidate jet configurations
above. For ~R12 < R (note the tilde), only θn̂;1 ¼ θn̂;2 is a
true local minimum, so the two particles are always
clustered together. For R12>2R (no tilde), only θn̂;1 ¼ 0

and θn̂;2 ¼ 0 are true local minima, so the two particles are
never clustered together. For intermediate R12 values, all
three minima are present with corresponding 1-jettiness
values of

T 1ðθn̂;1 ¼ 0Þ ¼ T 1ðθn̂;2 ¼ 0Þ ¼ E
2
; ð24Þ

T 1ðθn̂;1 ¼ θn̂;2Þ ¼
E
4

R2
12

R2
: ð25Þ

Choosing the global T 1 minimum, the particles will be
clustered if

global T 1 minimum∶ R12 <
ffiffiffi
2

p
R; ð26Þ

yielding the same result as the jet function approach.
Alternatively, one might be content with only finding a
local T 1 minimum. For example, XCONE [16,17] searches
for local T 1 minima using IRC safe seeds based on kT-style
clustering [21,22], leading to the clustering condition

kT-seeded local T 1 minimum∶ R12 < R: ð27Þ

With IRC safe seeds, this is a perfectly acceptable jet
finding strategy from the point of view of perturbative QCD
calculations.3

Turning to the stable cone approach, the three local
minima in T 1 correspond precisely to the three possible
stable cone configurations. The default behavior of spheri-
cal SISCONE-PR [12,18] is to progressively remove the
stable cone with the largest energy, meaning that the two
particles will always be clustered if they fall within a
common cone:

E-ordered SISCONE-PR∶ R12 < 2R: ð28Þ

To mimic precisely the behavior of J maximization or T 1

minimization, though, one has to progressively remove the
jet with the largest value of JðPμÞ:

J-ordered SISCONE-PR∶ R12 <
ffiffiffi
2

p
R: ð29Þ

Only for this version of stable cone finding does one
recover the remarkable equivalence derived in Sec. III.
As a historical note, the presence of local T 1 minima led

to many Tevatron-era discussions about cone jet algorithms
[10,11], where a variant of T 1 was known as the
“Snowmass potential.” One issue is that of midpoint seeds,
since if one only uses the location of the two particles
themselves as seeds, then one misses out on a possible
stable cone centered on their midpoint, as in (23). Since
the location of T 1 minima is an IRC safe property, this is
the reason why seedless methods are preferred. A related
midpoint issue is that of disappearing minima, since in data,
where the two particle directions are smeared out by
showering and hadronization effects, the local T 1 mini-
mum at the midpoint disappears for R12 ≳ RsepR, where
Rsep ≃ 1.3 [23]. Disappearing minima do not present an
issue for IRC safety, but they do lead to poor convergence
of perturbation theory. In that context, it is interesting to
note that 1.3 is comparable to the

ffiffiffi
2

p
factor in (29). This

suggests that J-ordered cone finding may be more robust to
showering and hadronization effects than E-ordered cone
finding, since J-ordering aims to find global T 1 minimum
instead of just a local one. We leave a detailed analysis of
this possibility to future work.

V. DIFFERENCES AT THE LHC

For LHC applications, it is typically advantageous to
work with transverse momenta and rapidity-azimuth dis-
tances. Here, jet function maximization, 1-jettiness mini-
mization, and stable cone finding are indeed inequivalent,
which we now show.
Jet functions are based on optimizing the jet four-vector

as a whole. Therefore, we expect the jet function to be a
function of the total transverse momentum PT , total mass
m, or the combination ET ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
T þm2

p
. For example, the

chosen jet function in [5] was

JhadðPμÞ ¼ ET −
1

R2

m2

ET
; ð30Þ

where R → 1=
ffiffiffi
β

p
in the original notation. As explained in

[5], while the jet region is nearly conical when using Jhad,
the jet momentum direction is somewhat offset from the jet
center at forward rapidities.
By contrast, 1-jettiness is based on optimizing a lightlike

axis, using a measure that is additive over the individual

3Crucial to achieving IRC safety for XCONE, the number of
seeds is always equal to the desired number of jets N, indepen-
dent of the final state particle multiplicity.
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particles i. As shown in [8] (see also [16,17]), a cone
algorithm can be defined via

T had
1 ðnÞ ¼

X
i∈event

pTi min

�
1;
ΔRi;n̂

R

�
β

; ð31Þ

where R is the jet radius and β is an angular exponent (not
to be confused with β in the jet function literature). For any
value of β, the jet region is perfectly conical and the jet axis
is located at the center of the jet region. For the special
value of β ¼ 2, the jet axis is aligned with the pT-weighted
jet momentum [see (33) below].
At first glance, one might think that Jhad and T had

1 could
be massaged into a common meta function Mhad by just
making suitable E → pT replacements. However, there is a
fundamental mismatch due to the fact that

X
i

pTi ≠
�X

i

pi

�
T
: ð32Þ

For this reason one cannot construct a suitable Mhad that
depends solely on Pμ and n, since one also needs
information about the scalar pT sum within the jet. Of
course, one could find an Mhad if one relaxes the require-
ments that Jhad depends solely on Pμ or that T had

1 can be
expressed as a sum over i, though that goes somewhat
against the original philosophies of those approaches.
For stable cone finding, there are two different defini-

tions in common use. In [11], a stable cone is defined such
that the jet axis aligns with the ET-weighted centroid of its
constituents. For massless constituents, this is the same as
minimizing T had

1 in (31) with β ¼ 2 [8], yielding a jet axis
located at rapidity/azimuth location

y ¼
P

i∈jetyipTiP
i∈jetpTi

; ϕ ¼
P

i∈jetϕipTiP
i∈jetpTi

: ð33Þ

Alternatively, one can define a stable cone to have its jet
axis aligned with the true jet three-momentum, which is the
default behavior in SISCONE-PR [12,18]. For small radius
jets, the distinction is small, but we know of no 1-jettiness
measure (or jet function) that yields exactly stable cones by
this second definition.
Despite the above discussion, the mismatch in (32) is

a small effect at small R, with corrections that scale like
R2 or m2=p2

T. Moreover, these finite R corrections are
often subdominant to other effects present in practical jet
algorithm implementations, such as the difference between
local or global optimization or the treatment of jets at
forward rapidities.
In typical situations, maximizing Jhad, minimizing T had

1 ,
and finding stable cones (by either definition) yield rather
similar jets, which are also similar to anti-kt jets [24]. This
is shown in Table I for a Z plus jets sample from PYTHIA

8.209 [25–27] at the 14 TeV LHC, looking at the hardest jet
with pT > 50 GeV and R ¼ 0.4 for all algorithms. The jet
function approach is implemented with the JET

algorithm
[5], which finds jets ordered by (30) but we take the hardest
jet by pT. The 1-jettiness approach is implemented with
XCONE [16,17], using (31) with β ¼ 2.4 The stable cone
approach is implemented with SISCONE-PR [12,18], taking
the hardest jet by pT. The anti-kt approach is implemented
with FASTJET [28]. For comparison, we also show results
for the Cambridge/Aachen (C/A) [29–31] and kt [21,22]
algorithms. As a similarity metric between the row and
column jet algorithms in Table I, we look at the fraction of
the scalar pT not contained in the shared constituents of the
two algorithms:

P
i∉row∩columnpTiP

i∈rowpTi
: ð34Þ

Around 95% of the time, the four conelike algorithms yield
similar jet kinematics at the 3% level, while the differences
with C/A and kt are noticeably larger. Because all of the
algorithms considered are longitudinally boost invariant,
the similarities/differences between algorithms are essen-
tially independent of the jet rapidity. In Table II, we perform
the same comparison for R ¼ 0.8, where the differences are
much larger as expected.
Note that the study in Table I involves events that

typically only have one hard jet without substructure.
The four algorithms do exhibit larger variations when
going to multiple jets, due to their differing treatment of
jet overlap regions, though the algorithms still yield similar
results when the jets are widely separated. For jets with
substructure, interesting differences can arise for subjets at
wide angles (see further discussion in [5]). Analogous to
the discussion in Sec. IV, two particles with equal momen-
tum sharing will be clustered together if:

TABLE I. Comparing the hardest jet found in Z plus jets
production at the LHC for R ¼ 0.4. Shown is the percentage
of jets found by the column algorithm that match the row
algorithm at the 3% level, as measured by (34).

JET

XCONE

N ¼ 1 SISCONE-PR anti-kt C/A kt

JET
93% 96% 93% 81% 74%

XCONE

N ¼ 1
93% 94% 96% 85% 77%

SISCONE-PR 96% 94% 94% 82% 75%
anti-kt 93% 96% 94% 84% 76%
C/A 81% 85% 82% 84% 83%
kt 75% 78% 76% 76% 83%

4Note that (31) differs from the default XCONE measure based
on Lorentz dot products. We use iterative one-pass minimization,
which finds a local T had

1 minimum from IRC safe seeds.
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ΔR12 ≲
8<
:

R XCONE; anti-ktffiffiffi
2

p
R JET

;

2R SISCONE-PR;

ð35Þ

where 2 → Rsep in the last line if there is sufficient smearing
of the subjet directions.5 As in Sec. IV, we can make
SISCONE-PR behave more like the JET

algorithm by
switching from pT-ordered to Jhad-ordered cones, and
we can make XCONE behave more like the JET

algorithm
by performing brute force global T 1 minimization. In cases
like this where the four algorithms give different results, the
desired behavior depends on the physics of interest.

VI. CONCLUSIONS

The idea of jet finding as an optimization problem has a
long history (see also [34–41]), so we find it remarkable
that three seemingly different optimization strategies
with different underlying philosophies correspond to
the same meta optimization problem. As we saw, the

exact correspondence only holds for fixed-angle cone
jets, whereas at the LHC, complications arise when
projecting four-vectors to the rapidity/azimuth plane.
That said, the differences between the algorithms are
small for small radius jets, and this correspondence helps
explain why jet function maximization and 1-jettiness
minimization yield such similar jets to stable cone jet
algorithms.
There are different conclusions one might draw from this

analysis. To the extent that jet function maximization,
1-jettiness minimization, and stable cone finding yield
similar jets (which are similar to anti-kt), one should
simply choose the jet algorithm with the best computational
performance. Alternatively, to the extent that the three
algorithms have different underlying philosophies, one
might try to exploit those differences to develop new jet
finding techniques with qualitatively different behaviors or
with better convergence in perturbative QCD calculations.
Ultimately, one should choose the jet finding approach that
best suits the intended physics application. In that spirit,
this paper suggests that jet algorithms should be judged not
by the elegance of their underlying philosophies but by the
utility of their jet objects.
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